JP3026873B2 - Method for deoxidizing molten steel - Google Patents
Method for deoxidizing molten steelInfo
- Publication number
- JP3026873B2 JP3026873B2 JP03351158A JP35115891A JP3026873B2 JP 3026873 B2 JP3026873 B2 JP 3026873B2 JP 03351158 A JP03351158 A JP 03351158A JP 35115891 A JP35115891 A JP 35115891A JP 3026873 B2 JP3026873 B2 JP 3026873B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- deoxidation
- molten steel
- inclusions
- deoxidizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、製鋼工程の製錬の最終
段階でアルミニウムで脱酸するにさいし、溶鋼中微小介
在物を低減させる方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing microinclusions in molten steel during deoxidation with aluminum at the final stage of smelting in a steelmaking process.
【0002】[0002]
【従来の技術】製鋼工程においては、酸化製錬の終了後
鋼中溶存酸素を脱酸剤を投入して除去する。このさい
(1)式に示す反応により、脱酸反応およびそれ以後の
再酸化反応により微少な酸化物が生成し、これが除去さ
れずに有害な介在物となり、製品欠陥の原因となってい
る。2. Description of the Related Art In a steelmaking process, after oxidizing and smelting is completed, dissolved oxygen in steel is removed by adding a deoxidizing agent. At this time, the reaction represented by the formula (1) generates a minute oxide by the deoxidation reaction and the subsequent reoxidation reaction, which is not removed and becomes a harmful inclusion, which causes a product defect.
【0003】 xM+(y/2)O2 →Mx Oy ・・・・・・・(1)XM + (y / 2) O 2 → M x O y (1)
【0004】従来、鋼中の微小介在物を低減させる方法
としては、様々な要因で生成する非金属介在物の浮上分
離による除去対策が種々とられている。特にアルミニウ
ム脱酸の場合脱酸生成物は微細に分散したものになるた
め浮上分離が困難とされている。この対策として脱酸工
程において微小介在物の凝集、合体による浮上分離時間
を長く与えるために、初期にアルミニウムを投入する出
鋼脱酸法や、RH処理における強攪拌を行い、介在物の
浮上分離を促進する方法がある。また、連鋳タンディツ
ュ内に種々の堰を設けて介在物を浮上させるなどの方法
もある。Conventionally, as a method of reducing minute inclusions in steel, various measures have been taken to remove nonmetallic inclusions generated by various factors by floating separation. In particular, in the case of aluminum deoxidation, the deoxidation product is finely dispersed, so that it is difficult to float and separate. As a countermeasure, in the deoxidation step, in order to extend the flotation time due to the aggregation and coalescence of minute inclusions, a steel removal deoxidation method in which aluminum is initially charged, and strong stirring in the RH treatment are used to float the inclusions. There are ways to promote There is also a method of providing various weirs in a continuous casting tundish to float inclusions.
【0005】しかし、これらの方法をとっても、溶鋼か
らの5μm以下の微小介在物の浮上分離は困難であり、
清浄化が十分に達成できていないのが現状である。これ
に対し、特開平1−180466号公報に見られるよう
に、脱酸時に、脱酸剤AlとCaO、CaF2 の結合体
及び融合体を投入することにより、脱酸生成物をCaO
−Al2 O3 組成の低融点のものとして無害化する方法
等も提案されている。However, even with these methods, it is difficult to float and separate minute inclusions of 5 μm or less from molten steel.
At present, cleaning has not been sufficiently achieved. On the other hand, as shown in JP-A-1-180466, the deoxidation product is converted into CaO by adding a deoxidizer Al and a conjugate and fusion of CaO and CaF 2 during deoxidation.
Method in which harmless as the low melting point -al 2 O 3 compositions have been proposed.
【0006】[0006]
【発明が解決しようとする課題】上述したように、脱酸
過程においては必ず浮上の困難な微小アルミナが生成す
る。また、Ca添加を行ったとしても、生成するCaO
−Al2 O3 がAl2 O3 単独よりも変形能が低いため
に、製品欠陥に結びつきやすいという問題が存在する。
従って、脱酸生成物をAl2 O3 とし、かつこれを十分
浮上分離させる手段が望まれていた。As described above, in the deoxidation step, fine alumina which is difficult to float is always generated. Further, even if Ca is added, the resulting CaO
-Al the 2 O 3 is due to the low deformability than Al 2 O 3 alone, there is a problem that tends to lead to product defects.
