JP2006296139A - Rotating machine using discoidal magnetic rotor - Google Patents

Rotating machine using discoidal magnetic rotor Download PDF

Info

Publication number
JP2006296139A
JP2006296139A JP2005116201A JP2005116201A JP2006296139A JP 2006296139 A JP2006296139 A JP 2006296139A JP 2005116201 A JP2005116201 A JP 2005116201A JP 2005116201 A JP2005116201 A JP 2005116201A JP 2006296139 A JP2006296139 A JP 2006296139A
Authority
JP
Japan
Prior art keywords
magnetic
rotor
disk
stator
rotating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005116201A
Other languages
Japanese (ja)
Inventor
Makoto Igarashi
良 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005116201A priority Critical patent/JP2006296139A/en
Publication of JP2006296139A publication Critical patent/JP2006296139A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating machine for preventing the problem wherein rotation cannot be made by the friction of both from occurring when narrowing the gap between a magnetic stator and a magnetic rotor to improve rotation performance, and to reduce magnetic resistance in a magnetic circuit. <P>SOLUTION: In the rotating machine, a discoidal magnetic stator 2 to which an electromagnet is fitted, and a discoidal magnetic rotor 1 to which a permanent magnet or a short-circuiting conductor is fitted are arranged concentrically, and magnetic resistance is reduced by narrowing the gap between both the disks. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気エネルギーを運動エネルギーに変換する電動機,また,運動エネルギーを電気エネルギーに変換する発電機を対象とするもので,円板磁性体回転子を用いる回転機に関する。 The present invention is directed to an electric motor that converts electric energy into kinetic energy and a generator that converts kinetic energy into electric energy, and relates to a rotating machine that uses a disk magnetic rotor.

