JP2007288826A - Rotary machine utilizing uneven magnetic flux distribution - Google Patents

Rotary machine utilizing uneven magnetic flux distribution Download PDF

Info

Publication number
JP2007288826A
JP2007288826A JP2006109775A JP2006109775A JP2007288826A JP 2007288826 A JP2007288826 A JP 2007288826A JP 2006109775 A JP2006109775 A JP 2006109775A JP 2006109775 A JP2006109775 A JP 2006109775A JP 2007288826 A JP2007288826 A JP 2007288826A
Authority
JP
Japan
Prior art keywords
rotor
magnetic
stator
magnetic flux
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006109775A
Other languages
Japanese (ja)
Inventor
Makoto Igarashi
良 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006109775A priority Critical patent/JP2007288826A/en
Publication of JP2007288826A publication Critical patent/JP2007288826A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary machine wherein that the rotary machine cannot rotate due to friction between a stator and a rotor is eliminated, when the air gap between the stator and the rotor is narrowed, in order to enhance rotary performance, and at the same time, rotative direction is determined by utilizing uneven magnetic flux distribution. <P>SOLUTION: The rotary machine utilizing uneven magnetic flux distribution is constituted, such that a disc magnetic body stator to which an electromagnet is attached and a disc magnetic body rotor, to which a permanent magnet is attached, are arranged concentrically, and the rotative direction is determined, by varying the amount of magnetic flux from the pole face of the electromagnet by the position of the pole face. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気エネルギーを運動エネルギーに変換する電動機,また,運動エネルギーを電気エネルギーに変換する発電機を対象とするもので,電磁石と永久磁石を用いる回転機に関する。 The present invention is directed to an electric motor that converts electric energy into kinetic energy and a generator that converts kinetic energy into electric energy, and relates to a rotating machine that uses an electromagnet and a permanent magnet.

