JPH01216A - Method for refining molten metal - Google Patents

Method for refining molten metal

Info

Publication number
JPH01216A
JPH01216A JP63-38706A JP3870688A JPH01216A JP H01216 A JPH01216 A JP H01216A JP 3870688 A JP3870688 A JP 3870688A JP H01216 A JPH01216 A JP H01216A
Authority
JP
Japan
Prior art keywords
molten metal
refining
flux
contact
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63-38706A
Other languages
Japanese (ja)
Other versions
JPS64216A (en
Inventor
則夫 住田
桜谷 敏和
宮川 昌治
嘉英 加藤
徹也 藤井
難波 明彦
野崎 努
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63-38706A priority Critical patent/JPH01216A/en
Publication of JPS64216A publication Critical patent/JPS64216A/en
Publication of JPH01216A publication Critical patent/JPH01216A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は精錬容器に収容した溶融金属を回転撹拌によっ
て精錬する際、精錬フラックスと溶融金属の接触、混合
を促進し、該金属中の不純物元素を迅速かつ高純度域ま
で低減するための効果的な精錬方法に関するものである
Detailed Description of the Invention (Industrial Application Field) The present invention promotes contact and mixing of the smelting flux and the molten metal when refining the molten metal contained in a refining vessel by rotary stirring, thereby eliminating impurities in the metal. This invention relates to an effective refining method for quickly reducing elements to a high purity range.

(従来の技術) 溶湯金属精錬技術の向上は、鋼材の不純物除去のニーズ
の高まりと共に、強く望まれ、とくに極低P、極低S、
極極低銅鋼得る技術のより一層の改善に対する要求は強
い。
(Conventional technology) Improvements in molten metal refining technology are strongly desired as the need for removing impurities from steel materials increases, especially for ultra-low P, ultra-low S,
There is a strong demand for further improvements in the technology for producing ultra-low copper steel.

従来、p、s、oの如き不純物は、精錬フラックスとの
反応あるいはフラックスへの吸着除去によってなされる
ものであり、その極限塩の除去に対しては、フラックス
と溶融金属の接触、混合を促進するように撹拌力を付与
する方法が一般にとられている。
Conventionally, impurities such as p, s, and o are removed by reaction with smelting flux or adsorption to the flux, and the removal of the extreme salts is achieved by promoting contact and mixing between the flux and molten metal. Generally, a method is adopted in which stirring force is applied so as to

ここに対象物が高温融体であるため、化学工業界で用い
られる機械的撹拌は困難であり、−船釣には気泡撹拌が
使用されている。しかしながら気泡撹拌の場合、撹拌力
を向上させようとすると、気泡が溶融金属から離脱する
際のスプラッシュが大きくなって操業困難となる問題が
ある。
Since the object here is a high-temperature melt, the mechanical stirring used in the chemical industry is difficult; - bubble stirring is used in boat fishing; However, in the case of bubble agitation, if an attempt is made to improve the agitation power, there is a problem in that the splash when the bubbles separate from the molten metal becomes large, making operation difficult.

これに対して電磁力投入により溶融金属を撹拌する方法
は気泡によるスプラッシュの問題を回避した大撹拌力の
適用が可能であり、最近の各種プロセスで利用されてい
る。
On the other hand, the method of stirring molten metal by applying electromagnetic force avoids the problem of splashing caused by air bubbles and can apply a large stirring force, and is used in various recent processes.

電磁力による撹拌力をフラックスと溶融金属の接触、混
合に利用したものとして例えば特開昭53−10221
2号公報には、溶融金属に回転磁界による水平回転流を
生じさせ、その際に形成される溶融金属表面の富み部に
精錬フラックスを投入する方法が、また特開昭61−0
78314号公報には溶融金属の水平回転流の方向を乱
すじゃま板を該金属の静止浴面下に設け、フラックスと
溶融金属の接触、混合の促進を図る方法がそれぞれ開示
されている。
For example, Japanese Patent Application Laid-Open No. 53-10221 uses electromagnetic stirring force for contacting and mixing flux and molten metal.
No. 2 discloses a method in which a horizontal rotating flow is generated in molten metal by a rotating magnetic field, and a refining flux is introduced into the enriched area on the surface of the molten metal that is formed at that time.
Japanese Patent No. 78314 discloses a method in which a baffle plate for disturbing the horizontal rotational flow of molten metal is provided below the surface of a static bath of the metal to promote contact and mixing between flux and molten metal.

