JPH01247822A - Support construction for rotary shaft - Google Patents

Support construction for rotary shaft

Info

Publication number
JPH01247822A
JPH01247822A JP7334288A JP7334288A JPH01247822A JP H01247822 A JPH01247822 A JP H01247822A JP 7334288 A JP7334288 A JP 7334288A JP 7334288 A JP7334288 A JP 7334288A JP H01247822 A JPH01247822 A JP H01247822A
Authority
JP
Japan
Prior art keywords
bearing
rotating shaft
superconducting material
rotary shaft
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7334288A
Other languages
Japanese (ja)
Inventor
Yasuhiro Koshimoto
越本 泰弘
Shigemitsu Oguchi
小口 重光
Tadashi Kato
忠 加藤
Ryuichi Matsuda
隆一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7334288A priority Critical patent/JPH01247822A/en
Publication of JPH01247822A publication Critical patent/JPH01247822A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Abstract

PURPOSE:To enhance supporting rigidity with simple construction by using a superconducting material for constituting one of the rotary shaft support part of a bearing and the part of the rotary shaft supported with the bearing, and using a multipolar-magnetized material for constituting the other. CONSTITUTION:A taper face 7 constituted with a superconducting material is formed on both ends of a rotary shaft 4 and made opposite to the taper face 8 of a bearing part 6 in a male-female relationship. Also, the bearing part 6 is a permanent magnet and the taper face 8 is magnetized alternately at the predetermined intervals with reverse magnetism radially from the center of rotation. Consequently, high supporting rigidity becomes available with simple construction.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、回転軸の支持構造に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a support structure for a rotating shaft.

(従来の技術) 従来、磁気ディスク装置やレーザスキャナなどのように
、特に清浄環境や高精度を要し高速回転するディスクや
ポリゴンミラーの回転スピンドルの軸受にはボールベア
リングの代りに磁気軸受や気体軸受のような非接触で回
転を支持できる軸受が用いられている。
(Prior art) Conventionally, magnetic bearings or gas bearings have been used instead of ball bearings for the bearings of rotating spindles for disks and polygon mirrors that rotate at high speed and require a particularly clean environment and high precision, such as magnetic disk drives and laser scanners. Bearings that can support rotation without contact, such as bearings, are used.

(発明が解決しようとする課題) このような磁気軸受や気体軸受にあっては、回転軸の位
置を検出し、磁気の吸引や空気バネを利用して、回転軸
との位置を一定に保持制御していた。しかし、この制御
を行なうために、複雑な制御機構や圧力調整機構を必要
とする上、回転支持のために多大な電力と大ぎな構造を
も必要としていた。
(Problem to be solved by the invention) In such magnetic bearings and gas bearings, the position of the rotating shaft is detected and the position relative to the rotating shaft is maintained constant using magnetic attraction or air springs. I was in control. However, in order to perform this control, not only a complicated control mechanism and a pressure adjustment mechanism are required, but also a large amount of electric power and a large structure are required for rotational support.

一方、磁気軸受には上述のような吸引利用とは異なり、
磁石同士の反発力を利用したものもある。
On the other hand, unlike the above-mentioned suction application, magnetic bearings have
Some use the repulsive force between magnets.

この方式では原理的には、簡単な構造で反発力を得るこ
とができるものの支持剛性が低く、完全な非接触状態を
得ることが出来ないという欠点があった。
In principle, this method can obtain repulsive force with a simple structure, but it has a drawback that the support rigidity is low and a completely non-contact state cannot be obtained.

この発明は上記事情に基づいてなされたもので、その目
的としては簡単な構造で支持剛性の高い回転軸の支持構
造を提供することにある。
The present invention has been made based on the above circumstances, and its object is to provide a support structure for a rotating shaft that is simple in structure and has high support rigidity.

[発明の構成] (課題を解決するための手段) この発明は上記課題を解決するために、回転軸を軸受に
より支持する構造であって、少くとも前記軸受における
回転軸の支持部あるいは前記回転軸における軸受による
被支持部のうち、いずれか一方を超伝導材料で構成し、
他方を多極に着磁した磁石で構成することを特徴とする
ことを要旨とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention provides a structure in which a rotating shaft is supported by a bearing, wherein at least the supporting portion of the rotating shaft in the bearing or the rotating shaft is supported by a bearing. One of the supported parts of the shaft by the bearing is made of superconducting material,
The gist of the present invention is that the other is constituted by a multi-pole magnet.