電動機には多くの種類・形式があり,広い分野で利用されている。電動機の中には直流電動機のように発電機としても使用できるものがある。電動機と発電機は回転機として取り扱われ,近年,回転機のエネルギー変換効率を高めることが重要となっている。これはエネルギーの節減を通して地球環境を守る視点からである。従来,回転機には三相交流による回転磁界を利用する誘導電動機および同期電動機,単相交流からコンデンサによって位相の異なる電流を発生させる仕組みの誘導電動機が実用に供されている。さらに,整流子を有する電動機がある。これらの電動機は構造が複雑であり,複雑な電源を必要とする等の欠陥がある。構造面では円筒型回転子とこの円筒型回転子を装着するための円筒状空間を備えた円筒型固定子とを組み合わせたものが主流である。この理由はエネルギー変換効率がある程度高く,信頼性が確立されているからである。しかし,円筒型固定子と円筒型回転子との間の空隙は機械加工精度,円筒型固定子と円筒型回転子の熱的形状変形,軸受けの磨耗を考慮して決められるものなので,空隙縮小には限界がある。このため円筒型固定子と円筒型回転子との空隙に関する磁気抵抗が低くならないので,回転性能の向上には限界が生じる。従って,上記空隙を小さくして磁気抵抗を低くすることが最優先の課題である。説明を容易にするために,一般の電動機20を示す図4を参照すると,電動機20はN極永久磁石21,S極永久磁石22,回転子24より構成され,さらに,回転子24は軸25に装着された3個の電磁石26および整流子27から構成される。図4には回転子が3極の場合を示しているが,一般には極数が多いので,回転子は円筒形状となっており,この回転子と組み合わされる固定子の中空部分も円筒形状となっている。従って,図4は円筒形状ではないが,円筒形状と看做して動作原理を説明すると,図4において,磁極23-1をS極になるように設計すると,磁極23−1はS極永久磁石22から反発力を受け,同時にN極永久磁石21から吸引力を受けて回転子は時計方向に回転する。この回転により磁極23−2がN極永久磁石21を通り過ぎる時点で磁極23−2をN極に磁化すると磁極23−2はN極永久磁石21からの反発力とS極永久磁石22からの吸引力を得て時計方向に回転を持続する。磁極23−2が回転力を得る時点で磁極23−1の磁化状態を解消する。このような動作が繰り返されて磁極23−2の磁化状態が解消されるが,磁極23−2がS極永久磁石22を通り過ぎる時点で今度はS極に磁化されて前述の動作が継続して行われる。   There are many types and types of electric motors, and they are used in a wide range of fields. Some motors can also be used as generators, such as DC motors. Electric motors and generators are handled as rotating machines, and in recent years it has become important to increase the energy conversion efficiency of rotating machines. This is from the viewpoint of protecting the global environment through energy savings. Conventionally, an induction motor and a synchronous motor using a rotating magnetic field generated by a three-phase alternating current, and an induction motor having a mechanism for generating currents having different phases by a capacitor from a single-phase alternating current have been put to practical use. In addition, there are motors with commutators. These motors are complicated in structure and have defects such as requiring a complicated power source. In terms of structure, a combination of a cylindrical rotor and a cylindrical stator having a cylindrical space for mounting the cylindrical rotor is the mainstream. This is because the energy conversion efficiency is high to some extent and reliability is established. However, the gap between the cylindrical stator and the cylindrical rotor is determined in consideration of machining accuracy, thermal deformation of the cylindrical stator and the cylindrical rotor, and wear of the bearing. Has its limits. For this reason, since the magnetic resistance related to the gap between the cylindrical stator and the cylindrical rotor does not become low, there is a limit in improving the rotational performance. Accordingly, it is a top priority to reduce the magnetic resistance by reducing the gap. For ease of explanation, referring to FIG. 4 showing a general electric motor 20, the electric motor 20 includes an N-pole permanent magnet 21, an S-pole permanent magnet 22, and a rotor 24, and the rotor 24 further includes a shaft 25. 3 is composed of three electromagnets 26 and a commutator 27. Fig. 4 shows the case where the rotor has three poles, but since the number of poles is generally large, the rotor has a cylindrical shape, and the hollow portion of the stator combined with this rotor also has a cylindrical shape. It has become. Therefore, although FIG. 4 is not cylindrical, the operation principle will be described assuming that it is cylindrical. In FIG. 4, when the magnetic pole 23-1 is designed to be the south pole, the magnetic pole 23-1 is the south pole permanent. Upon receiving a repulsive force from the magnet 22 and simultaneously receiving an attractive force from the N-pole permanent magnet 21, the rotor rotates in the clockwise direction. When the magnetic pole 23-2 passes through the N-pole permanent magnet 21 by this rotation and the magnetic pole 23-2 is magnetized to the N-pole, the magnetic pole 23-2 attracts the repulsive force from the N-pole permanent magnet 21 and the S-pole permanent magnet 22. Continue to rotate clockwise with force. When the magnetic pole 23-2 obtains the rotational force, the magnetization state of the magnetic pole 23-1 is canceled. Such an operation is repeated to cancel the magnetization state of the magnetic pole 23-2. However, when the magnetic pole 23-2 passes through the S-pole permanent magnet 22, this time the magnet is magnetized to the S-pole and the above operation continues. Done.

次に,図4において,磁極23と永久磁石21および22との間の空隙は温度変化による形状伸縮,軸受けの磨耗,機械加工精度等に対して十分な余裕が必要であるため磁極23と永久磁石21および22との間の空隙は十分小さくできない。さらに磁極23と永久磁石21および22との間に異物が混入した場合には重大な故障を招くことが考えられる。そのため軸受けの磨耗検査,回転子および固定子の寸法確認等の保守のための負担が増大する結果となる Next, in FIG. 4, the gap between the magnetic pole 23 and the permanent magnets 21 and 22 needs a sufficient margin for shape expansion / contraction due to temperature change, wear of the bearing, machining accuracy, and the like. The gap between the magnets 21 and 22 cannot be made sufficiently small. Further, if foreign matter is mixed between the magnetic pole 23 and the permanent magnets 21 and 22, a serious failure may be caused. This increases the burden of maintenance such as bearing wear inspection and rotor and stator dimension confirmation.

