JPH11158537A - Production of extra-low carbon steel excellent in cleanliness - Google Patents

Production of extra-low carbon steel excellent in cleanliness

Info

Publication number
JPH11158537A
JPH11158537A JP33201097A JP33201097A JPH11158537A JP H11158537 A JPH11158537 A JP H11158537A JP 33201097 A JP33201097 A JP 33201097A JP 33201097 A JP33201097 A JP 33201097A JP H11158537 A JPH11158537 A JP H11158537A
Authority
JP
Japan
Prior art keywords
slag
concentration
feo
treatment
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33201097A
Other languages
Japanese (ja)
Inventor
Makoto Fukagawa
信 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33201097A priority Critical patent/JPH11158537A/en
Publication of JPH11158537A publication Critical patent/JPH11158537A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently improve the cleanliness of an extra-low carbon steel by executing decarburization treatment with a vacuum degassing apparatus after adjusting FeO+MnO concn. in slag of undeoxidizing low carbon steel tapped into a ladle and successively, adding powdery Al-Fe alloy onto the slag to execute deoxidization treatment. SOLUTION: The underoxidizing low carbon steel having about 0.02-0.07 wt.% C produced in a refining furnace for steel, is tapped into the ladle 2 and a reducing agent of Al, etc., is added onto the slag 3 of this molten steel 1 and FeO+MnO in the slag 3 is made to 4-8%. Successively, the decarburization treatment of the molten steel 1 is executed with the vacuum degassing apparatus provided with a vacuum vessel 5. In this way, C concn. in the molten steel 1 is made to be 0.001-0.006%. Thereafter, a deoxidizer of metallic Al, etc., is added into the vacuum vessel 5 from a chute 6 to execute the deoxidization treatment. At this time, the powdery Al-Fe alloy 7 having 87-95% Al content and 0.01-5 mm grain diameter, is added onto the ladle slag 3 through an adding device 8, and FeO+MnO in the ladle slag 3 is reduced to <=2% to restrain the reaction with Al in the molten steel 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、清浄度に優れた極
低炭素鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultra-low carbon steel having excellent cleanliness.

【0002】[0002]

【従来の技術】自動車の外装材として、表面欠陥が少な
く、成形性、特に深絞り性が良好な鋼板が要求されてい
る。これらの要求に対応するため、製鋼工程では鋼の高
清浄化と極低炭素化が必要となっている。
2. Description of the Related Art As an exterior material for automobiles, a steel sheet having few surface defects and good formability, particularly good deep drawability, is required. In order to meet these demands, the steelmaking process requires high-purity steel and ultra-low carbon.

【0003】極低炭素鋼の溶製は、製鋼炉より出鋼され
た溶鋼中[C]濃度が0.02〜0.07%(以下、全
ての濃度は重量%を示す)の未脱酸溶鋼に真空脱ガス処
理を施し、溶鋼中の溶存炭素 [C] と溶存酸素[ O] と
の反応である[C]+[O]→CO↑を利用して炭素濃
度を0.006%以下に低下させるのが一般的である。
この脱炭反応を進行させるための溶鋼中の溶存酸素濃度
は0.04〜0.05%で十分であるが、実際には0.
06%以上と過剰に存在する。
[0003] In the smelting of ultra low carbon steel, the concentration of [C] in molten steel discharged from a steelmaking furnace is 0.02 to 0.07% (hereinafter, all concentrations are indicated by weight%). The molten steel is subjected to vacuum degassing, and the carbon concentration is reduced to 0.006% or less using [C] + [O] → CO ↑ which is a reaction between dissolved carbon [C] and dissolved oxygen [O] in the molten steel. It is generally reduced to
The concentration of dissolved oxygen in molten steel of 0.04 to 0.05% is sufficient for promoting this decarburization reaction.
It is present in excess of 06% or more.

【0004】溶鋼中の溶存酸素が高いレベルで存在する
場合には、共存するスラグ中の(FeO+MnO)濃度
も15%程度と同様に高い。スラグ中の(FeO+Mn
O)濃度が高い状態は、真空脱炭処理完了後も継続し、
このままでは脱酸処理で添加したAlの残留物とスラグ
中のFeO、MnOが反応してAl2 3 を生成し、こ
のAl2 3 が溶鋼中に残留して鋼板の清浄度を著しく
低下させるという問題が生じる。
[0004] When the dissolved oxygen in the molten steel is present at a high level, the (FeO + MnO) concentration in the coexisting slag is as high as about 15%. (FeO + Mn in slag
O) The high concentration state continues even after the completion of the vacuum decarburization treatment,
In this state, the Al residue added in the deoxidizing treatment reacts with FeO and MnO in the slag to produce Al 2 O 3 , and this Al 2 O 3 remains in the molten steel and significantly lowers the cleanliness of the steel sheet. This causes a problem.

【0005】上記問題を解決する方法として、下記
(1)および(2)の提案がなされてきた。 (1)特開昭60−152611号公報には、出鋼時、
スラグ還元材(Al含有物)を添加する際に、スラグ還
元材とスラグとの混合を図る目的で、スラグ還元剤とと
もにCaCO3 等のガス発生物質を併用して添加し、ス
ラグ中のFeO、MnOを効率良く低減して、Al2
3 系介在物の生成を抑制する方法が開示されている。
As a method for solving the above problem, the following proposals (1) and (2) have been made. (1) JP-A-60-152611 discloses that when tapping steel,
When adding the slag reducing agent (Al-containing material), a gas generating substance such as CaCO 3 is added together with the slag reducing agent in order to mix the slag reducing agent and the slag, and FeO in the slag is added. Efficient reduction of MnO and Al 2 O
A method for suppressing formation of three- system inclusions is disclosed.