〈作用) 本発明に係る回転軸の支持構造にあっては、超伝導体が
磁石と対向配置された時に示す反磁性特性に着目し、軸
受の支持部および回転軸の被支持部のうち、いずれか一
方を超伝導材料で構成し、他方を多極に着磁した磁石で
構成するようにしている。
<Function> In the support structure for the rotating shaft according to the present invention, focusing on the diamagnetic property exhibited when the superconductor is disposed facing the magnet, among the supporting part of the bearing and the supported part of the rotating shaft, One of them is made of a superconducting material, and the other is made of a multi-pole magnet.

(実施例) 以下、この発明の実施例を図に基づいて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る回転軸の支持構造を磁気ディスク
装置の回転スピンドルに適用した一実施例の側断面図で
ある。同図中、1および2はそれぞれ磁気ディスク装置
を構成する筐体およびカバーである。3は磁気媒体であ
る磁気ディスクである。4は棒状の回転シャフトである
。その両端には超伝導材料で構成されたテーバ面7が形
成されている。ここで、超伝導材料としては、例えばN
b−Tiなどの合金系材料やY−Ba−Cu−0系の酸
化物材料などである。このテーバ面7は軸受部6のテー
バ面8と雌雄関係をなして対向配置される。回転シャフ
ト4の一端は、さらに、軸受部6の軸受中央部に形成さ
れた穴9を貫通するように延設形成され、スピンドルモ
ータのロータ5に接続されている。回転シャフト4の外
周部には複数枚の磁気ディスク3がV4層して固定され
ており、スピンドルモータの駆動による回転シャフト4
の回転に伴い高速回転せしめられる。軸受部6は永久磁
石から構成されていて筐体1およびカバー2に固定配置
されている。軸受部6のテーバ面8は第2図に示すよう
に、軸受部6の回転中心から放射状に、しかも逆極性で
交互に一定の間隙(ピッチ)で着磁されている(第2図
において黒領域と白領域で図示)。
FIG. 1 is a side sectional view of an embodiment in which a rotating shaft support structure according to the present invention is applied to a rotating spindle of a magnetic disk device. In the figure, 1 and 2 are a housing and a cover, respectively, which constitute a magnetic disk device. 3 is a magnetic disk which is a magnetic medium. 4 is a rod-shaped rotating shaft. Taber surfaces 7 made of superconducting material are formed at both ends thereof. Here, as the superconducting material, for example, N
These include alloy materials such as b-Ti and Y-Ba-Cu-0 oxide materials. The tapered surface 7 is disposed opposite to the tapered surface 8 of the bearing portion 6 in a male-female relationship. One end of the rotating shaft 4 further extends to pass through a hole 9 formed in the center of the bearing 6, and is connected to the rotor 5 of the spindle motor. A plurality of magnetic disks 3 are fixed in a V4 layer on the outer periphery of the rotating shaft 4, and the rotating shaft 4 is driven by a spindle motor.
It is made to rotate at high speed along with the rotation of. The bearing portion 6 is made of a permanent magnet and is fixedly arranged on the housing 1 and the cover 2. As shown in Fig. 2, the tapered surfaces 8 of the bearing part 6 are magnetized radially from the center of rotation of the bearing part 6, with opposite polarity and alternately at a constant interval (pitch). (illustrated by white area).

なお、着磁は第3図に示すように軸受部の回転中心から
放射状に、上下二段に異なるピッチで逆極性で交互にな
されていてもよく、さらには軸受部の回転中心から必ず
しも放射状になっている必要はなく、例えばスパイラル
状になされていてもよい。
As shown in Fig. 3, the magnetization may be done radially from the rotation center of the bearing section in two stages, upper and lower, at different pitches and with opposite polarity, and magnetization may also be done radially from the rotation center of the bearing section. It does not have to be in a spiral shape, for example, it may be in a spiral shape.

以上の構成において本実施例の作用について説明する。The operation of this embodiment in the above configuration will be explained.