このことから内部円筒型固定子と円筒型回転子との空隙を小さくすることが困難であった。この理由は回転子の形状伸縮が固定子に直接影響を及ぼし,結果として回転子が固定子に接触する危険があるからである。この改善策として,円筒型回転子および円筒型固定子の代わりに円板型固定子および円板型回転子を使用することである。円板型回転子の円板の直径方向の伸縮があっても円板型回転子が円板型固定子に接触して回転を阻害することがないからである。また,円板型回転子の厚み方向の形状伸縮を軸の遊びにより吸収することができるので,円板型固定子と円板型回転子の空隙を極めて小さくできる。この結果,磁気回路の抵抗が低くなり回転性能が向上すると共に回転子が固定子に接触するような危険がないので安全性の面でも優位である。   For this reason, it is difficult to reduce the gap between the inner cylindrical stator and the cylindrical rotor. This is because the shape expansion and contraction of the rotor directly affects the stator, and as a result, there is a risk that the rotor contacts the stator. As an improvement measure, a disk type stator and a disk type rotor are used instead of the cylindrical type rotor and the cylindrical type stator. This is because even if there is expansion and contraction in the diameter direction of the disk of the disk type rotor, the disk type rotor does not come into contact with the disk type stator to inhibit rotation. Further, since the shape expansion and contraction in the thickness direction of the disk type rotor can be absorbed by the play of the shaft, the gap between the disk type stator and the disk type rotor can be made extremely small. As a result, the resistance of the magnetic circuit is lowered, the rotational performance is improved, and there is no danger that the rotor contacts the stator, which is advantageous in terms of safety.

さらに図4を参照すると,3個の電磁石26に流れる電流を制御するために整流子27を使用するために構造が複雑となり,さらに,信頼性の低下を招くことになる。 Further, referring to FIG. 4, since the commutator 27 is used to control the current flowing through the three electromagnets 26, the structure is complicated, and further, the reliability is lowered.

図4において,永久磁石21および22を電磁石に置き換えることにより交流で使用することが可能となる。しかし,構造の複雑性,信頼性の低下の問題を解決することは困難である。
特開平11-98720号公報
In FIG. 4, the permanent magnets 21 and 22 can be used in an alternating current by replacing them with electromagnets. However, it is difficult to solve the problem of structural complexity and reliability degradation.
Japanese Patent Laid-Open No. 11-98720

解決しようとする問題点は、円筒型回転子と円筒型固定子との空隙を極めて小さな値にすることができないため,磁気回路の抵抗が低くならないので,回転性能は向上しない。従って、発明が解決しようとする課題は回転子および固定子との空隙を小さくすると共に固定子および回転子の温度変化による形状伸縮によって回転性能に影響が及ばないようにすることであり,単相交流で動作し,構造の簡単な,そして信頼性の高い電動機を実現する。 The problem to be solved is that since the gap between the cylindrical rotor and the cylindrical stator cannot be made extremely small, the resistance of the magnetic circuit is not lowered, so that the rotational performance is not improved. Therefore, the problem to be solved by the invention is to reduce the gap between the rotor and the stator and to prevent the rotation performance from being affected by the shape expansion and contraction due to the temperature change of the stator and the rotor. Realizes an electric motor that operates with AC and has a simple structure and high reliability.

上記問題点を解決するために,本発明の回転機は,円板磁性体固定子と円板磁性体回転子を同心状態で対向させて,円板磁性体固定子と円板磁性体回転子との空隙を極めて小さくする。この結果,円板磁性体固定子と円板磁性体回転子とにより形成される磁気回路の磁気抵抗が低くなると共に固定子と回転子の接触によって回転不能になることが回避される。 In order to solve the above problems, a rotating machine according to the present invention has a disk magnetic material stator and a disk magnetic material rotor that are concentrically opposed to each other. And the gap between them is extremely small. As a result, the magnetic resistance of the magnetic circuit formed by the disk magnetic body stator and the disk magnetic body rotor is reduced, and it is avoided that the rotation becomes impossible due to the contact between the stator and the rotor.