Therefore, there has been a demand for a means for converting the deoxidized product into Al 2 O 3 and sufficiently separating the product by flotation.
【0007】本発明は、溶鋼中の介在物を低減させるに
あたって、浮上分離の困難な有害となる微小介在物の生
成を抑制するための簡便な方法を提供することを目的と
するものである。An object of the present invention is to provide a simple method for suppressing the generation of harmful fine inclusions which are difficult to float and separate when reducing inclusions in molten steel.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上述の従
来法における問題点を解決するために、種々の試験を実
施した結果、極めて簡便な方法にて、浮上分離の困難な
微小介在物の生成を抑制する脱酸法を発明するに到っ
た。即ち、溶鋼をアルミニウムで脱酸するに際し、アル
ミニウム含有量を80%以下としたアルミニウム−鉄合
金を使用することを特徴とする溶鋼の脱酸方法である。The present inventors conducted various tests in order to solve the above-mentioned problems in the conventional method. The inventor has devised a deoxidation method for suppressing the formation of products. That is, this is a method for deoxidizing molten steel, which comprises using an aluminum-iron alloy having an aluminum content of 80% or less when deoxidizing molten steel with aluminum.
【0009】[0009]
【作用】本発明者らは、脱酸反応における浮上しやすい
アルミナの生成という観点からの形態制御の可能性を考
えた。そこで、水溶液における結晶成長においては、形
態を決定する因子として過飽和度が重要であることに着
眼して、過飽和度が形態に及ぼす影響を調べた。すなわ
ち実験室的に、静止浴において、純アルミニウムおよび
90%アルミニウム−鉄、80%アルミニウム−鉄、4
5%アルミニウム−鉄合金による脱酸反応でのアルミニ
ウム生成実験を行った。図2および図3は脱酸生成物の
アルミナを抽出して走査型電子顕微鏡で観察したもので
ある。図2は純アルミニウムで脱酸した場合、図3は4
5%アルミニウム−鉄合金で脱酸した場合のものである
が、脱酸剤中のAlの量が減少して、過飽和度が低くな
るにつれ、横方向に広がった形態のものが生成されるこ
とを見いだした。The present inventors have considered the possibility of morphological control from the viewpoint of formation of easily floating alumina in the deoxidation reaction. Therefore, in crystal growth in an aqueous solution, the effect of supersaturation on the morphology was examined, focusing on the importance of supersaturation as a factor determining the morphology. That is, in a laboratory, pure aluminum and 90% aluminum-iron, 80% aluminum-iron, 4%
An aluminum production experiment was performed by a deoxidation reaction using a 5% aluminum-iron alloy. FIG. 2 and FIG. 3 are obtained by extracting alumina as a deoxidation product and observing it with a scanning electron microscope. FIG. 2 shows the case of deoxidation with pure aluminum, and FIG.
In the case of deoxidation with a 5% aluminum-iron alloy, as the amount of Al in the deoxidizer decreases and the degree of supersaturation decreases, a form that spreads in the lateral direction is formed. Was found.
【0010】さらに、これらの生成実験を溶鋼流動のあ
る状態、即ち攪拌浴で行うと、静止浴で観察された生成
時形態が分断されるが、生成時形態の特徴を維持したも
のになっており図1に示すごとく、純アルミニウムによ
る脱酸では、1〜5μmの微小酸化物が主であるのに対
して、80%以下のアルミニウムを含有する合金鉄によ
る脱酸では、少なくとも5μm以上の酸化物のみが認め
られることを見いだした。Further, when these forming experiments are performed in a state where molten steel is flowing, that is, in a stirring bath, the form at the time of formation observed in the stationary bath is divided, but the characteristics of the form at the time of formation are maintained. As shown in FIG. 1, in deoxidation with pure aluminum, fine oxides of 1 to 5 μm are mainly used, whereas in deoxidation with ferromagnetic iron containing 80% or less of aluminum, oxidation is at least 5 μm or more. Found that only things were allowed.
【0011】即ち、脱酸工程において、アルミニウム−
鉄合金による脱酸を行い、アルミナ生成時の過飽和度を
下げることにより、浮上分離しやすい大型の介在物を生
成することが可能なことを見いだしたのである。図1で
みるように合金のアルミニウム含有量が90%でも効果
が見られるが、好ましくは80%以下にするのが良いこ
とがわかる。That is, in the deoxidizing step, aluminum-
By deoxidizing with an iron alloy and reducing the degree of supersaturation during the formation of alumina, it has been found that large inclusions that can easily float and separate can be generated. As can be seen from FIG. 1, the effect can be seen even when the aluminum content of the alloy is 90%, but it is found that it is better to set the aluminum content to preferably 80% or less.