【0006】(2)特開平6−256837号公報に
は、転炉から取鍋への出鋼中または出鋼直後の取鍋内ス
ラグに、スラグ還元剤を添加し、さらにスラグ還元剤を
真空脱ガス処理装置による脱炭処理の後の取鍋内スラグ
に添加する方法が開示されている。
(2) JP-A-6-256837 discloses that a slag reducing agent is added to slag in a ladle during or immediately after tapping from a converter to a ladle, and the slag reducing agent is further evacuated to a vacuum. A method of adding the slag in the ladle after the decarburization treatment by the degassing treatment device is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記の従来方
法には以下の(1)および(2)の問題点がある。 (1)特開昭60−152611号公報に開示されてい
る方法では、出鋼段階で還元処理によって一度にスラグ
中の(FeO+MnO)濃度を4%程度以下まで下げる
ので、以降の各処理でスラグ中のFeOおよびMnOと
溶鋼中の溶存Alとの反応は起こりにくいという利点が
ある。したがって、Al2 3 系介在物の生成抑制の点
では有効である。しかし、共存する溶鋼中の酸素濃度が
低すぎてこのままでは脱炭反応が進まず、極低炭素鋼を
溶製するのが困難となる。
However, the above conventional method has the following problems (1) and (2). (1) In the method disclosed in Japanese Patent Application Laid-Open No. 60-152611, the (FeO + MnO) concentration in the slag is reduced to about 4% or less at a time by a reduction treatment at the tapping stage. There is an advantage that the reaction between FeO and MnO therein and Al dissolved in the molten steel hardly occurs. Therefore, it is effective in suppressing the generation of Al 2 O 3 -based inclusions. However, if the oxygen concentration in the coexisting molten steel is too low, the decarburization reaction will not proceed in this state, and it will be difficult to produce ultra-low carbon steel.

【0008】酸素の不足分を別途羽口からの吹き込み補
充する方法も考えられるが、この時同時にスラグが酸化
を受けてスラグ中の(FeO+MnO)濃度が上昇して
所期の目的が果たせない結果となる。
A method of separately supplementing the oxygen deficiency by blowing it from the tuyere is also conceivable. However, at the same time, the slag is oxidized and the (FeO + MnO) concentration in the slag increases, so that the intended purpose cannot be achieved. Becomes

【0009】(2)特開平6−256837号公報に開
示されている方法では、スラグ還元剤を出鋼時と脱炭処
理完了後の2段階に分けて添加するので、脱炭処理前に
スラグを還元することによって生じる、脱炭用の溶鋼中
溶存酸素不足の問題は解消される。しかし、一方では、
脱炭処理後にスラグ中の(FeO+MnO)濃度を2〜
3%以下へ低減するために、スラグを機械的に攪拌する
か、もしくはガスバブリングで攪拌するような強制的な
攪拌を行う必要がある。このような強制的な攪拌処理を
RH処理中に実施することは困難であり、RH処理後に
別の処理工程を追加する必要がある。このため、処理時
間の延長、溶鋼温度の低下、生産コストの上昇などの問
題を生じ、有効な方法とはいいがたい。また、この方法
は強制的な攪拌により、生成したAl2 3 やスラグの
巻き込みに起因する介在物を増加させ、清浄度をさらに
悪化させる危険性をはらんでいる。
(2) In the method disclosed in JP-A-6-256837, the slag reducing agent is added in two stages, at the time of tapping and after the completion of the decarburization treatment. The problem of the lack of dissolved oxygen in the molten steel for decarburization, which is caused by the reduction of carbon dioxide, is solved. But on the other hand,
After the decarburization treatment, the (FeO + MnO) concentration in the slag is 2 to
In order to reduce the slag to 3% or less, it is necessary to mechanically agitate the slag or perform forced agitation such as agitation by gas bubbling. It is difficult to perform such forced stirring during the RH processing, and it is necessary to add another processing step after the RH processing. For this reason, there are problems such as an increase in processing time, a decrease in molten steel temperature, and an increase in production cost, and this is not an effective method. In addition, this method has a risk of increasing inclusions caused by entrainment of generated Al 2 O 3 and slag due to forced agitation, thereby further deteriorating cleanliness.

【0010】本発明の目的は、上記従来技術の問題点を
改善し、真空脱ガス装置を使用した溶鋼の脱炭処理およ
び脱酸処理操作において、脱炭に必要な溶存酸素を適正
に確保すると同時にAl2 3 系介在物の新たな生成を
抑制する清浄度に優れた極低炭素鋼の溶製方法を提供す
ることにある。
It is an object of the present invention to improve the above-mentioned problems of the prior art and to appropriately secure dissolved oxygen necessary for decarburization in a decarburization treatment and deoxidation treatment operation of molten steel using a vacuum degassing apparatus. At the same time, it is an object of the present invention to provide a method for melting ultra-low carbon steel having excellent cleanliness and suppressing new generation of Al 2 O 3 -based inclusions.

【0011】[0011]

【課題を解決するための手段】本発明者らは各種の実験
と検討を行った結果、下記(A)〜(D)の知見を得
た。
As a result of various experiments and studies, the present inventors have obtained the following findings (A) to (D).

【0012】(A)真空脱ガス処理装置による脱炭処理
は、脱炭反応源である溶存酸素濃度を適正に保つため
に、取鍋スラグ中の(FeO+MnO)濃度の管理が重
要である。 (B)上記で管理された取鍋スラグ中の(FeO+Mn
O)濃度では、脱酸処理工程以降でAl2 3 介在物を
生成するので、その対策を講じなければならない。
(A) In the decarburization treatment by the vacuum degassing apparatus, it is important to control the (FeO + MnO) concentration in the ladle slag in order to appropriately maintain the dissolved oxygen concentration as a decarburization reaction source. (B) (FeO + Mn) in the ladle slag managed above
In the case of the O) concentration, Al 2 O 3 inclusions are generated after the deoxidizing treatment step, so that a countermeasure must be taken.