(発明が解決しようとする問題点) ところで発明者らは上記の如き技術について詳細にわた
り検討したところ、単なる回転撹拌では、精錬フラック
スは溶融金属の旋回流によって生じる該金属表面の窪み
部底部に留まるだけで十分な精錬効果を発揮しないこと
、また溶融金属の水平回転流の方向を乱すじゃま板を利
用した撹拌においては単なる回転撹拌に比べ精錬フラッ
クスとの接触、混合を有利に向上させることができるが
、じゃま板に溶融金属を接触させる回転撹拌を継続する
と溶融金属へのフラックスあるいは非金属介在物の再捲
き込みにより精錬後の分離が十分なされない問題もあっ
た。
(Problems to be Solved by the Invention) By the way, the inventors have studied the above-mentioned technology in detail and found that with simple rotational stirring, the refining flux remains at the bottom of the depression on the metal surface created by the swirling flow of the molten metal. Also, stirring using a baffle plate that disturbs the direction of the horizontal rotational flow of molten metal can advantageously improve contact and mixing with the refining flux compared to simple rotational stirring. However, if the rotational agitation that brings the molten metal into contact with the baffle plate is continued, flux or nonmetallic inclusions may be re-incorporated into the molten metal, resulting in insufficient separation after refining.

本発明の目的は回転撹拌によって溶融金属を精錬する際
に生じる従来の問題を解消した上で精錬フラックスとの
接触混合を促進させ、かつ溶融金属中に分散したフラッ
クスの速やかな凝集・分離を図るのに有利な精錬方法を
提案するところにある。
The purpose of the present invention is to solve the conventional problems that occur when refining molten metal by rotary agitation, promote contact mixing with refining flux, and aim for prompt agglomeration and separation of flux dispersed in the molten metal. The aim is to propose an advantageous refining method.

(問題点を解決するための手段) 精錬容器内に設けたじゃま板を有効に利用して溶融金属
と精錬フラックスとの友−心向上を図るべく検討を進め
たところ、精錬容器の内周でこれに収容した溶融金属の
静止浴面より上方の側壁にじゃま板を設けることの優位
性を知見するに至った。
(Means for solving the problem) When we proceeded with the study to improve the friendship between the molten metal and the smelting flux by effectively utilizing the baffle plate installed inside the smelting vessel, we found that the inner periphery of the smelting vessel It has been discovered that it is advantageous to provide a baffle plate on the side wall above the surface of the static bath containing the molten metal contained therein.

すなわち本発明は、精錬容器内に溶融金属を収容して、
該容器の外周に配設した回転磁界発生装置により溶融金
属に水平回転力を附与し、この溶融金属の中に添加する
精錬フラックスとの接触混合によって溶融金属の精錬を
行う方法において、溶融金属と精錬フラックスとの接触
、混合を促進する際には溶融金属の旋回流を該容器にて
溶融金属の静止浴面の上方で内向きに突出して配設した
じゃま板に接触させる回転撹拌を強制し、一方溶融金属
中の不純物を含有したのちのフラックスを凝集分離する
際には溶融金属の旋回流を該じゃま板に接触させない回
転撹拌を強制することを特徴とする溶融金属の精錬方法
である。
That is, the present invention accommodates molten metal in a refining container,
A method of refining molten metal by imparting horizontal rotational force to molten metal by a rotating magnetic field generator disposed around the outer periphery of the container and contacting and mixing the molten metal with refining flux added to the molten metal. To promote the contact and mixing of the molten metal and the smelting flux, rotational stirring is forced so that the swirling flow of the molten metal comes into contact with a baffle plate that is arranged above the static bath surface of the molten metal and protrudes inward in the container. On the other hand, when the flux containing impurities in the molten metal is coagulated and separated, the molten metal refining method is characterized in that rotational stirring is forced so that the swirling flow of the molten metal does not come into contact with the baffle plate. .