周知のごとく、超伝導材料は臨界温度以下では、外部磁
場の磁束がこの材料中にまったく侵入しない、いわゆる
マイスナー効果と呼ばれる完全反磁性を示す。この特性
を利用することにより、通常の磁気軸受では不可能とさ
れている、全方向非接触、無制御の磁気浮上が可能であ
る。しかし現実には単純な構造の磁石と超伝導材との組
合せでは支持剛性が低いなどの欠点があるため磁石の構
造に対し何らかの工夫をし発生する磁束の形状を制御す
る必要がある。
As is well known, superconducting materials exhibit complete diamagnetism, the so-called Meissner effect, in which the magnetic flux of an external magnetic field does not penetrate into the material at all below a critical temperature. By utilizing this characteristic, non-contact, uncontrolled magnetic levitation in all directions, which is considered impossible with ordinary magnetic bearings, is possible. However, in reality, the combination of a magnet with a simple structure and a superconducting material has drawbacks such as low support rigidity, so it is necessary to take some measures to the structure of the magnet to control the shape of the generated magnetic flux.

ところで、磁気軸受として要求される支持剛性は磁石の
発生する磁束を超伝導材により排斥される磁束密度が大
きい程、高くなる。すなわち、磁石と超伝導材間の間隙
dが小さい程、支持剛性は高くなる。
Incidentally, the supporting rigidity required for a magnetic bearing increases as the magnetic flux density at which the magnetic flux generated by the magnet is rejected by the superconducting material increases. That is, the smaller the gap d between the magnet and the superconducting material, the higher the supporting rigidity.

いま、例えば第2図に示すように軸受部6の永久磁石を
一定ピッチしのくり返しで交互に逆極性で着磁したとき
の磁束密度φはつぎのように表わされる。
For example, when the permanent magnets of the bearing portion 6 are repeatedly magnetized with opposite polarities at a constant pitch as shown in FIG. 2, the magnetic flux density φ is expressed as follows.

φ=φoeXl)(−πd/L) ここで、φ0は永久磁石表面での磁束密度である。この
式から、ピッチLを小さくする程、永久磁石から発生す
る磁束密度は磁石表面から離れるに従い急速に減少する
、すなわち磁石表面近傍に磁束が集中し、間隙dが小さ
くなる程、すなわち磁石表面に近づく程、磁束密度は指
数関数的に急激に増大することがわかる。したがって、
ピッチLを小さくし、間隙dを磁石に近づけることによ
り非常に高い支持剛性を得ることができる。しかしピッ
チLを小さくすることにより支持剛性は上がるが、現実
には、完全反磁性を示すはずの超伝導材に例えば表面層
での成分組成の変化などにより完全反磁性を示さない層
が出来るなどで、ピッチを1μm以下にすると磁束の侵
入を許し、支持剛性低下を見る。このため最短ピッチを
数μm以上とすると高い支持剛性が、ピッ“チ相当の間
隙dで、得られる。このようなピッチのくり返しで逆極
性に着磁されて筐体1とカバー2に設けられたテーバ状
の軸受部6と、この軸受部6に対向し、超伝導材から構
成されるテーパ面7を上下にもつ回転シャフト4を有す
る第1図の磁気ディスク装置のスピンドルは、筐体1お
よびカバー2により押圧されて、スラストおよびジャー
ナル両方向への支持が行なわれ、回転シャフト4は中心
線上に支持されて安定性良く高速回転する。また、各方
向への剛性の配分は使用目的に応じてテーバ角を設定す
ることにより自由に変化させることができる。
φ=φoeXl)(-πd/L) Here, φ0 is the magnetic flux density on the surface of the permanent magnet. From this equation, it can be seen that as the pitch L becomes smaller, the magnetic flux density generated from the permanent magnet decreases rapidly as it moves away from the magnet surface, that is, the magnetic flux concentrates near the magnet surface, and as the gap d becomes smaller, that is, It can be seen that the closer you get, the more rapidly the magnetic flux density increases exponentially. therefore,
Very high support rigidity can be obtained by reducing the pitch L and bringing the gap d closer to the magnet. However, although supporting rigidity increases by reducing the pitch L, in reality, a superconducting material that should exhibit perfect diamagnetism may have layers that do not exhibit perfect diamagnetism due to changes in the component composition in the surface layer, for example. When the pitch is set to 1 μm or less, magnetic flux is allowed to enter, resulting in a decrease in support rigidity. For this reason, if the shortest pitch is several μm or more, high support rigidity can be obtained with a gap d equivalent to the pitch. By repeating such a pitch, the magnets are magnetized to opposite polarities and provided on the housing 1 and the cover 2. The spindle of the magnetic disk device shown in FIG. 1 has a rotating shaft 4 having a tapered bearing portion 6 and a tapered surface 7 made of a superconducting material on the upper and lower sides facing the bearing portion 6. The rotating shaft 4 is supported on the center line and rotates at high speed with good stability.Also, the distribution of rigidity in each direction is determined depending on the purpose of use. It can be freely changed by setting the Taber angle.