【0013】(C)Al2 3 介在物の生成の抑制に
は、真空脱ガス脱炭処理後の取鍋スラグ中の(FeO+
MnO)濃度を一定濃度以下に低減する必要がある。 (D)上記取鍋スラグ中の(FeO+MnO)濃度を一
定濃度以下に低減するために、真空脱ガス装置での脱炭
処理後の脱酸処理時に、取鍋スラグの密度とほぼ等し
く、適正な粒径の低融点還元剤をスラグ中に分散せるこ
とが有効である。
(C) In order to suppress the formation of Al 2 O 3 inclusions, (FeO +) in the ladle slag after vacuum degassing and decarburizing treatment is used.
It is necessary to reduce the MnO) concentration below a certain concentration. (D) In order to reduce the (FeO + MnO) concentration in the ladle slag to a certain concentration or less, at the time of the deoxidation treatment after the decarburization treatment in the vacuum degassing apparatus, the density of the ladle slag is almost equal to the density of the ladle slag. It is effective to disperse a low melting point reducing agent having a particle size in the slag.

【0014】本発明は、以上の知見に基づいてなされた
もので、その要旨は、下記のとおりである。鋼の精錬炉
で低炭素未脱酸鋼を溶製し、取鍋に未脱酸状態で出鋼を
行い、還元剤を添加してスラグ中FeO濃度とMnO濃
度の和を4〜8%とし、引続き真空脱ガス装置にて、脱
炭処理を行いC濃度を0.001〜0.006%とした
後、真空槽内に脱酸剤を添加し脱酸処理を行う際に、取
鍋スラグ上にAl含有率が87〜95%で、粒径が0.
1〜5mmの粉状Al−Fe合金を添加し、取鍋スラグ中
のFeO濃度とMnO濃度の和を2%以下に低減するこ
とを特徴とする清浄度に優れた極低炭素鋼の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows. In a steel refining furnace, low carbon undeoxidized steel is melted, and tapping is performed in a ladle in an undeoxidized state, and a reducing agent is added to make the sum of the FeO concentration and the MnO concentration in the slag 4-8%. Then, after performing decarburization treatment with a vacuum degassing apparatus to adjust the C concentration to 0.001 to 0.006%, a ladle slag is added when a deoxidizing agent is added to the vacuum tank to perform the deoxidizing treatment. On top, the Al content is 87-95% and the particle size is 0.
A method for producing an ultra-low carbon steel having excellent cleanliness, characterized by adding a powdery Al-Fe alloy of 1 to 5 mm to reduce the sum of the FeO concentration and the MnO concentration in a ladle slag to 2% or less. .

【0015】[0015]

【発明の実施の形態】極低炭素鋼の溶製では、製鋼炉よ
り出鋼されたC濃度が0.02〜0.07%の低炭素未
脱酸鋼に真空脱ガス処理を施し、溶鋼中の溶存酸素と溶
存炭素とを反応させて脱炭を行う。
BEST MODE FOR CARRYING OUT THE INVENTION In the smelting of ultra-low carbon steel, vacuum degassing is performed on a low-carbon undeoxidized steel having a C concentration of 0.02 to 0.07%, which has been discharged from a steelmaking furnace. Decarbonization is performed by reacting dissolved oxygen and dissolved carbon therein.

【0016】真空脱ガス処理装置内での溶鋼の脱炭は、
溶鋼中に溶存する炭素と酸素との反応、[C]+[O]
→CO↑によって進行する。通常出鋼後の溶存酸素は必
要以上に濃度が高いので低下させる必要がある。
The decarburization of the molten steel in the vacuum degassing apparatus is as follows:
Reaction between carbon and oxygen dissolved in molten steel, [C] + [O]
→ Proceed by CO ↑. Normally, the dissolved oxygen after tapping has an unnecessarily high concentration and must be reduced.

【0017】図1は、脱炭処理前の取鍋スラグ中の(F
eO+MnO)濃度と溶鋼中の溶存酸素濃度との関係を
示すグラフである。図1に示すように、溶存酸素濃度は
取鍋スラグ中の(FeO+MnO)濃度と正の相関があ
るので、この関係を利用して、脱炭に必要な溶存酸素が
過剰に存在しない程度に、スラグ還元剤を添加すること
によってスラグ中の(FeO+MnO)濃度を調整する
必要がある。
FIG. 1 shows (F) in the ladle slag before the decarburization treatment.
4 is a graph showing the relationship between (eO + MnO) concentration and the dissolved oxygen concentration in molten steel. As shown in FIG. 1, the dissolved oxygen concentration has a positive correlation with the (FeO + MnO) concentration in the ladle slag. Therefore, utilizing this relationship, the dissolved oxygen concentration required for decarburization is reduced to such an extent that the dissolved oxygen is not excessively present. It is necessary to adjust the (FeO + MnO) concentration in the slag by adding a slag reducing agent.

【0018】溶存酸素が0.04〜0.05%の範囲で
あれば、極低炭素鋼(C濃度0.001〜0.006
%)の溶製が可能である。スラグ中の(FeO+Mn
O)濃度を4%〜8%に管理することにより、溶鋼中の
溶存酸素をそのように適正なものにすることができる。
If the dissolved oxygen is in the range of 0.04 to 0.05%, ultra low carbon steel (C concentration 0.001 to 0.006)
%) Is possible. (FeO + Mn in slag
O) By controlling the concentration to 4% to 8%, the dissolved oxygen in the molten steel can be made appropriate as such.