ここに上記溶融金属の旋回流をじゃま板に接触させる回
転撹拌は、前後2段階の組合せからなるものとし、その
一方は溶融金属の脱りん脱けい処理を主目的とする酸化
精錬であり、また他方は溶融金属の脱酸脱硫処理を主目
的とする還元精錬であるのが、高純度鋼を得るに当って
はより一層望ましい。
Here, the rotational stirring that brings the swirling flow of the molten metal into contact with the baffle plate is a combination of two stages: front and rear, one of which is oxidation refining whose main purpose is dephosphorization and desiliconization of the molten metal, and On the other hand, reduction refining whose main purpose is to deoxidize and desulfurize the molten metal is more desirable in obtaining high-purity steel.

なお精錬フラックスを凝集、分離するとは、じゃま板の
効果のない場合に生ずる溶融金属の水平回転流により発
生する求心力によって密度の小さなフラックスを金属浴
面中央部に集積させ、金属とフラックスの間の反応を低
下せしめ、かつ溶融金属の清浄性を著しく向上せしめる
ことである。
Coagulating and separating the refining flux means that the flux with a small density is accumulated in the center of the metal bath surface by the centripetal force generated by the horizontal rotational flow of the molten metal that occurs when there is no baffle plate effect, and the flow between the metal and the flux is The objective is to reduce the reaction and significantly improve the cleanliness of the molten metal.

本発明は上述のように精錬容器内の溶融金属の静止浴面
よりも上方位置にじゃま板を用意しておき、溶融金属の
精錬を促進する場合には、このじゃま板を利用して混合
、撹拌を行い、この時溶融金属中に混入分散した精錬フ
ラックスを迅速に凝集、分離する際には単なる回転撹拌
を行おうとするものである。
As described above, the present invention provides a baffle plate above the static bath surface of the molten metal in the refining vessel, and when promoting the refining of the molten metal, utilizes this baffle plate to mix, When stirring is performed and the refining flux mixed and dispersed in the molten metal is rapidly coagulated and separated, simple rotational stirring is attempted.

(作 用) 5トン溶鋼を収容する、鉄皮1で囲った耐火物2よりな
る、内径1mの取鍋の溶融金属浴面上方に耐火物製じゃ
ま板3を配置し、回転磁界発生装置4により溶鋼5に水
平回転力を付与しつつ浴面に精錬フラックス6を添加し
て、溶鋼を撹拌し、溶鋼の脱りん、脱硫および脱酸実験
を第1図、第2図のように行った。
(Function) A refractory baffle plate 3 is placed above the molten metal bath surface of a ladle with an inner diameter of 1 m, which is made of a refractory 2 surrounded by an iron shell 1 and which accommodates 5 tons of molten steel, and a rotating magnetic field generator 4 is installed. While applying a horizontal rotational force to the molten steel 5, the refining flux 6 was added to the bath surface to stir the molten steel, and dephosphorization, desulfurization, and deoxidation experiments of the molten steel were conducted as shown in Figures 1 and 2. .

ここでじゃま板3は取鍋の内周に沿う長さ200胴、取
鍋の高さに沿う寸法300 wun、取鍋の内周からの
出張化130 mmのセグメント状耐火物(MgO−C
r、0.煉瓦)であり溶鋼5の静止浴面上方400 m
の位置に配設した。
Here, the baffle plate 3 has a length of 200 mm along the inner circumference of the ladle, a dimension of 300 mm along the height of the ladle, and a segmented refractory (MgO-C
r, 0. bricks) and 400 m above the static bath surface of molten steel 5.
It was placed in the position of

精錬フラックス6と溶@5との接触、混合を促進するに
際しては溶w45の水平回転によって生じる旋回流(盛
り上り部5a)が上記のじゃま板3に接触するように溶
鋼5の旋回流の回転速度(f)を6Orpmに(第1図
参照)、また溶鋼5中の不純物を含有したのちのフラッ
クスの凝集、分離を行うに際しては上記のじゃま板3に
溶鋼5の水平回転によって生じる旋回流(盛り上り部5
a)が接触しない回転速度(f)として20rpm  
(第2図参照)に設定した。
To promote contact and mixing between the refining flux 6 and the molten steel 5, the swirling flow of the molten steel 5 is rotated so that the swirling flow (the raised portion 5a) generated by the horizontal rotation of the molten steel 5 comes into contact with the baffle plate 3. The speed (f) is set to 6 Orpm (see Fig. 1), and when coagulating and separating the flux after containing impurities in the molten steel 5, a swirling flow ( Swelling part 5
20 rpm as the rotational speed (f) at which a) does not contact
(See Figure 2).