電動機には多くの種類・形式があり,広い分野で利用されている。電動機の中には直流電動機のように発電機としても使用できるものがある。電動機と発電機は回転機として取り扱われ,近年,回転機のエネルギー変換効率を高めることが重要となってきている。これはエネルギーの節減を通して地球環境を守る視点からである。従来,回転機には円筒型回転子とこの円筒型回転子を装着するための円筒状空間を備えた円筒型固定子とを組み合わせたものが主流である。この理由はエネルギー変換効率がある程度高く,信頼性が確立されているからである。しかし,円筒型固定子と円筒型回転子との間の空隙は機械加工精度,円筒型固定子と円筒型回転子の熱的形状変形,軸受けの磨耗を考慮して決められるものであるので,空隙縮小には限界がある。このため円筒型固定子,円筒型回転子および円筒型固定子と円筒型回転子との空隙に関する磁気抵抗が低くならないので,回転性能は向上しない。従って,上記空隙を小さくして磁気抵抗を低くすることが最優先の課題である。説明を容易にするために,一般の電動機20を示す図5を参照すると,電動機20はN極永久磁石21,S極永久磁石22,回転子24より構成され,さらに,回転子24は軸25に装着された3個の電磁石26,整流子27から構成される。図5には回転子が3極の場合を示しているが,一般には極数が多いので,回転子は円筒形状となっており,この回転子と組み合わされる固定子の中空部分も円筒形状となっている。従って,図5は円筒形状ではないが,円筒形状と看做して動作原理を説明すると,図5において,磁極23-1をS極になるように設計すると,磁極23−1はS極永久磁石22から反発力を受け,同時にN極永久磁石21から吸引力を受けて回転子は時計方向に回転する。この回転により磁極23−2がN極永久磁石21を通り過ぎる時点で磁極23−2をN極に磁化すると磁極23−2はN極永久磁石21からの反発力とS極永久磁石22からの吸引力を得て時計方向に回転を持続する。磁極23−2が回転力を得る時点で磁極23−1の磁化状態を解消する。このような動作が繰り返されて磁極23−2の磁化状態が解消されるが,磁極23−2がS極永久磁石22を通り過ぎる時点で今度はS極に磁化されて前述の動作が継続して行われる。   There are many types and types of electric motors, and they are used in a wide range of fields. Some motors can also be used as generators, such as DC motors. Electric motors and generators are handled as rotating machines, and in recent years it has become important to increase the energy conversion efficiency of rotating machines. This is from the viewpoint of protecting the global environment through energy savings. Conventionally, a rotating machine is mainly a combination of a cylindrical rotor and a cylindrical stator having a cylindrical space for mounting the cylindrical rotor. This is because the energy conversion efficiency is high to some extent and reliability is established. However, the gap between the cylindrical stator and the cylindrical rotor is determined in consideration of machining accuracy, thermal deformation of the cylindrical stator and the cylindrical rotor, and bearing wear. There is a limit to void reduction. For this reason, since the magnetic resistance regarding the cylindrical stator, the cylindrical rotor, and the gap between the cylindrical stator and the cylindrical rotor does not decrease, the rotational performance does not improve. Accordingly, it is a top priority to reduce the magnetic resistance by reducing the gap. For ease of explanation, referring to FIG. 5 showing a general electric motor 20, the electric motor 20 includes an N-pole permanent magnet 21, an S-pole permanent magnet 22, and a rotor 24, and the rotor 24 further includes a shaft 25. 3 is composed of three electromagnets 26 and a commutator 27. Although FIG. 5 shows a case where the rotor has three poles, since the number of poles is generally large, the rotor has a cylindrical shape, and the hollow portion of the stator combined with this rotor also has a cylindrical shape. It has become. Accordingly, although FIG. 5 is not cylindrical, the operation principle will be described assuming that it is cylindrical. In FIG. 5, when the magnetic pole 23-1 is designed to be an S pole, the magnetic pole 23-1 is an S pole permanent. Upon receiving a repulsive force from the magnet 22 and simultaneously receiving an attractive force from the N-pole permanent magnet 21, the rotor rotates in the clockwise direction. When the magnetic pole 23-2 passes through the N-pole permanent magnet 21 by this rotation and the magnetic pole 23-2 is magnetized to the N-pole, the magnetic pole 23-2 is repelled by the N-pole permanent magnet 21 and attracted by the S-pole permanent magnet 22. Continue to rotate clockwise with force. When the magnetic pole 23-2 obtains the rotational force, the magnetization state of the magnetic pole 23-1 is canceled. Such an operation is repeated to cancel the magnetization state of the magnetic pole 23-2. However, when the magnetic pole 23-2 passes through the S-pole permanent magnet 22, this time the magnet is magnetized to the S-pole and the above operation continues. Done.

次に,図5において,磁極23と永久磁石21および22との間の空隙は温度変化による形状伸縮,軸受けの磨耗,機械加工精度等に対して十分な余裕が必要であるため磁極23と永久磁石21および22との間の空隙は十分小さくできない。さらに磁極23と永久磁石21および22との間に異物が混入した場合には重大な故障を招くことが考えられる。そのため軸受けの磨耗検査,回転子および固定子の寸法確認等の保守のための負担が増大する結果となる Next, in FIG. 5, the gap between the magnetic pole 23 and the permanent magnets 21 and 22 needs to have a sufficient margin for shape expansion / contraction due to temperature change, wear of the bearing, machining accuracy, and the like. The gap between the magnets 21 and 22 cannot be made sufficiently small. Further, if foreign matter is mixed between the magnetic pole 23 and the permanent magnets 21 and 22, a serious failure may be caused. This increases the burden of maintenance such as bearing wear inspection and rotor and stator dimension confirmation.