【0019】スラグ還元剤は、金属AlまたはAl合金
を含有するものが好ましい。その後、真空脱ガス装置で
脱炭・脱酸処理を行い、溶鋼中の[C]濃度は0.00
1〜0.006%とする。このときの脱酸剤としては、
本発明の鋼板用途の極低炭素鋼では金属AlまたはAl
合金が用いられる。脱酸処理により、溶存酸素濃度は低
下するが、スラグ中の(FeO+MnO)濃度は、ほぼ
そのままの濃度、すなわち4%〜8%のままに止まって
いる。
The slag reducing agent preferably contains metal Al or an Al alloy. After that, decarburization and deoxidation are performed by a vacuum degasser, and the [C] concentration in the molten steel is 0.00.
1 to 0.006%. At this time, as a deoxidizing agent,
In the ultra-low carbon steel used for the steel sheet of the present invention, metal Al or Al
An alloy is used. Although the dissolved oxygen concentration is reduced by the deoxidation treatment, the (FeO + MnO) concentration in the slag remains almost unchanged, that is, 4% to 8%.

【0020】この状態で連続鋳造すると、スラグ中の
(FeO+MnO)が逐次溶鋼中のAlと反応してAl
2 3 介在物を生成し、鋳片の介在物性欠陥の原因とな
る。このため、スラグ中FeO、MnOと溶鋼中Alと
の反応を抑制する必要がある。
When continuous casting is performed in this state, (FeO + MnO) in the slag sequentially reacts with Al in the molten steel, and Al
It generates 2 O 3 inclusions and causes inclusion defect of the slab. For this reason, it is necessary to suppress the reaction between FeO and MnO in the slag and Al in the molten steel.

【0021】本発明では、脱酸処理の際に、取鍋スラグ
上にAl含有率が87〜95%で粒径0.1〜5mmの粉
状Al−Fe合金を添加することにより、効率よく還元
でき、スラグ中の(FeO+MnO)濃度を2%以下に
低減でき、溶鋼中の残留Alとの反応によるAl2 3
の生成を抑制することができる。
According to the present invention, a powdery Al-Fe alloy having an Al content of 87 to 95% and a particle size of 0.1 to 5 mm is added to the ladle slag at the time of the deoxidation treatment, thereby improving the efficiency. Can be reduced, the (FeO + MnO) concentration in the slag can be reduced to 2% or less, and Al 2 O 3 due to the reaction with residual Al in the molten steel can be reduced.
Can be suppressed.

【0022】本発明は、前記の従来技術(特開平6−2
56837号公報)のようにスラグ−メタル界面を攪拌
する特別な処理を真空脱ガス処理後に追加する必要がな
く、通常の脱酸処理工程と並行して適用が可能であり、
処理時間の延長、溶鋼温度の低下、生産コストの上昇等
の問題が発生しないという利点がある。
The present invention relates to the above prior art (Japanese Patent Laid-Open No. 6-2).
56837), there is no need to add a special treatment for stirring the slag-metal interface after the vacuum degassing treatment, and it can be applied in parallel with the ordinary deoxidation treatment step.
There is an advantage that problems such as an increase in processing time, a decrease in molten steel temperature, and an increase in production cost do not occur.

【0023】本発明の実施方法を、RH真空脱ガス装置
にて行う場合を例に以下に説明する。図2は、本発明方
法を実施するためのRH真空脱ガス装置の縦断面の概略
図である。
The method of carrying out the present invention will be described below by taking as an example a case where the method is carried out in an RH vacuum degassing apparatus. FIG. 2 is a schematic view of a longitudinal section of an RH vacuum degassing apparatus for carrying out the method of the present invention.

【0024】RH真空脱ガス装置による脱炭終了後、シ
ューター6から真空槽内の溶鋼に脱酸に必要なAlを添
加し、溶鋼を脱酸処理するが、これに加えて同時に、本
発明では粉状Al−Fe合金添加装置8より取鍋スラグ
上に、Al含有率が87〜95%で、粒径が0.1〜5
mmの粉状Al−Fe合金7を供給する。
After the decarburization by the RH vacuum degassing apparatus, Al necessary for deoxidation is added from the shooter 6 to the molten steel in the vacuum chamber, and the molten steel is deoxidized. The Al content is 87-95% and the particle size is 0.1-5 on the ladle slag from the powdery Al-Fe alloy adding device 8.
1 mm of powdery Al—Fe alloy 7 is supplied.

【0025】Al−Fe合金の粉体が溶融スラグ中に分
散し、溶融状態となり、合金中のAlがスラグ中のFe
OやMnOの還元を速やかに行い、FeO濃度とMnO
濃度の和を2%以下に効率よく低減することができる。
溶鋼脱酸処理時に生成した脱酸生成物(主にAl
2 3 )の合体・浮上を目的に所定時間の還流処理を行
う。この環流処理は通常5分〜10分行う。
The powder of the Al—Fe alloy is dispersed in the molten slag to be in a molten state, and Al in the alloy is changed to Fe in the slag.
O and MnO are reduced quickly, and the FeO concentration and MnO
The sum of the concentrations can be efficiently reduced to 2% or less.
Deoxidation products generated during molten steel deoxidation treatment (mainly Al
A reflux treatment is performed for a predetermined time for the purpose of uniting and floating of 2 O 3 ). This reflux treatment is usually performed for 5 to 10 minutes.

【0026】添加するAl−Fe合金中のAl含有率を
87〜95%に限定した理由は、添加合金の密度を取鍋
スラグの密度とほぼ同じにすることにより、Al−Fe
合金の粉体が溶融スラグ中に分散でき、さらに低融点で
あるため容易に液滴化し、スラグ中のFeOやMnOの
還元を速やかに進行させることができるからである。
The reason for limiting the Al content in the added Al-Fe alloy to 87 to 95% is that the density of the added alloy is made almost the same as the density of the ladle slag so that the Al-Fe
This is because the alloy powder can be dispersed in the molten slag, and since it has a low melting point, can easily be formed into droplets, and the reduction of FeO and MnO in the slag can be rapidly advanced.