構造を簡単にする観点から,複数個の電磁石を装着した円板磁性体固定子と永久磁石を装着した円板磁性体回転子を同心状に対向させ,かつ,上記電磁石の磁極面からの磁束量を磁極面の位置により変化させることにより回転方向を定めることにより整流子の使用が回避される。 From the viewpoint of simplifying the structure, a disk magnetic stator having a plurality of electromagnets and a disk magnetic rotor having a permanent magnet are concentrically opposed to each other, and the magnetic flux from the magnetic pole surface of the electromagnet The use of a commutator is avoided by determining the direction of rotation by changing the amount according to the position of the pole face.

上記のように構成された本発明の回転機は,磁気抵抗が低くなることにより低消費電力において高い回転性能が得られる。さらに,温度変化による固定子および回転子の形状が伸縮しても回転機性能に影響することはなく,さらに整流子を使用しないために構想が簡単となるため,高い信頼性が得られる。従って,軸受けの磨耗検査,回転子および固定子の寸法確認等の保守のための負担が低減される。 The rotating machine of the present invention configured as described above can achieve high rotation performance at low power consumption due to low magnetic resistance. Furthermore, even if the shape of the stator and rotor due to temperature changes expands and contracts, the performance of the rotating machine is not affected, and since the commutator is not used, the concept is simplified and high reliability is obtained. Therefore, maintenance burdens such as bearing wear inspection and rotor and stator dimension confirmation are reduced.

円板磁性体固定子と円板磁性体回転子との空隙を狭くしても円板磁性体回転子の回転に支障とならないように両円板の平行度を良好に保つようにすることである。 円板磁性体回転子の回転力がその取り付け軸に十分伝達される条件の下で,その取り付け軸との間にある程度の遊びを持たせることが機械加工精度および軸受けの磨耗の条件を緩和する上で好ましい実施形態である。また,磁気回路の磁気抵抗を低くするためには円板磁性体固定子と円板磁性体回転子との空隙を狭くしなければならないが,回転速度を考慮して円板外周の空隙を円板中心部の空隙より大きくすると総合的に磁気抵抗を低くする上で効果的である。 By maintaining good parallelism of both disks so as not to hinder the rotation of the disk magnetic rotor even if the gap between the disk magnetic stator and the disk magnetic rotor is narrowed. is there. Under the condition that the rotational force of the disc magnetic rotor is sufficiently transmitted to the mounting shaft, a certain amount of play between the mounting shaft and the mounting shaft can alleviate the machining accuracy and bearing wear conditions. Preferred embodiment above. In order to reduce the magnetic resistance of the magnetic circuit, the gap between the disk magnetic stator and the disk magnetic rotor must be narrowed. Making it larger than the gap at the center of the plate is effective in reducing the overall magnetoresistance.

実施例について図面を参照して説明する。図1は本発明による円板磁性体回転子を用いる回転機を示す図で,軸6に装着された円板磁性体回転子1,複数個の電磁石3および円板磁性体固定子2,ブランケット4より構成される。軸受け6および8はそれぞれブランケット4および円板磁性体固定子2の中心に設けられている。ここで磁気回路7について述べると,矢印点線で示すように,電磁石3が発生する磁束は電磁石磁極9,円板磁性体回転子1,軸5および円板磁性体固定子2を経て電磁石3に戻る。磁気回路7を通る磁束を増やして回転性能を高めるためには,磁気回路7の磁気抵抗を下げればよい。このためには円板磁性体回転子1と電磁石磁極9との空隙を狭くするのが効果的である。さらに,温度変化による円板磁性体回転子1および円板磁性体固定子2の厚み方向の形状伸縮を吸収するため,軸6に遊びを設けてある。 Embodiments will be described with reference to the drawings. FIG. 1 is a diagram showing a rotating machine using a disk magnetic rotor according to the present invention. A disk magnetic rotor 1 mounted on a shaft 6, a plurality of electromagnets 3, a disk magnetic stator 2, and a blanket. It is composed of four. The bearings 6 and 8 are provided at the centers of the blanket 4 and the disc magnetic stator 2, respectively. The magnetic circuit 7 will now be described. As indicated by the dotted dotted line, the magnetic flux generated by the electromagnet 3 passes through the electromagnet magnetic pole 9, the disk magnetic rotor 1, the shaft 5, and the disk magnetic stator 2 to the electromagnet 3. Return. In order to increase the magnetic flux passing through the magnetic circuit 7 and improve the rotational performance, the magnetic resistance of the magnetic circuit 7 may be lowered. For this purpose, it is effective to narrow the gap between the disk magnetic rotor 1 and the electromagnet magnetic pole 9. Further, in order to absorb the shape expansion and contraction in the thickness direction of the disk magnetic rotor 1 and the disk magnetic stator 2 due to temperature changes, a play is provided on the shaft 6.