なお、従来の磁気軸受に比べ軸受部とシャフト間の間隙
が非常に小さいので、回転動作時の間隙変動に伴い環境
気体が入出することにより生じる制動効果もなく安定動
作が出来る。
In addition, since the gap between the bearing part and the shaft is much smaller than that of conventional magnetic bearings, stable operation is possible without the braking effect caused by environmental gas entering and exiting due to gap fluctuations during rotational operation.

回転シャフト4の、軸受部6の永久磁石対向面を超伝導
材料で製造するには、例えばNb −Tiのような合金
系の材料であればテーパ状に加工した超伝導材料のスリ
ーブをシャフトに接合したり、YBa 2 CLJ30
7系の酸化物系材料の原料をシャフト材に被膜し、熱処
理後研削するなどしておこなう。さらにはシャフト全体
を超伝導材料から作ってもよい。
In order to manufacture the permanent magnet facing surface of the bearing part 6 of the rotating shaft 4 from a superconducting material, for example, if it is made of an alloy material such as Nb-Ti, a sleeve of superconducting material processed into a tapered shape is attached to the shaft. Join or YBa 2 CLJ30
This is done by coating the shaft material with the raw material of the 7-series oxide material, heat-treating it, and then grinding it. Furthermore, the entire shaft may be made of superconducting material.

したがって本実施例によれば、超伝導体のマイスナー効
果に着目して、一定のピッチのくり返しで逆極性で着磁
した軸受部と超伝導材から構成される回転シャフトによ
る超伝導磁気軸受なので簡単な構造で高い支持剛性を得
ることができる。
Therefore, according to this embodiment, focusing on the Meissner effect of superconductors, the superconducting magnetic bearing is simple because it uses a rotating shaft made of a bearing part and a superconducting material that are magnetized with opposite polarity repeatedly at a constant pitch. This structure provides high support rigidity.

なお、本実施例においてテーパ状の軸受部とそれに対向
する回転シャフトを用いたが本発明はこれにとられれる
ものではなく、例えば第4図に示すように、多極着磁し
たリングとこのリングと同様に着磁した底部を接合した
ような軸受部と、図示していないがこの軸受部と着磁面
に対向する超伝導材料からなる対向面を有するシャフト
との組合せであってもよい。
In this embodiment, a tapered bearing part and a rotating shaft facing the tapered bearing part are used, but the present invention is not limited to this. For example, as shown in FIG. 4, a multi-pole magnetized ring and this It may be a combination of a bearing part with a magnetized bottom joined like a ring, and a shaft (not shown) having an opposing surface made of a superconducting material that faces the bearing part and the magnetized surface. .

また、本実施例では、本発明を磁気ディスク装置の回転
スピンドルに適用したが、本発明はこれにとられれるも
のではなく、例えばレーザスキャナのポリゴンミラーの
回転スピンドルへの適用であってもよい。
Further, in this embodiment, the present invention is applied to a rotating spindle of a magnetic disk device, but the present invention is not limited to this, and may be applied to a rotating spindle of a polygon mirror of a laser scanner, for example. .

さらに、本実施例では磁石として永久磁石を用いたが、
本発明はこれにとられれるものではなく例えば電磁石で
あってもよい。
Furthermore, although a permanent magnet was used as the magnet in this example,
The present invention is not limited to this; for example, an electromagnet may be used.

また、回転にともない、超伝導材料の任意の場所は交番
磁界を反発することにより、いわゆる誘導反発効果によ
る剛性向上も付加されるという利点もある。
Another advantage is that as the superconducting material rotates, any part of the superconducting material repels the alternating magnetic field, thereby improving rigidity due to the so-called induced repulsion effect.