従来,内部円筒型固定子と円筒型回転子との空隙を小さくすることが困難であった。この理由は回転子の形状伸縮が固定子に直接影響を及ぼし,結果として回転子が固定子に接触する危険があるからである。この改善策として,円筒型回転子および円筒型固定子の代わりに円板型固定子および円板型回転子を使用することである。円板型回転子の円板の直径方向の伸縮があっても円板型回転子が円板型固定子に接触して回転を阻害することがないからである。また,円板型回転子の厚み方向の形状伸縮を軸の遊びにより吸収することができるので,円板型固定子と円板型回転子の空隙を極めて小さくできる。この結果,磁気回路の抵抗が低くなり回転性能が向上すると共に回転子が固定子に接触するような危険がないので安全性の面でも優位である。
特開2002−078308号公報
Conventionally, it has been difficult to reduce the gap between the inner cylindrical stator and the cylindrical rotor. This is because the shape expansion and contraction of the rotor directly affects the stator, and as a result, there is a risk that the rotor contacts the stator. As an improvement measure, a disk type stator and a disk type rotor are used instead of the cylindrical type rotor and the cylindrical type stator. This is because even if there is expansion and contraction in the diameter direction of the disk of the disk type rotor, the disk type rotor does not come into contact with the disk type stator to inhibit rotation. Further, since the shape expansion and contraction in the thickness direction of the disk type rotor can be absorbed by the play of the shaft, the gap between the disk type stator and the disk type rotor can be made extremely small. As a result, the resistance of the magnetic circuit is lowered, the rotational performance is improved, and there is no danger that the rotor contacts the stator, which is advantageous in terms of safety.
Japanese Patent Laid-Open No. 2002-078308

解決しようとする問題点は、円筒型回転子と円筒型固定子との空隙を極めて小さな値にすることができないため,磁気回路の抵抗が低くならないので,回転性能は向上しない。従って、発明が解決しようとする課題は回転子および固定子との空隙を小さくすると共に固定子および回転子の温度変化による形状伸縮によって回転性能に影響が及ばないようにすることである。 The problem to be solved is that since the gap between the cylindrical rotor and the cylindrical stator cannot be made extremely small, the resistance of the magnetic circuit is not lowered, so that the rotational performance is not improved. Therefore, the problem to be solved by the invention is to reduce the gap between the rotor and the stator and to prevent the rotation performance from being affected by the shape expansion and contraction due to the temperature change of the stator and the rotor.

上記問題点を解決するために,本発明の回転機は,円板磁性体固定子と円板磁性体回転子を同心状態で対向させて,円板磁性体固定子と円板磁性体回転子との空隙を極めて小さくする。この結果,円板磁性体固定子と円板磁性体回転子とにより形成される磁気回路の磁気抵抗が低くなると共に固定子と回転子の接触によって回転不能になることが回避される。 In order to solve the above problems, a rotating machine according to the present invention has a disk magnetic material stator and a disk magnetic material rotor that are concentrically opposed to each other. And the gap between them is extremely small. As a result, the magnetic resistance of the magnetic circuit formed by the disk magnetic body stator and the disk magnetic body rotor is reduced, and it is avoided that the rotation becomes impossible due to the contact between the stator and the rotor.

上記のように構成された本発明の回転機は,磁気抵抗が低くなることにより低消費電力において高い回転性能が得られる。さらに,温度変化による固定子および回転子の形状が伸縮しても回転機性能に影響することはないので,高い信頼性が得られる。従って,軸受けの磨耗検査,回転子および固定子の寸法確認等の保守のための負担が低減される。 The rotating machine of the present invention configured as described above can achieve high rotation performance at low power consumption due to low magnetic resistance. Furthermore, even if the shape of the stator and rotor due to temperature changes does not affect the rotating machine performance, high reliability can be obtained. Therefore, maintenance burdens such as bearing wear inspection and rotor and stator dimension confirmation are reduced.