【0027】なお、取鍋スラグの密度は約2.8g/cm
3 であり、Al含有率が87〜95%の粉状Al−Fe
合金の密度は2.6〜3.0g/cm3 である。上記Al
含有率の範囲を外れると、添加したAl−Fe合金中の
Al量に対するスラグ中FeO、MnOの還元に消費さ
れたAl量の割合(以下、有効Al率という)が著しく
低下する。
The density of the ladle slag is about 2.8 g / cm.
3 , powder Al-Fe having an Al content of 87 to 95%
The density of the alloy is 2.6~3.0g / cm 3. The above Al
When the content is out of the range, the ratio of the amount of Al consumed in the reduction of FeO and MnO in the slag to the amount of Al in the added Al-Fe alloy (hereinafter, referred to as effective Al ratio) is significantly reduced.

【0028】Al含有率が95%を超えた場合、添加し
たAl−Fe合金は取鍋スラグより密度が小さいためス
ラグ上に浮上し、空気により酸化され有効Al率は低下
する。Al含有率が87%未満では、添加したAl−F
e合金は密度が大きいために取鍋スラグ中を沈降し、溶
鋼に吸収され有効Al率は同様に低下する。
When the Al content exceeds 95%, the added Al-Fe alloy has a lower density than the ladle slag, so that it floats on the slag and is oxidized by air to lower the effective Al ratio. If the Al content is less than 87%, the added Al-F
The e-alloy sediments in the ladle slag due to its high density and is absorbed by the molten steel, and the effective Al ratio similarly decreases.

【0029】Al−Fe合金の粒径が0.1mm未満で
は、添加した合金粉が飛散し、粒径が5mmを超えると合
金−スラグ間の反応界面積の減少により反応速度が低下
し、ともに有効Al率が低下する。
If the particle size of the Al-Fe alloy is less than 0.1 mm, the added alloy powder is scattered, and if the particle size exceeds 5 mm, the reaction speed decreases due to a decrease in the reaction interface area between the alloy and the slag. The effective Al ratio decreases.

【0030】図3は、有効Al率と添加Al−Fe合金
のAl含有率との関係を、粒径をパラメ−タとしてまと
めたグラフである。図3に示すように、Al−Fe合金
のAl含有率とその粒径とが有効Al率に及ぼす影響は
顕著であり、有効Al率を0.85以上にするには、A
l含有率が87〜95%で、かつ粒径が0.1〜5mmで
あることが必要である。
FIG. 3 is a graph summarizing the relationship between the effective Al ratio and the Al content of the added Al-Fe alloy in terms of the particle diameter as a parameter. As shown in FIG. 3, the effect of the Al content and the particle size of the Al—Fe alloy on the effective Al rate is remarkable.
It is necessary that the l content is 87 to 95% and the particle size is 0.1 to 5 mm.

【0031】取鍋スラグ上にAl含有率が87〜95%
の粉状Al−Fe合金を添加するため、添加位置を移動
しながら粉状の合金を一定流量で供給することができる
装置を使用する。このような装置例として、連続鋳造設
備のパウダ−添加装置があげられる。また、効率的に添
加するために、供給装置を複数基設置することが望まし
い。
Al content on the ladle slag is 87-95%
In order to add the powdery Al-Fe alloy, a device capable of supplying the powdery alloy at a constant flow rate while moving the addition position is used. An example of such an apparatus is a powder adding apparatus of a continuous casting facility. In addition, it is desirable to provide a plurality of supply devices for efficient addition.

【0032】RH真空脱ガス処理後の取鍋スラグ表面層
の温度は溶鋼温度(約1600℃)に比べ低く、固体も
しくは半溶融状態になっている場合があるが、このよう
な場合には、Fe−Al合金添加前に低融点のフラック
スを添加し、スラグ表層部を溶融することで一層効果的
なスラグ還元を容易に行うことができる。添加するフラ
ックスの例としては、CaO−SiO2−CaF2 やC
aO−Al2 3 −CaF2 系フラックスが考えられ
る。
The temperature of the ladle slag surface layer after the RH vacuum degassing treatment is lower than the molten steel temperature (about 1600 ° C.) and may be in a solid or semi-molten state. By adding a low melting point flux before adding the Fe-Al alloy and melting the slag surface layer portion, more effective slag reduction can be easily performed. Examples of the flux to be added include CaO—SiO 2 —CaF 2 and C
aO-Al 2 O 3 -CaF 2 based flux is considered.

【0033】次に、RH脱酸処理後のスラグ中のFeO
濃度とMnOの濃度の和を2%以下に低減する理由につ
いて以下に述べる。図4に示すように、溶鋼中のT
[O] を20ppm 以下と安定して清浄な溶鋼を得るため
には、RH処理後の取鍋スラグ中の(FeO+MnO)
濃度を2%以下に低減することが必要である。
Next, FeO in the slag after the RH deoxidation treatment
The reason for reducing the sum of the concentration and the concentration of MnO to 2% or less will be described below. As shown in FIG. 4, T in molten steel
In order to obtain a stable and clean molten steel with [O] of 20 ppm or less, (FeO + MnO) in the ladle slag after the RH treatment is required.
It is necessary to reduce the concentration to less than 2%.

【0034】以上の本発明をまとめると、真空脱ガス装
置での脱酸処理と並行して、スラグ中のFeOおよびM
nOの還元が可能となり、攪拌等の処理工程を増やすこ
となく、清浄性に優れた極低炭素鋼を製造することが可
能となる。本発明では、攪拌を必要としないため、生成
したAl2 3 やスラグからの巻き込みに起因する介在
物の増加の問題もなくなる。
In summary of the present invention, FeO and M in the slag are concurrently deoxidized by the vacuum degassing apparatus.
The reduction of nO becomes possible, and it becomes possible to produce ultra-low carbon steel excellent in cleanliness without increasing the number of processing steps such as stirring. In the present invention, since stirring is not required, there is no problem of increase of inclusions due to entrainment from generated Al 2 O 3 and slag.