次に、第3図(a)(b)及び(C)に示す手順にて、
精錬容器収容した溶鋼5に精錬フラックス6 (CaO
系を主体にスラグの酸素ポテンシャルを高めるためにF
eOやFe、O,等を加えたもの)を添加して、まず前
段階としてこれと溶鋼との接触、混合の促進を図るべく
溶鋼5の旋回流をじゃま板3に接触させるようにその回
転速度を6Orpmに調整した回転撹拌(第3図(a)
参照)を行い、その後溶鋼の旋回流がじゃま板3に接触
しないよう回転速度40rρm以下に調整して、溶鋼5
中の不純物を含有したのちのフラックス6を溶鋼浴面の
ほぼ中央部に凝集させてから、これをスラグ吸引ヘッダ
ー7にて、該ヘッダー7の吸引ロアaと、該フラックス
どの間隔が常に一定となるような制御を行いつつ完全に
吸引除去(第3図[有])参照)し、さらに、第2段階
として、該溶鋼5に精錬フラックス6 (CaO−Ca
Fz系を主体とするもの)を添加し、加熱アーク8にて
必要に応じて加熱を加え、再びフラックス6と溶鋼5の
接触、混合の促進を図るべく溶鋼5の旋回流をじゃま板
3に接触させる回転撹拌にて溶鋼の脱りん、脱硫および
脱酸実験を行った。第4図に、上記の実験にて処理した
溶鋼中の不純物(P+S十〇)のトータル量と、単なる
気泡撹拌によって処理した溶鋼中の不純物トータル量を
比較したグラフを示す。
Next, in the steps shown in FIGS. 3(a), (b) and (C),
Refining flux 6 (CaO
In order to increase the oxygen potential of the slag mainly in the F system,
(eO, Fe, O, etc.) is added, and as a preliminary step, the molten steel 5 is rotated so that the swirling flow of the molten steel 5 comes into contact with the baffle plate 3 in order to promote contact and mixing with the molten steel. Rotary stirring with the speed adjusted to 6 Orpm (Figure 3 (a)
), and then adjust the rotational speed to 40 rρm or less so that the swirling flow of molten steel does not contact the baffle plate 3.
The flux 6 containing impurities is agglomerated at approximately the center of the surface of the molten steel bath, and then transferred to the slag suction header 7 so that the distance between the suction lower a of the header 7 and the flux is always constant. The molten steel 5 is completely suctioned and removed (see Fig. 3), and as a second step, the molten steel 5 is injected with refining flux 6 (CaO-Ca
Fz-based molten steel) is added, heated as necessary with a heating arc 8, and a swirling flow of the molten steel 5 is applied to the baffle plate 3 in order to promote contact and mixing between the flux 6 and the molten steel 5. Dephosphorization, desulfurization, and deoxidation experiments of molten steel were conducted using rotary stirring in contact with the steel. FIG. 4 shows a graph comparing the total amount of impurities (P+S10) in the molten steel treated in the above experiment with the total amount of impurities in the molten steel treated by simple bubble stirring.

通常、清浄鋼の製造においては、フラックスと溶融金属
の接触混合の促進のみではP、S、O。
Normally, in the production of clean steel, only the promotion of contact mixing of flux and molten metal is sufficient to reduce the amount of P, S, and O.