円板磁性体固定子と円板磁性体回転子との空隙を狭くしても円板磁性体回転子の回転に支障とならないように両円板の平行度を良好に保つようにすることである。 円板磁性体回転子の回転力がその取り付け軸に十分伝達される条件の下で,その取り付け軸との間にある程度の遊びを持たせることが機械加工精度および軸受けの磨耗の条件を緩和する上で好ましい実施形態である。また,磁気回路の磁気抵抗を低くするためには円板磁性体固定子と円板磁性体回転子との空隙を狭くしなければならないが,回転速度を考慮すると円板近傍の空隙は円板中心部の空隙より広くすると総合的に磁気抵抗が低くなる。また,円板磁性体回転子に組み込まれた複数の永久磁石または短絡導体と円板磁性体固定子からの磁束との相互作用が最大となるように上記永久磁石および短絡導体を配置することである。 By maintaining good parallelism of both disks so as not to hinder the rotation of the disk magnetic rotor even if the gap between the disk magnetic stator and the disk magnetic rotor is narrowed. is there. Under the condition that the rotational force of the disc magnetic rotor is sufficiently transmitted to the mounting shaft, a certain amount of play between the mounting shaft and the mounting shaft can alleviate the machining accuracy and bearing wear conditions. Preferred embodiment above. In order to reduce the magnetic resistance of the magnetic circuit, the gap between the disk magnetic stator and the disk magnetic rotor must be narrowed. However, considering the rotational speed, the gap near the disk is If it is wider than the gap in the center, the magnetoresistance is lowered overall. Further, the permanent magnet and the short-circuit conductor are arranged so that the interaction between the plurality of permanent magnets or the short-circuit conductor incorporated in the disk magnetic rotor and the magnetic flux from the disk magnetic stator is maximized. is there.

実施例について図面を参照して説明する。図1は本発明による円板磁性体回転子を用いる回転機を示す図で,軸6に装着された円板磁性体回転子1,複数個の電磁石3および磁性体4を装着した円板磁性体固定子2,ブランケット5より構成される。軸受け7および8はそれぞれブランケット5および円板磁性体固定子2の中心に設けられている。ここで磁気回路9について述べると,矢印点線で示すように,電磁石3が発生する磁束は電磁石磁極10,円板磁性体回転子1,磁性体4および円板磁性体固定子2を経て電磁石3に戻る。磁気回路9を通る磁束を増やすと回転性能が高まる。磁束を増やすためには,磁気回路9の磁気抵抗を下げればよい。このためには円板磁性体回転子1と電磁石磁極10および磁性体4との空隙を狭くするのが効果的である。また,上記空隙を一定に保つためにはボ−ル11を電磁石磁極10と円板磁性体回転子1の間に挿入することもできる。さらに,温度変化による円板磁性体回転子1および円板磁性体固定子2の厚み方向の形状伸縮を吸収するため,軸6に遊び12を設ける。 Embodiments will be described with reference to the drawings. FIG. 1 is a view showing a rotating machine using a disk magnetic rotor according to the present invention. A disk magnetic rotor mounted on a shaft 6, a disk magnet mounted with a plurality of electromagnets 3 and a magnetic body 4. It consists of a body stator 2 and a blanket 5. The bearings 7 and 8 are provided at the centers of the blanket 5 and the disc magnetic stator 2, respectively. The magnetic circuit 9 will now be described. The magnetic flux generated by the electromagnet 3 passes through the electromagnet magnetic pole 10, the disk magnetic rotor 1, the magnetic body 4, and the disk magnetic body stator 2, as indicated by the dotted dotted line. Return to. Increasing the magnetic flux that passes through the magnetic circuit 9 increases the rotational performance. In order to increase the magnetic flux, the magnetic resistance of the magnetic circuit 9 may be lowered. For this purpose, it is effective to narrow the gap between the disc magnetic rotor 1, the electromagnet magnetic pole 10 and the magnetic body 4. Further, in order to keep the gap constant, a ball 11 can be inserted between the electromagnet magnetic pole 10 and the disc magnetic rotor 1. Further, in order to absorb the shape expansion and contraction in the thickness direction of the disk magnetic rotor 1 and the disk magnetic stator 2 due to temperature change, a play 12 is provided on the shaft 6.