次に図2を参照して動作原理を説明すると,図2(a)および(b)はそれぞれ図1のI―I線矢視断面図およびII-II線矢視断面図である。図1と図2において同じ部品、部材のところには同じ参照数字が用いられる。 図2(a)において,6個の電磁石3(nーn6)が円板磁性体固定子2に装着されており,これらの電磁石は同時に交流駆動される。図2(b)は6個の永久磁石10が装着された円板磁性体回転子1であり,同じ磁化方向の3個の永久磁石は磁化方向の異なる3個の永久磁石と交互に配置される。図2(c)はIII−III線矢視断面図であり,電磁石n1と永久磁石S1の中心が一致している場合を示す。電磁石nの磁極がN極に磁化されていると,nとS1の吸引力は最大となるがS1には回転力は働かない。しかし,図2(c)に示すように電磁石n1と永久磁石S1の中心が一致していない場合には,電磁石nと永久磁石Sとの間の空隙が不均一であるため,空隙の小さい部分の磁束密度は高くなり,永久磁石S1は電磁石nに吸引される。結果として,図2(d)において永久磁極S1は時計方向に回転する。図2(a)において,電磁石n1がN極からS極に変化するとnとS1との間に反発力が働き,結果として図2(b)に示すS1は時計方向に回転する。この理由について説明すると,電磁石nと永久磁石Sとの間に働く反発力が小さくなる方向,すなわち,S1は時計方向に回転するのである。 Next, the operation principle will be described with reference to FIG. 2. FIGS. 2 (a) and 2 (b) are a sectional view taken along line II and a sectional view taken along line II-II in FIG. 1, respectively. 1 and 2, the same reference numerals are used for the same parts and members. In FIG. 2A, six electromagnets 3 (n 1 -n 6 ) are mounted on the disk magnetic stator 2, and these electromagnets are simultaneously driven by alternating current. FIG. 2 (b) shows a disk magnetic rotor 1 with six permanent magnets 10 mounted thereon. Three permanent magnets having the same magnetization direction are alternately arranged with three permanent magnets having different magnetization directions. The FIG. 2C is a cross-sectional view taken along the line III-III and shows a case where the centers of the electromagnet n 1 and the permanent magnet S 1 coincide. When the magnetic pole of the electromagnet n 1 is magnetized to the N pole, the attractive force of n 1 and S 1 is maximized, but no rotational force acts on S 1 . However, if the center of the electromagnet n 1 and the permanent magnet S 1 as shown in FIG. 2 (c) do not coincide, because the gap between the electromagnet n 1 and the permanent magnet S 1 is a non-uniform, The magnetic flux density in the small gap portion is increased, and the permanent magnet S 1 is attracted to the electromagnet n 1 . As a result, the permanent magnetic pole S 1 rotates clockwise in FIG. 2 (a), the electromagnets n 1 repulsive force is generated between the n 1 and S 1 when changing from the N pole to the S pole, S 1 shown in FIG. 2 (b) as a result rotates clockwise . Explaining this reason, the repulsive force acting between the electromagnet n 1 and the permanent magnet S 1 is reduced, that is, S 1 rotates in the clockwise direction.