等の不純物を同時に低減することが非常に困難であって
、具体的には、酸化精錬(脱P、脱Si) −除滓一溶
鋼加熱一還元精錬(脱O9脱S)の各工程を経ることに
なるが、従来法によれば、溶鋼中における不純物のより
効果的な低減のために、精錬フラックスに特殊な物質(
特開昭60−181219号、特開昭60−30723
号公報参照)を添加するために精錬コストが上昇するこ
との他、酸化精錬後のスラグを機械的に、あるいは真空
式吸引手段(特開昭54−39301号公報参照)を用
いての除去も、その分布が浴面の全面にわたるので完全
に除去することは不可能であって、還元精錬時に復Pし
たり、あるいは酸化性スラグによる溶鋼の再酸化により
還元精錬の効率が低下する等が避けられなかったのであ
る。しかしながら、上述した実験における処理では第5
図及び第6図から明らかなようにとくに前段の回転撹拌
である酸化精錬後にスラグを浴面の中央部に凝集させた
状態で除去を行うのでスラグ残量、復P量が極めて少な
く、回転撹拌によるフラックス−溶鋼の良好な接触混合
にて溶鋼中の不純物を極めて有利に低減できることが判
る。
It is extremely difficult to simultaneously reduce impurities such as oxidation refining (de-P, de-Si), removal of slag, heating of molten steel, and reduction refining (de-O9, de-S). However, according to the conventional method, in order to more effectively reduce impurities in molten steel, special substances (
JP-A-60-181219, JP-A-60-30723
In addition to increasing the refining cost due to the addition of slag (see Japanese Patent Application Laid-open No. 54-39301), the slag after oxidation refining must be removed mechanically or by vacuum suction means (see Japanese Patent Application Laid-Open No. 54-39301). Since it is distributed over the entire surface of the bath, it is impossible to completely remove it, so that it is possible to prevent re-P during reduction refining, or a decrease in the efficiency of reduction refining due to re-oxidation of molten steel by oxidizing slag. It was not possible. However, in the process in the experiment described above, the fifth
As is clear from Fig. 6 and Fig. 6, the slag is removed while being aggregated in the center of the bath surface after the oxidation refining, which is the rotational stirring in the first stage, so the amount of slag remaining and the amount of recycled P are extremely small. It can be seen that impurities in molten steel can be extremely advantageously reduced by good contact mixing of flux and molten steel.

第7図に溶鋼5の回転速度(f)とじゃま板3の取り付
は位置の関係を示すが、本発明では溶鋼の精錬に当り、
各装置の特性に応じて図に示す如きデータを予め設定し
ておきこれに基づき有効なじゃま仮設置位置を決定する
のが好ましい。
FIG. 7 shows the relationship between the rotational speed (f) of the molten steel 5 and the mounting position of the baffle plate 3. In the present invention, when refining molten steel,
It is preferable to set data in advance as shown in the figure in accordance with the characteristics of each device, and to determine an effective temporary installation position of the obstruction based on this data.

(実施例) 実施例−1 初期組成力c : 0.03〜0.05wtX 、 S
i : 0.1〜0.3wtχ+ Mn : 0.5 
wtχ、 A 1.0.01〜0.02wtχ、S:0
.004〜0.007 wtχ、 O: 50〜70 
ppmの溶鋼5トンを取鍋に収容し、脱硫、脱酸処理の
ためのフラックス組成は70〜75%CaO−25〜3
5%Car zとして回転磁界発生装置4による溶鋼5
とフラックスの混合、撹拌を行った。
(Example) Example-1 Initial compositional force c: 0.03 to 0.05wtX, S
i: 0.1-0.3wtχ+ Mn: 0.5
wtχ, A 1.0.01~0.02wtχ, S:0
.. 004~0.007 wtχ, O: 50~70
5 tons of ppm molten steel is stored in a ladle, and the flux composition for desulfurization and deoxidation treatment is 70 to 75% CaO-25 to 3.
Molten steel 5 by rotating magnetic field generator 4 as 5% Car z
and flux were mixed and stirred.

なお、溶鋼5とフラックスとの接触、混合を促進する際
には溶鋼5の旋回流によって生じる盛り一上り部5aが
じゃま板3に接触するように回転速度(f)を60rp
a+設定して3〜5分間処理し、フラックスの凝集分離
の際には回転速度(f)  を2Orpmに設定して3
〜5分間処理した。
In addition, when promoting contact and mixing between the molten steel 5 and the flux, the rotational speed (f) is set to 60 rpm so that the raised portion 5a of the molten steel 5 caused by the swirling flow contacts the baffle plate 3.
Set a+ and process for 3 to 5 minutes, and when coagulating and separating the flux, set the rotation speed (f) to 2 Orpm and process for 3 to 5 minutes.
Processed for ~5 minutes.