[発明の効果] 以上説明したように、この発明によれば超伝導体が磁石
と対向配置された時に示す反磁性特性に着目し、軸受の
支持部および回転軸の被支持部のうち、いずれか一方を
超伝導材料で構成し、他方を多極に着磁した磁石で構成
するようにしたので、命中な構造で高い支持剛性を得る
ことができる。
[Effects of the Invention] As explained above, according to the present invention, attention is paid to the diamagnetic property exhibited when a superconductor is disposed facing a magnet, and any of the supporting portion of the bearing and the supported portion of the rotating shaft is One of them is made of a superconducting material, and the other is made of a multi-pole magnet, so it is possible to obtain a high support rigidity with a precise structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の側断面図で、第2図乃至第
4図は軸受部とシャフトの実施例の斜視図である。 1・・・筐体 2・・・カバー 3・・・磁気ディスク 4・・・回転シャフト5・・・
ロータ 6・・・軸受部 7.8・・・テーパ面 9・・・貫通穴 代理人 弁理士  三 好 保 男 第3図 第4 因
FIG. 1 is a side sectional view of one embodiment of the present invention, and FIGS. 2 to 4 are perspective views of the embodiment of the bearing portion and shaft. 1... Housing 2... Cover 3... Magnetic disk 4... Rotating shaft 5...
Rotor 6...Bearing part 7.8...Tapered surface 9...Through hole Agent Yasuo Miyoshi, patent attorney Figure 3, Factor 4

Claims (1)

【特許請求の範囲】[Claims] (1)回転軸を軸受により支持する構造であって、少く
とも前記軸受における回転軸の支持部あるいは前記回転
軸における軸受による被支持部のうち、いずれか一方を
超伝導材料で構成し、他方を多極に着磁した磁石で構成
することを特徴とする回転軸の支持構造。
(1) A structure in which a rotating shaft is supported by a bearing, in which at least one of the supporting portion of the rotating shaft in the bearing or the supported portion of the rotating shaft by the bearing is made of a superconducting material, and the other is made of a superconducting material. A support structure for a rotating shaft characterized by comprising a multi-pole magnetized magnet.
JP7334288A 1988-03-29 1988-03-29 Support construction for rotary shaft Pending JPH01247822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7334288A JPH01247822A (en) 1988-03-29 1988-03-29 Support construction for rotary shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7334288A JPH01247822A (en) 1988-03-29 1988-03-29 Support construction for rotary shaft

Publications (1)

Publication Number Publication Date
JPH01247822A true JPH01247822A (en) 1989-10-03

Family

ID=13515388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7334288A Pending JPH01247822A (en) 1988-03-29 1988-03-29 Support construction for rotary shaft

Country Status (1)

Country Link
JP (1) JPH01247822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292300A (en) * 1996-04-26 1997-11-11 Agency Of Ind Science & Technol Rotary type viscosity vacuum gauge
JP2017129143A (en) * 2016-01-19 2017-07-27 プファイファー・ヴァキューム・ゲーエムベーハー Vacuum pump, permanent magnet supporting portion, monolith-type permanent magnet, and manufacturing method of monolith-type permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292300A (en) * 1996-04-26 1997-11-11 Agency Of Ind Science & Technol Rotary type viscosity vacuum gauge
JP2017129143A (en) * 2016-01-19 2017-07-27 プファイファー・ヴァキューム・ゲーエムベーハー Vacuum pump, permanent magnet supporting portion, monolith-type permanent magnet, and manufacturing method of monolith-type permanent magnet

Similar Documents

Publication Publication Date Title
US5710469A (en) Magnetic bearing element for a rotor shaft using high-TC superconducting materials
JPH0235549B2 (en)
JPH01247822A (en) Support construction for rotary shaft
Moser et al. Precise positioning using electrostatic glass motor with diamagnetically suspended rotor
McMichael et al. Effects of material processing in high temperature superconducting magnetic bearings
JP3072099U (en) Geometric arrangement of magnetic levitation force in magnetic levitation type rotary bearing device
JP3385771B2 (en) Superconducting magnetic bearing device
JP3151492B2 (en) Slide device
JP3616856B2 (en) Bearing device
JPH11257354A (en) Rotor for magnetic bearing and superconductive magnetic bearing
JPH01216119A (en) Superconducting magnet bearing
JPH01234618A (en) Superconducting magnetic bearing
JPS6142978Y2 (en)
JP3232463B2 (en) Superconducting bearing device
JPH06313427A (en) Oxide superconducting bearing
JPH0614087Y2 (en) Magnetic bearing device
JPS61214758A (en) Flat small-sized motor
JPS5884221A (en) Five-axle control type magnetic bearing
JP3114175B2 (en) Shaft and bearing
JPH04191520A (en) Superconducting bearing device
JPH01218369A (en) Superconducting motor
JPH01261512A (en) Bearing
JPH08219157A (en) Magnetic bearing device
JPH02125107A (en) Turning device
JPH0667168B2 (en) Non-contact double-acting actuator