以上の説明で明らかなように,nとSとの間に働く吸引力,反発力は円板磁性体回転子1を時計方向,すなわち,電磁石の磁極面からの磁束量が増加する方向に回転する。従来の円筒型の場合には固定子と回転子との空隙を狭くすることが困難であることは前述した通りであり,さらに,この空隙に混入した異物は遠心力を受けて固定子に張り付き外部に追い出すことが困難である。一方,円板型では異物への遠心力は異物を外部に追い出すように作用するので,故障確率は低くなる。この発明による回転機は整流子および三相交流を必要としないので,構造が簡単となり信頼性の高い,製造容易な回転機が提供できる。 As is clear from the above description, the attractive force and repulsive force acting between n 1 and S 1 is the direction in which the magnetic disk rotor 1 rotates clockwise, that is, the amount of magnetic flux from the magnetic pole surface of the electromagnet increases. Rotate to. As described above, in the case of the conventional cylindrical type, it is difficult to narrow the gap between the stator and the rotor. Further, the foreign matter mixed in the gap is subjected to centrifugal force and sticks to the stator. It is difficult to drive out. On the other hand, in the disc type, the centrifugal force to the foreign substance acts to drive the foreign substance out, so the failure probability is low. Since the rotating machine according to the present invention does not require a commutator and a three-phase alternating current, a rotating machine with a simple structure and high reliability can be provided.

次に他の実施例について図3を参照して説明する。図2と共通の目的,作用を有するところには同じ参照数字を用いることにする。円板磁性体回転子2に装着される電磁石の磁極面からの磁束量を磁極面の位置により変化させる他の方法は図3に示すように磁極を楔型にすることである。この実施例による回転機も実施例1と同様の利点を有する。   Next, another embodiment will be described with reference to FIG. The same reference numerals will be used where they have the same purpose and function as in FIG. Another method for changing the amount of magnetic flux from the magnetic pole surface of the electromagnet mounted on the disc magnetic rotor 2 is to make the magnetic pole wedge-shaped as shown in FIG. The rotating machine according to this embodiment has the same advantages as the first embodiment.

本発明の実施例による円板磁性体回転子を用いる回転機を示す図である。It is a figure which shows the rotary machine using the disk magnetic body rotor by the Example of this invention. (a)および(b)それぞれは図1のI−I線矢視断面図およびII−II線矢視断面図である。(c)および(d)は図1のIII−III線矢視断面図である。(a) And (b), respectively, is the II sectional view taken on the line of FIG. 1, and the II-II sectional view taken on the line. (c) And (d) is the III-III arrow directional cross-sectional view of FIG. 本発明の他の実施例による円板磁性体回転子を示す図である。It is a figure which shows the disk magnetic body rotor by other Example of this invention. 従来の電動機を示す図である。It is a figure which shows the conventional electric motor.

符号の説明Explanation of symbols

1は円板磁性体回転子
2は円板磁性体固定子
3は電磁石
4はブランケット
5は軸
6および8は軸受
7は磁気回路
9は電磁石磁極
10 は永久磁石
20は直流電動機
21はN極永久磁石
22はS極永久磁石
23(23-1,23-2,23-3)は電磁石磁極
24は回転子
25は軸
26は電磁石
27は整流子




1 is a disk magnetic rotor 2 is a disk magnetic stator 3 is an electromagnet 4 is a blanket 5 is a shaft 6 and 8 is a bearing 7 is a magnetic circuit 9 is an electromagnetic pole.
10 is a permanent magnet
20 is a DC motor
21 is an N pole permanent magnet
22 is S pole permanent magnet
23 (23-1, 23-2, 23-3) are electromagnetic poles
24 is a rotor
25 is the axis
26 is an electromagnet
27 is a commutator




Claims (2)