【0012】製鋼工程において元素を添加するさい鉄と
合金にしたフェロアロイを使用することは一般的に行わ
れている。たとえばSiやMnは金属シリコンや電解マ
ンガンなどの単体の金属としても添加されるが、多くの
場合フェロシリコンやフェロマンガンが使用される。こ
れらは鋼中への溶解を容易にしたり、また原料製造上の
便宜からフェロアロイとするものである。極端な例とし
てはMo、Wは融点が著しく高いからフェロモリブデン
やフェロタングステンとして融点を低下させない限り添
加することはできない。It is common practice to use ferroalloys alloyed with iron when adding elements in the steelmaking process. For example, Si or Mn is also added as a single metal such as metallic silicon or electrolytic manganese, but in many cases, ferrosilicon or ferromanganese is used. These are ferroalloys for facilitating dissolution in steel and for convenience in raw material production. As an extreme example, Mo and W have extremely high melting points and cannot be added as ferromolybdenum or ferrotungsten unless the melting point is lowered.
【0013】ところが製鋼工程においてアルミニウムを
添加する場合、従来からもつぱらアルミニウム単体が使
用されている。これはたとえばマンガンやシリコンと異
なりアルミニウムは一般用途の地金として大量に生産さ
れており、これをそのまま使用するのが最も簡便だから
である。そしてアルミニウム単体で添加しても別段不都
合はないとされてきたのである。ここにおいて本発明は
鉄と合金にすることにより微小介在物の低減に優れた効
果を生ずることを見出したのである。However, in the case where aluminum is added in the steel making process, a single piece of aluminum is conventionally used. This is because, unlike manganese and silicon, for example, aluminum is produced in large quantities as general-purpose ingot, and it is most convenient to use it as it is. It has been said that there is no particular problem even if aluminum is added alone. Here, it has been found that the present invention produces an excellent effect of reducing minute inclusions by alloying with iron.
【0014】[0014]
【実施例】次に本発明の実施例について述べる。転炉に
て吹錬した成分C:0.03〜0.05%、Si:0.
08〜0.15%、Mn:0.20〜0.50%、P:
0.007〜0.01%、S:0.007〜0.01%
の350tの溶鋼をRH処理において、まず減圧脱炭処
理を行い、所定のカーボン濃度に調整した後、Alまた
はAl−Fe合金を投入して、脱酸を行った。脱酸剤の
添加後は、9分間還流を行った。その後、湾曲型連鋳機
で鋳造して、250mm厚のスラブ鋳片を製造した。脱
酸直後とタンディッシュ(容量50t)に250t注入
時点でここから採取した試料について介在物のスライム
抽出を行った。Next, an embodiment of the present invention will be described. Component C blown in a converter: 0.03-0.05%, Si: 0.
08 to 0.15%, Mn: 0.20 to 0.50%, P:
0.007 to 0.01%, S: 0.007 to 0.01%
First, in the RH treatment, 350 tons of molten steel was subjected to a vacuum decarburization treatment to adjust the carbon concentration to a predetermined value, and then Al or an Al-Fe alloy was charged to perform deoxidation. After the addition of the deoxidizing agent, the mixture was refluxed for 9 minutes. Thereafter, the slab slab having a thickness of 250 mm was produced by casting using a curved continuous caster. Immediately after deoxidation and at the time of 250 t injection into a tundish (capacity 50 t), slime extraction of inclusions was performed on samples taken therefrom.
【0015】詳細な条件および結果を表1に示すが本発
明の実施例においては介在物の減少とこれによる欠陥の
減少がみられ、特に合金中のアルミニウムが80%以下
のとき効果が顕著であることがわかる。Detailed conditions and results are shown in Table 1. In Examples of the present invention, the number of inclusions and the number of defects are reduced, and the effect is remarkable especially when the aluminum content in the alloy is 80% or less. You can see that there is.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【発明の効果】以上、詳述したように本発明は、少なく
とも90%以下のAl含有量合金鉄を脱酸剤として使用
することにより、浮上分離に困難な5μm以下の微小介
在物の生成を低減出来るため、大幅な介在物低減とな
り、その工業的効果はきわめて大きい。As has been described in detail above, the present invention uses at least 90% or less of Al-containing ferrous alloy as a deoxidizing agent to prevent the formation of minute inclusions of 5 μm or less which are difficult to float and separate. Since it can be reduced, inclusions are greatly reduced, and the industrial effect is extremely large.