次に図2を参照して動作原理を説明すると,図2(a)および(b)はそれぞれ図1のI―I線矢視断面図およびII-II線矢視断面図である。図1と図2において同じ部品および部材のところには同じ参照数字が用いられる。 図2(a)において,nーn,nーn,nーnの3組の電磁石3が円板磁性体固定子2に装着されており,組単位で順次駆動される。駆動された電磁石3の磁極10はとN極に磁化される。一方,円板磁性体回転子1には4個の永久磁石13(それぞれをN,N,S,Sとし磁化状態をも示すものとする)が組み込まれている。図2の状態において,nーnを駆動すると両nはN極に磁化されるので,N,Nは隣り合ったnから反発力を受ける。一方,S,Sは隣り合ったnから吸引力を受けて円板磁性体回転子1はNからSの方向に回転する。S1,Sがnの近傍まで移動した時点でnーnの駆動を停止し,引き続いてnーnを駆動するとS1,Sがnに吸引される。次にnーnの駆動を停止した後,nーnを駆動すれば円板磁性体回転子1は半回転することになる。この動作を繰り返すことにより円板磁性体回転子1は回転を継続する。永久磁石13を円板磁性体回転子1に組み込んだ場合について説明したが,フェライトのような磁性体を図2(b)のように部分磁化した円板磁性体を用いることもできる。以上の説明を補足すると,磁性体4は磁束通過の距離を短縮するために用いられているが,磁束通路として隣り合う電磁石を利用できるので必要不可欠の部材ではない。しかし,磁性体4と円板磁性体回転子1の空隙に関わる面積を大きくして磁気抵抗を低減しうる利点が生ずるので,用途により磁性体4装着の可否を決めることになる。また,従来の円筒型の場合には固定子と回転子との空隙を狭くすることが困難であることは前述した通りであり,さらに,この空隙に混入した異物は遠心力を受けて固定子に張り付き外部に追い出すことが困難である。一方,円板型では異物への遠心力は異物を外部に追い出すように作用するので,故障確率は低くなる。なお,図1の回転機を電動機として用いる場合は永久磁石13の代わりに電磁石を用いることが可能である。 Next, the operation principle will be described with reference to FIG. 2. FIGS. 2 (a) and 2 (b) are a sectional view taken along line II and a sectional view taken along line II-II in FIG. 1, respectively. 1 and 2, the same reference numerals are used for the same parts and members. In FIG. 2 (a), three sets of electromagnets 3 of n 1 −n 1 , n 2 −n 2 , and n 3 −n 3 are mounted on the disk magnetic body stator 2 and are sequentially driven in units. The The magnetic pole 10 of the driven electromagnet 3 is magnetized to the north pole. On the other hand, the disk magnetic rotor 1 includes four permanent magnets 13 (N 1 , N 2 , S 1 , and S 2 , respectively, which also indicate the magnetization state). In the state of FIG. 2, when n 2 −n 2 is driven, both n 2 are magnetized to the N pole, and thus N 1 and N 2 receive a repulsive force from the adjacent n 2 . On the other hand, S 1 and S 2 receive an attractive force from the adjacent n 2, and the disk magnetic rotor 1 rotates in the direction from N 1 to S 1 . S 1, S 2 is the driving of the n 2 over n 2 stops when it moves to the vicinity of n 2, S 1, S 2 Driving n 3 over n 3 is sucked into n 3 subsequently. Next, after stopping the driving of the n 3 over n 3, disc magnetic rotor 1 by driving the n 1 over n 1 would be half rotation. By repeating this operation, the disk magnetic rotor 1 continues to rotate. Although the case where the permanent magnet 13 is incorporated in the disc magnetic rotor 1 has been described, a disc magnetic material in which a magnetic material such as ferrite is partially magnetized as shown in FIG. 2B can also be used. Supplementing the above description, the magnetic body 4 is used to shorten the distance of magnetic flux passage, but is not an indispensable member since adjacent electromagnets can be used as the magnetic flux path. However, there is an advantage that the magnetic resistance can be reduced by increasing the area related to the gap between the magnetic body 4 and the disk magnetic body rotor 1, so that whether or not the magnetic body 4 can be attached is determined depending on the application. In addition, as described above, it is difficult to narrow the gap between the stator and the rotor in the case of the conventional cylindrical type. Further, the foreign matter mixed in the gap receives the centrifugal force and receives the stator. It is difficult to drive out to the outside. On the other hand, in the disk type, since the centrifugal force to the foreign substance acts to drive the foreign substance out, the failure probability becomes low. When the rotating machine of FIG. 1 is used as an electric motor, an electromagnet can be used instead of the permanent magnet 13.