【0035】また、特開昭60−152611号公報で
開示されている方法のようにAl等の還元剤とともにC
aCO3 等の炭酸塩またはカ−ボンのガス発生物質を添
加し、発生ガスによりスラグを攪拌しながら還元剤を取
鍋スラグ中に分散混合する方法が考えられるが、ガス発
生物質中に含まれるカ−ボンにより溶鋼中 [C] が上昇
するため、 [C] 濃度の規制が20〜30ppm 以下と厳
しい極低炭素鋼対象の処理には使用できない等の問題が
あるのに対して、本発明ではこのような問題もない。
Also, as in the method disclosed in JP-A-60-152611, C and C are used together with a reducing agent such as Al.
A method of adding a gas generating substance such as aCO 3 or a carbonate or carbon and dispersing and mixing the reducing agent in the ladle slag while stirring the slag with the generated gas is considered, but it is included in the gas generating substance. [C] concentration in molten steel is increased by carbon, and there is a problem that the regulation of [C] concentration is not more than 20 to 30 ppm and cannot be used for processing of extremely low carbon steel. Then there is no such problem.

【0036】[0036]

【実施例】(本発明例)転炉にて溶製した炭素濃度0.
05%の未脱酸溶鋼250tを取鍋へ出鋼した。この
際、スラグストッパーの使用により流出スラグ量を溶鋼
1トン(以下、tと略記する)当たり約10kgに抑制
し、かつ、スラグ中の(FeO+MnO)濃度の目標を
6%として、出鋼流に対しスラグ還元剤(Al含有率4
0%、CaCO3 含有率60%)を1.5kg/溶鋼t
添加した。
[Example] (Example of the present invention)
250 tons of 05% undeoxidized molten steel was poured into a ladle. At this time, by using a slag stopper, the outflow slag amount is suppressed to about 10 kg per 1 ton of molten steel (hereinafter, abbreviated as t), and the target of the (FeO + MnO) concentration in the slag is set to 6%, so that the slag flow is changed to Slag reducing agent (Al content 4
0%, CaCO 3 content 60%)
Was added.

【0037】得られた溶鋼をRH真空脱ガス装置で真空
脱炭処理を行い、炭素濃度0.0025%まで脱炭し
た。この時点でスラグ中の (FeO+MnO)濃度は約
6%であった。
The obtained molten steel was subjected to vacuum decarburization treatment with an RH vacuum degassing apparatus, and decarbonized to a carbon concentration of 0.0025%. At this time, the (FeO + MnO) concentration in the slag was about 6%.

【0038】次に、真空槽内に設置した脱酸剤用シュ−
タ−から金属Alを投入して溶鋼の脱酸処理を行い、溶
鋼中のAl濃度を約0.03%とした。この金属Al投
入と同時に、粒径1〜3mm、Al含有率が90%の粉状
Al−Fe合金0.14Kg/tを、添加位置を移動で
きる添加装置2基を用いて、取鍋内スラグ上に添加し
た。
Next, a screen for a deoxidizing agent installed in a vacuum chamber
Metal Al was charged from the tar to deoxidize the molten steel, and the Al concentration in the molten steel was set to about 0.03%. Simultaneously with the addition of the metal Al, 0.14 kg / t of a powdery Al-Fe alloy having a particle size of 1 to 3 mm and an Al content of 90% was slag in a ladle using two addition devices capable of moving the addition position. Added above.

【0039】その後、RH還流処理を5分間行い、生成
したAl2 3 の浮上処理を行った。この時点で取鍋ス
ラグ中のFeOとMnOの濃度の和は1.6%まで低減
した。得られた溶鋼は後述する比較例と同条件の連続鋳
造を行い、得られた鋳片の定常部分よりサンプルを採取
し、30μm 以上の非金属介在物をミクロ検鏡法により
カウントした。
Thereafter, RH reflux treatment was performed for 5 minutes, and the generated Al 2 O 3 was floated. At this point, the sum of the concentrations of FeO and MnO in the ladle slag was reduced to 1.6%. The obtained molten steel was subjected to continuous casting under the same conditions as in a comparative example described later, and a sample was collected from a steady portion of the obtained slab, and nonmetallic inclusions of 30 μm or more were counted by a microscopic method.

【0040】(比較例1)脱酸処理後時の粉状Al−F
e合金の添加は行わず、その他は本発明例と同一の条件
で溶鋼の脱炭処理、脱酸処理、および環流処理を行っ
た。得られた溶鋼は本発明例と同条件の連続鋳造を行
い、得られた鋳片の定常部分よりサンプルを採取し、3
0μm 以上の非金属介在物をミクロ検鏡法によりカウン
トした。
Comparative Example 1 Powdery Al-F after Deoxidation Treatment
The dealloying treatment, deoxidizing treatment, and reflux treatment of the molten steel were performed under the same conditions as in the present invention, except that no e-alloy was added. The obtained molten steel was subjected to continuous casting under the same conditions as those of the present invention, and a sample was collected from a steady portion of the obtained slab.
Non-metallic inclusions greater than 0 μm were counted by microscopy.

【0041】(比較例2)真空脱炭処理後の、スラグ中
の(FeO+MnO)濃度が約9%である以外は、本発
明例と同一の条件で溶鋼の脱炭処理、脱酸処理、および
環流処理をを行った。得られた溶鋼は本発明例と同条件
の連続鋳造を行い、得られた鋳片の定常部分よりサンプ
ルを採取し、30μm 以上の非金属介在物をミクロ検鏡
法によりカウントした。
(Comparative Example 2) Except that the (FeO + MnO) concentration in the slag after the vacuum decarburization treatment was about 9%, the decarburization treatment, deoxidation treatment, and A reflux treatment was performed. The obtained molten steel was subjected to continuous casting under the same conditions as those of the present invention, and a sample was taken from a steady portion of the obtained slab, and nonmetallic inclusions of 30 μm or more were counted by a microscopic method.