処理後における溶鋼5のいおう、酸素の到達値はS≦5
ppm 、 0=5pp11であった。
The reached value of sulfur and oxygen in molten steel 5 after treatment is S≦5
ppm, 0=5pp11.

また、従来では非金属介在物の粒径は10μmが大半で
あるのに対し、本発明を適用した場合には3μm以下で
あり、非金属介在物の凝集、分離の効果が高いことが確
かめられた。
In addition, while conventionally, the particle size of most nonmetallic inclusions is 10 μm, when the present invention is applied, the particle size is 3 μm or less, and it has been confirmed that the particle size of nonmetallic inclusions is highly effective in aggregating and separating. Ta.

実施例−2 所期組成がC:0.1〜0.05wL%、Si:50.
93wt%、Mn:50.03wt%、Al:≦0.0
01 wt%、P:。
Example-2 Intended composition: C: 0.1 to 0.05 wL%, Si: 50.
93wt%, Mn: 50.03wt%, Al: ≦0.0
01 wt%, P:.

0.005 wt%、S : 0.005 wt%およ
び0 : 300〜500ppn+になる溶鋼(転炉精
錬終了時相当成分)5トンを上掲第1図に示す如き精錬
容器に収容し、ここに脱P、脱りt処理用のフラックス
(組成は70〜80% Cab−20〜30% CaF
gに酸素源として鉄鉱石を混合したもの)を5〜10k
g/を添加し、溶鋼とフラックスとの接触混合の促進を
図るために、まず回転時間発生装置により、溶鋼の旋回
流をじゃま板に接触させるようにその回転速度を6Or
pmに設定して3〜5分間処理した。
0.005 wt%, S: 0.005 wt% and 0: 5 tons of molten steel (component equivalent at the end of converter refining) were placed in a refining vessel as shown in Figure 1 above, and Flux for deP, det treatment (composition is 70-80% Cab-20-30% CaF
(mixed with iron ore as an oxygen source) from 5 to 10 k
In order to promote contact mixing between the molten steel and the flux, first, the rotation speed was increased to 6 Or
pm for 3 to 5 minutes.

次に、上記の処理後溶鋼からスラグの除去およびフラッ
クスの凝集分離のために、回転速度を20rpntに落
とし、溶鋼の旋回流翔じゃま板に接触しないように撹拌
しながら、スラグを溶鋼浴面の中央に集めて、該スラグ
等の吸引除去を行った。そして次に脱酸材、合金材およ
び還元性フラックス(Cab−CaF、系)を添加する
とともに、溶鋼をアーク加熱してから再び旋回流をじゃ
ま仮に接触させる回転撹拌を行うべく 60rpn+の
回転速度にて3〜5分間還元精錬を行った。なお、この
実施例ではアーク加熱時および還元精錬時には精錬容器
内を不活性ガス雰囲気に調整し、還元精錬後に溶鋼成分
の微調整を行った。
Next, in order to remove slag from the molten steel after the above-mentioned treatment and to separate the flux by agglomeration, the rotation speed was reduced to 20 rpnt, and the slag was poured onto the molten steel bath surface while stirring so as not to contact the swirling flow baffle plate of the molten steel. The slag was collected in the center and removed by suction. Next, a deoxidizing material, an alloy material, and a reducing flux (Cab-CaF, system) are added, and the molten steel is arc-heated, and then the rotational speed is increased to 60 rpm+ in order to perform rotational stirring to temporarily contact the swirling flow. Reductive refining was performed for 3 to 5 minutes. In this example, the inside of the refining vessel was adjusted to an inert gas atmosphere during arc heating and reduction refining, and the molten steel components were finely adjusted after reduction refining.

各処理段階における溶鋼成分の到達値を従来法を適用し
て処理した場合の結果と併せて表−1に示す。
Table 1 shows the values reached for the molten steel components at each treatment stage, together with the results when the conventional method was applied.