次に他の実施例について図3,図4を参照して説明する。円板固定子および円板回転子を使用しているので,図1と共通の目的,作用を有するところには同じ参照数字を用いることにする。図3は本発明による円板磁性体回転子を用いる誘導電動機を示す図で,軸6に装着された円板磁性体回転子1,複数個の電磁石3および磁性体4を装着した円板磁性体固定子2,ブランケット5より構成される。軸受け7および8はそれぞれブランケット5および円板磁性体固定子2の中心に設けられている。図3においてはボール12および遊び12は省略しているが用途により,これらの適用を決めることになる。ただし,図1の回転機は永久磁石を活用するもので電動機および発電機として使用できるが,図3は電動機としてのみの使用に限定されるので,回転子の構造および作用が大きく異なる。図4(a)および(b)はそれぞれ図3のIII―III線矢視断面図およびIV-IV線矢視断面図である。図4(a)は図2(a)と同一であるが,3組の電磁石(nーn,nーn,nーn)を3相交流電源により駆動して,円板磁性体回転子14に埋め込まれた短絡導体に作用させるものである。この原理は従来の誘導電動機と同じであるが,固定子および回転子を円筒型から円板型に変更することにより,固定子と回転子との空隙を狭くし,磁気抵抗を下げることができる。結果として,回転性能の向上,消費電力の低減,保守作業の負担低減の利点が生ずる。さて,電磁石(nーn,nーn,nーn)に3相交流電力を供給すると回転磁界が生じて,図2(b)に示す円板磁性体回転子14に埋め込まれた短絡導体15に誘起電流が生ずる結果,この誘起電流と上記回転磁界との相互作用により,円板磁性体回転子14に回転磁界の方向に回転力が生ずる。回転力は円板磁性体回転子14の回転速度が回転磁界の速さと同じになるとゼロになるので,回転磁界より若干遅い相度で回転する。以上の説明および図3および図4から明らかなように固定子と回転子の空隙が狭くなれば磁束密度が高くなり,円板磁性体回転子14に埋め込まれた短絡導体を鎖交する磁束が増大する。このことから図1の場合と同じ利点が生ずることが分かる。 Next, another embodiment will be described with reference to FIGS. Since a disk stator and a disk rotor are used, the same reference numerals are used where they have the same purpose and function as in FIG. FIG. 3 is a view showing an induction motor using a disk magnetic rotor according to the present invention. The disk magnetic rotor mounted on the shaft 6, the disk magnet mounted with a plurality of electromagnets 3 and the magnetic body 4. It consists of a body stator 2 and a blanket 5. The bearings 7 and 8 are provided at the centers of the blanket 5 and the disc magnetic stator 2, respectively. In FIG. 3, the ball 12 and the play 12 are omitted, but their application is determined depending on the application. However, the rotating machine shown in FIG. 1 uses a permanent magnet and can be used as an electric motor and generator. However, since FIG. 3 is limited to use only as an electric motor, the structure and operation of the rotor are greatly different. 4 (a) and 4 (b) are respectively a cross-sectional view taken along line III-III and a cross-sectional view taken along line IV-IV in FIG. FIG. 4 (a) is the same as FIG. 2 (a), but three sets of electromagnets (n 1 −n 1 , n 2 −n 2 , n 3 −n 3 ) are driven by a three-phase AC power source, It acts on the short-circuit conductor embedded in the disc magnetic rotor 14. This principle is the same as that of a conventional induction motor. However, by changing the stator and rotor from a cylindrical type to a disk type, the gap between the stator and the rotor can be narrowed and the magnetic resistance can be lowered. . As a result, there are the advantages of improved rotation performance, reduced power consumption, and reduced maintenance work. When a three-phase AC power is supplied to the electromagnets (n 1 −n 1 , n 2 −n 2 , n 3 −n 3 ), a rotating magnetic field is generated, and the disc magnetic rotor 14 shown in FIG. As a result, an induced current is generated in the short-circuit conductor 15 embedded in the magnetic field. As a result, a rotational force is generated in the disk magnetic rotor 14 in the direction of the rotating magnetic field due to the interaction between the induced current and the rotating magnetic field. Since the rotational force becomes zero when the rotational speed of the disk magnetic rotor 14 becomes the same as the rotational magnetic field, the rotational force rotates slightly slower than the rotational magnetic field. As is clear from the above description and FIGS. 3 and 4, the magnetic flux density increases as the gap between the stator and the rotor becomes narrower, and the magnetic flux interlinking the short-circuit conductor embedded in the disk magnetic rotor 14 is increased. Increase. This shows that the same advantages as in FIG.