【0042】(比較例3)転炉にて溶製した炭素濃度
0.05%の未脱酸溶鋼250tを取鍋へ出鋼した。こ
の際、スラグストッパーの使用により流出スラグ量を溶
鋼1t当たり約10kg/tに抑制し、かつ、スラグ中
の(FeO+MnO)濃度の目標を2%として、出鋼流
に対しスラグ還元剤(Al含有率40%、CaCO3
有率60%)を2kg/t添加した。
(Comparative Example 3) 250 tons of undeoxidized molten steel having a carbon concentration of 0.05% produced in a converter was tapped into a ladle. At this time, by using a slag stopper, the amount of outflow slag is suppressed to about 10 kg / t per 1 t of molten steel, and the target of (FeO + MnO) concentration in slag is set to 2%, and the slag reducing agent (Al-containing Rate of 40% and CaCO 3 content of 60%) were added at 2 kg / t.

【0043】得られた溶鋼をRH真空脱ガス装置で真空
脱炭処理を行った。溶鋼中の溶存酸素が不足するため、
真空槽内に設置した浸漬羽口より酸素を100g/t・
分の速度で3分間吹き込み、炭素濃度0.0025%ま
で脱炭した。
The obtained molten steel was subjected to a vacuum decarburization treatment using an RH vacuum degassing apparatus. Due to lack of dissolved oxygen in the molten steel,
100 g / t-oxygen from the immersion tuyere installed in the vacuum chamber
The gas was blown at a speed of 3 minutes for 3 minutes to decarbonize to a carbon concentration of 0.0025%.

【0044】次に、真空槽内に設置した脱酸剤用シュ−
タ−から金属Alを投入して溶鋼の脱酸処理を行い、溶
鋼中のAl濃度を約0.03%とした。この金属Al投
入と同時に、粒径1〜3mm、Al含有率90%の粉状A
l−Fe合金0.14Kg/tを、添加位置を移動でき
る添加装置2基を用いて、取鍋内スラグ上に添加した。
Next, a screen for a deoxidizing agent installed in a vacuum chamber
Metal Al was charged from the tar to deoxidize the molten steel, and the Al concentration in the molten steel was set to about 0.03%. At the same time as the metal Al is charged, powder A having a particle size of 1 to 3 mm and an Al content of 90%
0.14 kg / t of the l-Fe alloy was added to the slag in the ladle using two addition devices capable of moving the addition position.

【0045】その後、RH還流処理を5分間行い、生成
したAl2 3 の浮上処理を行った。得られた溶鋼は本
発明例と同条件の連続鋳造を行い、得られた鋳片の定常
部分よりサンプルを採取し、30μm 以上の介在物をミ
クロ検鏡法によりカウントした。
Thereafter, an RH reflux treatment was performed for 5 minutes, and a floating treatment of the generated Al 2 O 3 was performed. The obtained molten steel was subjected to continuous casting under the same conditions as in the present invention, and a sample was collected from a steady portion of the obtained slab, and inclusions of 30 μm or more were counted by a microscopic method.

【0046】本発明例および比較例1、2、3ともに、
各条件でそれぞれ10チャージずつ処理を行った。図5
に、本発明例と比較例1、2、3について転炉出鋼時か
らRH脱ガス処理終了までの取鍋スラグ中(FeO+M
nO)濃度の推移を示す。本発明例では取鍋スラグ中の
(FeO+MnO)濃度は転炉出鋼時のスラグ還元処理
により約6%まで低下した後、RH脱炭処理終了までこ
の値を保つ。その後脱酸処理時の粉状Al−Fe合金の
添加により、RH処理後には、取鍋スラグ中の(FeO
+MnO)濃度は1.6%まで低減できた。
In each of the present invention and Comparative Examples 1, 2, and 3,
Each charge was processed for 10 charges. FIG.
Next, in the ladle slag from the time of tapping the converter to the end of the RH degassing process (FeO + M) for the inventive examples and Comparative Examples 1, 2, and 3
nO) shows the transition of the concentration. In the example of the present invention, the (FeO + MnO) concentration in the ladle slag is reduced to about 6% by the slag reduction treatment at the time of tapping from the converter, and is maintained at this value until the end of the RH decarburization treatment. Thereafter, by adding a powdery Al-Fe alloy at the time of deoxidation treatment, after the RH treatment, (FeO
+ MnO) concentration could be reduced to 1.6%.

【0047】比較例1の場合は、RH脱炭処理終了まで
は本発明例と同じであるが、RH処理後の取鍋スラグ中
の(FeO+MnO)濃度は6%と一定であった。比較
例2の場合は、取鍋スラグ中の(FeO+MnO)濃度
は転炉出鋼時のスラグ還元処理により約9%まで低下し
た後、RH脱炭処理終了までこの値を保つ。その後脱酸
処理時の粉状Al−Fe合金の添加により、RH処理後
には、取鍋スラグ中の(FeO+MnO)濃度は低下す
るが、4.5%までしか低減しなかった。
The case of Comparative Example 1 was the same as that of the present invention until the end of the RH decarburization treatment, but the (FeO + MnO) concentration in the ladle slag after the RH treatment was constant at 6%. In the case of Comparative Example 2, the (FeO + MnO) concentration in the ladle slag is reduced to about 9% by the slag reduction treatment at the time of converter tapping, and is maintained at this value until the end of the RH decarburization treatment. After that, the concentration of (FeO + MnO) in the ladle slag was reduced after the RH treatment by the addition of the powdery Al-Fe alloy at the time of the deoxidation treatment, but was reduced only to 4.5%.