なお、従来法は、取鍋に収容した溶鋼に上部より浸漬ラ
ンスを挿入しArガスによる気泡撹拌を適□ 用して酸
化精錬を行うべくスラグ−メタルの混合撹拌を5〜10
分間行い、次に気泡撹拌を−たん停止した状態で溶鋼の
静止浴面上の酸化性スラグを、機械的な除去(ドラッガ
ーを使用)あるいは吸引除去(VSクリーナ)をそれぞ
れ適用して除去し、次いで取鍋内を不活性ガスにて雰囲
気調整を行いつつ再びArガスによる気泡撹拌を適用し
て還元性フラックスによる還元精錬を行ったものである
In addition, in the conventional method, an immersion lance is inserted into the molten steel contained in a ladle from above, and bubble stirring by Ar gas is applied to mix and stir the slag and metal for 5 to 10 minutes to perform oxidation refining.
The oxidizing slag on the surface of the static bath of molten steel is removed by mechanical removal (using a dragger) or suction removal (VS cleaner), respectively, with the bubble stirring temporarily stopped. Next, while adjusting the atmosphere in the ladle with an inert gas, bubble stirring using Ar gas was again applied to perform reduction refining using reducing flux.

表−1より明らかなように、この発明に従う精錬では、
脱P後の溶鋼のP濃度は3 pp+m以下、還元処理後
のP濃度は5ppm、S濃度は2ρpaw以下、また0
濃度は5 ppm以下であり、さらに最終成分調後では
、P:6ppm、S:2ppm、O≦5 ppmであり
、不純物元素トータル(P+S+O)が13ppmの高
純度鋼を得ることができる。
As is clear from Table 1, in the refining according to this invention,
The P concentration of molten steel after P removal is 3 pp+m or less, the P concentration after reduction treatment is 5 ppm, the S concentration is 2ρpaw or less, and 0
The concentration is 5 ppm or less, and furthermore, after final component preparation, P: 6 ppm, S: 2 ppm, O≦5 ppm, and high purity steel with a total impurity element (P+S+O) of 13 ppm can be obtained.

(発明の効果) 本発明によれば、溶鋼金属と精錬フラックスとの効果的
な撹拌とこれに続く非金属介在物あるいは不純物元素を
含有するフラックスの速やかな凝集分離によって、復P
などを起こすことなく溶融金属中の不純物元素を迅速に
低減することが可能なので、高純度鋼を製造コストの上
昇を伴うことなしに安定して製造できる。
(Effects of the Invention) According to the present invention, the molten steel metal and the refining flux are effectively stirred and the flux containing nonmetallic inclusions or impurity elements is rapidly coagulated and separated.
Since it is possible to quickly reduce impurity elements in molten metal without causing such problems, high-purity steel can be stably produced without increasing production costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、本発明に従う精錬要領の説明図、 第3図は本発明に従う精錬要領の説明図、第4図は溶鋼
中の不純物元素の致達値を比較したグラフ 第5図はスラグ残量の比較グラフ、 第6図は還元精錬時の復P量の比較グラフ、第7図は溶
融金属の回転速度(f)とじゃま板取り付は位置の関係
を示すグラフである。 1・・・鉄皮        2・・・耐火物3・・・
耐火物製じゃま板  4・・・回転磁界発生装置5・・
・溶鋼        6・・・精錬フラックス7・・
・スラグ吸引ヘッダー 8・・・加熱アーク特許出願人
  川崎製鉄株式会社 @3図 第4乙 順tff評1.よ鋳理
Figures 1 and 2 are explanatory diagrams of the refining procedure according to the present invention, Figure 3 is an explanatory diagram of the refining procedure according to the present invention, and Figure 4 is a graph comparing the achieved values of impurity elements in molten steel. Figure 6 is a comparison graph of the remaining amount of slag, Figure 6 is a comparison graph of the amount of return P during reduction refining, and Figure 7 is a graph showing the relationship between the rotational speed (f) of molten metal and the position of baffle plate installation. . 1... Iron skin 2... Refractory 3...
Refractory baffle plate 4...Rotating magnetic field generator 5...
・Molten steel 6... Refining flux 7...
・Slag suction header 8...Heating arc patent applicant Kawasaki Steel Corporation @3 Figure 4 Otsu order TFF review 1. Yocastri

Claims (1)