本発明の実施例による円板磁性体回転子を用いる回転機を示す図である。It is a figure which shows the rotary machine using the disk magnetic body rotor by the Example of this invention. 図2の(a)は、図1のI−I線矢視断面図を示し、図2の(b)は、図1のII−II線矢視断面図である。2A is a cross-sectional view taken along line I-I in FIG. 1, and FIG. 2B is a cross-sectional view taken along line II-II in FIG. 1. 本発明の他の実施例による円板磁性体回転子を用いる回転機を示す図である。It is a figure which shows the rotary machine using the disk magnetic body rotor by other Example of this invention. 図4の(a)は図3のIII−III線矢視断面図、図4の(b)は図3のIV−IV線矢視断面図である。4A is a cross-sectional view taken along the line III-III in FIG. 3, and FIG. 4B is a cross-sectional view taken along the line IV-IV in FIG. 従来の電動機を示す図である。It is a figure which shows the conventional electric motor.

符号の説明Explanation of symbols

1は円板磁性体回転子
2は円板磁性体固定子
3は電磁石
4は磁性体
5はブランケット
6は軸
7および8は軸受
9は磁気回路
10は電磁石磁極
11はボール
12は遊び
13は永久磁石
14は円板磁性体回転子
15は短絡導体
20は従来の電動機
21はN極永久磁石
22はS極永久磁石
23(23-1,23-2,23-3)は電磁石磁極
24は回転子
25は軸
26は電磁石
27は整流子


1 is a disk magnetic rotor 2 is a disk magnetic stator 3 is an electromagnet 4 is a magnetic body 5 is a blanket 6 is a shaft 7 and 8 is a bearing 9 is a magnetic circuit
10 is an electromagnetic pole
11 is a ball
12 is play
13 is a permanent magnet
14 is a disk magnetic rotor
15 is a short-circuit conductor
20 is a conventional electric motor
21 is an N pole permanent magnet
22 is S pole permanent magnet
23 (23-1, 23-2, 23-3) are electromagnetic poles
24 is a rotor
25 is the axis
26 is an electromagnet
27 is a commutator


Claims (3)