複数個の電磁石を装着した円板磁性体固定子と永久磁石を装着した円板磁性体回転子を同心状に対向させ,かつ,上記電磁石の磁極面からの磁束量を磁極面の位置により変化させることにより回転方向を定めるようにした不均一磁束分布を利用する回転機。 A disk magnetic stator with a plurality of electromagnets and a disk magnetic rotor with a permanent magnet are concentrically opposed, and the amount of magnetic flux from the magnetic pole surface of the electromagnet varies depending on the position of the magnetic pole surface. A rotating machine that uses a non-uniform magnetic flux distribution to determine the direction of rotation. 複数個の電磁石を装着した中空円筒型固定子に永久磁石を装着した円筒型回転子を装着し,かつ,上記電磁石の磁極面からの磁束量を磁極面の位置により変化させることにより回転方向を定めるようにした不均一磁束分布を利用する回転機。
A cylindrical rotor with a permanent magnet is attached to a hollow cylindrical stator with a plurality of electromagnets, and the amount of magnetic flux from the magnetic pole surface of the electromagnet is changed according to the position of the magnetic pole surface to change the direction of rotation. A rotating machine that uses a non-uniform magnetic flux distribution.
JP2006109775A 2006-04-12 2006-04-12 Rotary machine utilizing uneven magnetic flux distribution Pending JP2007288826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006109775A JP2007288826A (en) 2006-04-12 2006-04-12 Rotary machine utilizing uneven magnetic flux distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006109775A JP2007288826A (en) 2006-04-12 2006-04-12 Rotary machine utilizing uneven magnetic flux distribution

Publications (1)

Publication Number Publication Date
JP2007288826A true JP2007288826A (en) 2007-11-01

Family

ID=38760107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006109775A Pending JP2007288826A (en) 2006-04-12 2006-04-12 Rotary machine utilizing uneven magnetic flux distribution

Country Status (1)

Country Link
JP (1) JP2007288826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110524374A (en) * 2019-09-18 2019-12-03 刘鹏华 It is a kind of using changeable magnetic carry out limit prevent wider valve port grinding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110524374A (en) * 2019-09-18 2019-12-03 刘鹏华 It is a kind of using changeable magnetic carry out limit prevent wider valve port grinding device
CN110524374B (en) * 2019-09-18 2021-05-25 浙江广承实业有限公司 Utilize magnetism variable to carry out spacing anti-partially wide gas gate mouth grinder

Similar Documents

Publication Publication Date Title
US7598647B2 (en) Inductor-type synchronous machine
Subkhan et al. New concept for flywheel energy storage system using SMB and PMB
US10230292B2 (en) Permanent magnet operating machine
JP5205594B2 (en) Rotating electric machine
WO2010150492A1 (en) Axial motor
JP5265615B2 (en) Permanent magnet embedded rotor
JP2006217771A (en) Movable permanent magnet electric machine
WO2013032401A1 (en) High torque, low inertia direct drive motor
US7847453B2 (en) Bearingless step motor
EP2894767B1 (en) Improved electric machine couplable to a fluid-dynamic machine, and corresponding fluid-dynamic machine
KR102156481B1 (en) An axial motor including a magnetic levitation rotary body
US20210135554A1 (en) Novel double-stator combined electric machine suitable for achieving sensorless control of absolute position of rotor
JP2005160197A (en) Wind and hydraulic power utilization generator
KR100836061B1 (en) 3-degrees of freedom spherical wheel motor
KR100912637B1 (en) Rotary machine and electromagnetic machine
JP2014103789A (en) Permanent magnet embedded type motor
JP2007288826A (en) Rotary machine utilizing uneven magnetic flux distribution
JP2006296139A (en) Rotating machine using discoidal magnetic rotor
JP2013059178A (en) Magnetic gear
JP2004350492A (en) Electrical machine of axial-flow structure type
JP2010141991A (en) Rotating motor
JP2006304453A (en) Permanent magnet motor
JP2006217764A (en) Axial gap rotating electric machine
CN101557137B (en) Electric main shaft of end-face motor
RU2313887C1 (en) End electric machine