【図1】AlーFe合金中のAl含有量と脱酸生成アル
ミナの粒子径との関係を示すグラフFIG. 1 is a graph showing the relationship between the Al content in an Al—Fe alloy and the particle size of deoxidized alumina.
【図2】脱酸反応で生ずるアルミナの形態を示す走査型
電子顕微鏡の写真で(a)は純Al、(b)は45%A
l−Fe合金によるものFIGS. 2A and 2B are photographs of a scanning electron microscope showing the morphology of alumina generated by a deoxidation reaction, where (a) is pure Al and (b) is 45% A
by l-Fe alloy
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21C 7/04 C21C 7/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C21C 7/04 C21C 7/06
Claims (1)
アルミニウム含有量を80%以下としたアルミニウム−
鉄合金を使用することを特徴とする溶鋼の脱酸方法。1. In deoxidizing molten steel with aluminum,
Aluminum with an aluminum content of 80% or less
A method for deoxidizing molten steel, comprising using an iron alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03351158A JP3026873B2 (en) | 1991-12-13 | 1991-12-13 | Method for deoxidizing molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03351158A JP3026873B2 (en) | 1991-12-13 | 1991-12-13 | Method for deoxidizing molten steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05163517A JPH05163517A (en) | 1993-06-29 |
JP3026873B2 true JP3026873B2 (en) | 2000-03-27 |
Family
ID=18415444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03351158A Expired - Fee Related JP3026873B2 (en) | 1991-12-13 | 1991-12-13 | Method for deoxidizing molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3026873B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001051675A1 (en) * | 2000-01-13 | 2001-07-19 | Chulwoo Nam | Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the method thereof |
CN110387453A (en) * | 2019-08-14 | 2019-10-29 | 上海盛宝冶金科技有限公司 | A kind of ferro-aluminum ball and its methods for making and using same |
-
1991
- 1991-12-13 JP JP03351158A patent/JP3026873B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05163517A (en) | 1993-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5381243B2 (en) | Method for refining molten steel | |
JP3733098B2 (en) | Method of melting steel sheet for ultra-low carbon or low-carbon sheet with excellent surface quality and continuous cast slab | |
JP4280163B2 (en) | Low carbon steel sheet, low carbon steel slab and method for producing the same | |
JP3026873B2 (en) | Method for deoxidizing molten steel | |
JP3647969B2 (en) | Method for refinement of harmful inclusions in steel | |
JP3742619B2 (en) | Low carbon steel slab manufacturing method | |
JPH10317049A (en) | Method for melting high clean steel | |
JP4034700B2 (en) | Manufacturing method of high S free cutting steel with excellent machinability and high S free cutting steel | |
JP3760144B2 (en) | Ultra-low carbon steel sheet, ultra-low carbon steel slab and method for producing the same | |
JP2976855B2 (en) | Method of deoxidizing molten steel | |
JP2001105101A (en) | Melting method of steel plate for thin sheet | |
JP3230065B2 (en) | Manufacturing method of molten steel for continuous casting | |
JP3677994B2 (en) | Steel plate for cans and steel plate for cans with excellent cleanability | |
JP3027217B2 (en) | Refining method for removing impurities in high-concentration Cu-containing iron | |
JPH0639614B2 (en) | Ultra-low S, ultra-low A (1) steel manufacturing method | |
JP2690350B2 (en) | Highly clean ultra low carbon steel melting method | |
JPH08325627A (en) | Production of grain-oriented silicon steel sheet | |
JP4418118B2 (en) | Method for fine dispersion of oxide in molten steel | |
JP2001032014A (en) | Method for manufacturing steel plate for sheet steel | |
JP4660038B2 (en) | Method for melting steel sheet for thin plate and cast piece thereof | |
JPH07207403A (en) | Slab for producing cold rolled sheet | |
SU1137109A1 (en) | Alloy for reducing rail steel | |
JPS626605B2 (en) | ||
JPH01216A (en) | Method for refining molten metal | |
CN117385128A (en) | Method for deoxidizing by adding rare earth alloy in converter tapping operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991221 |
|
LAPS | Cancellation because of no payment of annual fees |