複数個の電磁石を装着した円板磁性体固定子と円板磁性体回転子を同心状に対向させ,かつ,上記両円板間の空隙を小さくすることにより円板磁性体固定子と円板磁性体回転子との間に磁気抵抗の低い磁気回路を形成することを特徴とする円板磁性体回転子を用いる回転機。 A disk magnetic stator and a disk are arranged by concentrically concentrating a disk magnetic stator and a disk magnetic rotor mounted with a plurality of electromagnets, and reducing the gap between the disks. A rotating machine using a disk magnetic rotor, wherein a magnetic circuit having a low magnetic resistance is formed between the magnetic rotor and the magnetic rotor. 複数個の短絡2次巻線を埋め込んだ円板磁性体回転子と円板磁性体固定子とよりなる請求項1記載の円板磁性体回転子を用いる回転機。 2. A rotating machine using a disk magnetic rotor according to claim 1, comprising a disk magnetic rotor embedded with a plurality of short-circuit secondary windings and a disk magnetic stator. 円板磁性体回転子内の外周に沿って複数対の永久磁石を交互に極性が反転するように配置し,上記永久磁石からの磁束を対向する円板磁性体固定子に作用させるようにした請求項1記載の円板磁性体回転子を用いる回転機。
A plurality of pairs of permanent magnets are arranged so that the polarities are alternately reversed along the outer periphery of the disk magnetic rotor so that the magnetic flux from the permanent magnet acts on the opposing disk magnetic stator. A rotating machine using the disc magnetic rotor according to claim 1.
JP2005116201A 2005-04-13 2005-04-13 Rotating machine using discoidal magnetic rotor Pending JP2006296139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005116201A JP2006296139A (en) 2005-04-13 2005-04-13 Rotating machine using discoidal magnetic rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005116201A JP2006296139A (en) 2005-04-13 2005-04-13 Rotating machine using discoidal magnetic rotor

Publications (1)

Publication Number Publication Date
JP2006296139A true JP2006296139A (en) 2006-10-26

Family

ID=37416095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116201A Pending JP2006296139A (en) 2005-04-13 2005-04-13 Rotating machine using discoidal magnetic rotor

Country Status (1)

Country Link
JP (1) JP2006296139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501080A (en) * 2013-10-12 2014-01-08 山东理工大学 Automobile exhaust gas turbine-driven axial excitation generator
CN103501081A (en) * 2013-10-12 2014-01-08 山东理工大学 Engine exhaust-gas turbine drive permanent magnet generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501080A (en) * 2013-10-12 2014-01-08 山东理工大学 Automobile exhaust gas turbine-driven axial excitation generator
CN103501081A (en) * 2013-10-12 2014-01-08 山东理工大学 Engine exhaust-gas turbine drive permanent magnet generator

Similar Documents

Publication Publication Date Title
US7595575B2 (en) Motor/generator to reduce cogging torque
US8294318B2 (en) Electric motor and rotor for rotating electric machine
US7598647B2 (en) Inductor-type synchronous machine
EP2340602B1 (en) Permanent magnet operating machine
JP2006217771A (en) Movable permanent magnet electric machine
JP2007252184A (en) Rotary electric machine
BR0311457A (en) Rotary electric motor having a plurality of biased stator poles and / or rotor poles
KR20010070351A (en) Motor of magnetic lifting type
US20110163618A1 (en) Rotating Electrical Machine
US7847453B2 (en) Bearingless step motor
KR102156481B1 (en) An axial motor including a magnetic levitation rotary body
JP5096756B2 (en) Rotating electric machine
JP2005253146A (en) Motor
US20210135554A1 (en) Novel double-stator combined electric machine suitable for achieving sensorless control of absolute position of rotor
US20100314963A1 (en) Permanently excited electrical machine
JP2005160197A (en) Wind and hydraulic power utilization generator
KR100836061B1 (en) 3-degrees of freedom spherical wheel motor
JP5372115B2 (en) Rotating electric machine
KR100912637B1 (en) Rotary machine and electromagnetic machine
KR20090108778A (en) A rotor for outer type bldc motor
JP2006296139A (en) Rotating machine using discoidal magnetic rotor
JP2014103789A (en) Permanent magnet embedded type motor
JP5294021B2 (en) Claw pole type IPM motor
JP2007288826A (en) Rotary machine utilizing uneven magnetic flux distribution
JP2006304453A (en) Permanent magnet motor