【特許請求の範囲】 1、精錬容器内に溶融金属を収容して、該容器の外周に
配設した回転磁界発生装置により溶融金属に水平回転力
を附与し、この溶融金属中に添加する精錬フラックスと
の接触混合によって溶融金属の精錬を行う方法において
、溶融金属と精錬フラックスとの接触、混合 を促進する際には、溶融金属の旋回流を該容器にて溶融
金属の静止浴面の上方で内向きに突出して配設したじゃ
ま板に接触させる回転撹拌を強制し、一方溶融金属中の
不純物を含有したのちのフラックスを凝集、分離する際
には溶融金属の旋回流を該じゃま板に接触させない回転
撹拌を強制することを特徴とする溶融金属の精錬方法。 2、溶融金属の旋回流をじゃま板に接触させる回転撹拌
が、前後2段階よりなるものとし、その一方は溶融金属
の脱りん、脱けい処理を主目的とする酸化精錬であり、
他方は溶融金属の脱硫、脱酸を主目的とする還元精錬で
ある請求項1記載の方法。
[Claims] 1. A molten metal is placed in a refining container, and a horizontal rotational force is applied to the molten metal by a rotating magnetic field generator disposed around the outer periphery of the container, and the molten metal is added to the molten metal. In the method of refining molten metal by contact mixing with refining flux, when promoting the contact and mixing of the molten metal and the refining flux, the swirling flow of the molten metal is heated in the container to the surface of the static bath of the molten metal. Rotational agitation is forced to come into contact with a baffle plate that protrudes upward and inward. On the other hand, when the flux containing impurities in the molten metal is coagulated and separated, the swirling flow of the molten metal is forced into contact with the baffle plate. A method for refining molten metal characterized by forcing rotational stirring without contact with the molten metal. 2. The rotational stirring that brings the swirling flow of molten metal into contact with the baffle plate consists of two stages: front and back, one of which is oxidation refining whose main purpose is dephosphorization and desiliconization of the molten metal,
2. The method according to claim 1, wherein the other is reduction refining whose main purpose is to desulfurize and deoxidize the molten metal.
JP63-38706A 1987-02-25 1988-02-23 Method for refining molten metal Pending JPH01216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63-38706A JPH01216A (en) 1987-02-25 1988-02-23 Method for refining molten metal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-40456 1987-02-25
JP4045687 1987-02-25
JP63-38706A JPH01216A (en) 1987-02-25 1988-02-23 Method for refining molten metal

Publications (2)

Publication Number Publication Date
JPS64216A JPS64216A (en) 1989-01-05
JPH01216A true JPH01216A (en) 1989-01-05

Family

ID=

Similar Documents

Publication Publication Date Title
EP0752478B1 (en) Method of refining molten metal
JP6593233B2 (en) Manufacturing method of high clean steel
JP3924960B2 (en) Hot metal desulfurization method
JPH01216A (en) Method for refining molten metal
JP3308084B2 (en) Ultra low oxygen steel smelting method
JPH10317049A (en) Method for melting high clean steel
JP3760144B2 (en) Ultra-low carbon steel sheet, ultra-low carbon steel slab and method for producing the same
JPH02179813A (en) Method for refining molten metal into high purity and high cleanliness
JP3026873B2 (en) Method for deoxidizing molten steel
JP2001105101A (en) Melting method of steel plate for thin sheet
JP2880842B2 (en) How to make clean steel
JP3297998B2 (en) Melting method of high clean ultra low carbon steel
JP2538879B2 (en) Method for refining molten metal
JP4660038B2 (en) Method for melting steel sheet for thin plate and cast piece thereof
JP3282530B2 (en) Method for producing high cleanliness low Si steel
JP3465801B2 (en) Method for refining molten Fe-Ni alloy
Matsuo et al. Removal of Copper and Tin in Molten Iron with Decarburization Under Reduced Pressure
JP2001098316A (en) Production of highly clean extra low carbon steel
JPH10330829A (en) Method for melting high cleanliness extra-low carbon steel
JP3408934B2 (en) Vacuum degassing reactor for refining low carbon steel
JPH03183722A (en) Production of high cleanliness steel
JPS61221317A (en) Slag discharging method for molten iron subjected to out-of-furnace siliconization
JPH02405B2 (en)
JPH02285037A (en) Slag refining method for molten metal
JP2000178636A (en) Production of clean steel in rh vacuum-degassing apparatus