【0048】比較例3の場合は、取鍋スラグ中の(Fe
O+MnO)濃度は転炉出鋼時のスラグ還元により約2
%まで低下するが、RHでの脱炭処理時の酸素吹き込み
によりスラグの酸化が進行して、脱炭処理終了時には約
8%まで上昇した。その後脱酸処理時の粉状Al−Fe
合金の添加により、RH環流処理後には、取鍋スラグ中
の(FeO+MnO)濃度は低下するが、3.6%まで
しか低減しなかった。
In the case of Comparative Example 3, (Fe) in the ladle slag
O + MnO) concentration is about 2 due to slag reduction during tapping of converter.
%, But the oxidation of slag progressed due to oxygen blowing during the decarburization treatment with RH, and increased to about 8% at the end of the decarburization treatment. Then, powdery Al-Fe at the time of deoxidation treatment
The addition of the alloy reduced the (FeO + MnO) concentration in the ladle slag after the RH reflux treatment, but only to 3.6%.

【0049】図6にタンディッシュ内溶鋼中のT [O]
(全酸素量)を本発明例と比較例1、2、3とを比較し
て示す。図6に示すように、本発明例におけるT [O]
の平均値は15ppm と比較例の35〜45ppm に比べ、
十分に低かった。
FIG. 6 shows T [O] in molten steel in a tundish.
(Total oxygen amount) is shown by comparing the present invention example with Comparative Examples 1, 2, and 3. As shown in FIG. 6, T [O] in the present invention example
Average value of 15 ppm, compared with 35 to 45 ppm of the comparative example,
It was low enough.

【0050】図7に連続鋳造後の鋳片の介在物の状況を
示す。ここで、鋳片欠陥指数とは比較例1のミクロ検鏡
法によりカウントした鋳片の介在物個数を1.0として
指数化して表示したものである。本発明例における鋳片
欠陥指数は約0.2と、清浄性は最も良好であった。
FIG. 7 shows the state of inclusions in the slab after continuous casting. Here, the slab defect index is expressed as an index with the number of inclusions of the slab counted by the microscopic method of Comparative Example 1 as 1.0. The slab defect index in the present invention example was about 0.2, indicating that the cleanliness was the best.

【0051】[0051]

【発明の効果】本発明方法によれば、真空脱ガス装置を
使用した溶鋼の脱炭処理および脱酸処理操作において、
脱炭に必要な溶存酸素を適正に確保すると同時にAl2
3 系介在物の新たな生成を効率よく抑制でき、清浄度
に優れた極低炭素鋼の溶製をすることができる。
According to the method of the present invention, in the decarburizing and deoxidizing operations of molten steel using a vacuum degassing apparatus,
At the same time properly to ensure a dissolved oxygen necessary for decarburization Al 2
New generation of O 3 -based inclusions can be efficiently suppressed, and extremely low carbon steel with excellent cleanliness can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱炭処理前の取鍋スラグ中の(FeO+Mn
O)濃度と鋼中酸素濃度との関係を示すグラフである。
FIG. 1: (FeO + Mn) in ladle slag before decarburization treatment
3 is a graph showing the relationship between O) concentration and oxygen concentration in steel.

【図2】本発明例としてのRH真空脱ガス装置の概略図
である。
FIG. 2 is a schematic view of an RH vacuum degassing apparatus as an example of the present invention.

【図3】Al−Fe合金のAl含有率・粒径の有効Al
率に及ぼす影響を示すグラフである。
FIG. 3 Effective Al of Al content and particle size of Al—Fe alloy
It is a graph which shows the influence which affects a rate.

【図4】RH処理後の取鍋スラグ中(FeO+MnO)
濃度とタンディッシュ内溶鋼中のT[ O] (全酸素量)
との関係を示すグラフである。
FIG. 4 Ladle slag after RH treatment (FeO + MnO)
Concentration and T [O] (total oxygen content) in molten steel in a tundish
6 is a graph showing a relationship with the graph.

【図5】本発明方法と従来方法とを、転炉出鋼前からR
H処理後にかけての取鍋スラグ中(FeO+MnO)濃
度推移で比較したグラフである。
FIG. 5 shows the method of the present invention and the conventional method,
It is the graph which compared with the transition of the (FeO + MnO) density | concentration in the ladle slag after H processing.

【図6】本発明方法と従来方法とを、タンディッシュ内
溶鋼中のT[ O] (全酸素量)で比較したグラフであ
る。
FIG. 6 is a graph comparing the method of the present invention and the conventional method with T [O] (total oxygen content) in molten steel in a tundish.

【図7】本発明方法と従来方法とを、鋳片欠陥指数で比
較したグラフである。
FIG. 7 is a graph comparing the method of the present invention and the conventional method with a slab defect index.

【符号の説明】[Explanation of symbols]

1:溶鋼 2:取鍋 3:スラグ 4a:上昇管 4b:下降管 5:真空槽 6:シューター 7:粉状Al−Fe合金 8:粉状Al−Fe合金添加装置 1: molten steel 2: ladle 3: slag 4a: riser 4b: descender 5: vacuum tank 6: shooter 7: powdery Al-Fe alloy 8: powdery Al-Fe alloy addition device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼の精錬炉で低炭素未脱酸鋼を溶製し、
取鍋に未脱酸状態で出鋼を行い、還元剤を添加してスラ
グ中FeO濃度とMnO濃度の和を4〜8%とし、引続
き真空脱ガス装置にて、脱炭処理を行いC濃度を0.0
01〜0.006%とした後、真空槽内に脱酸剤を添加
し脱酸処理を行う際に、取鍋スラグ上にAl含有率が8
7〜95%で、粒径が0.1〜5mmの粉状Al−Fe合
金を添加し、取鍋スラグ中のFeO濃度とMnO濃度の
和を2%以下に低減することを特徴とする清浄度に優れ
た極低炭素鋼の製造方法。
Claims 1. A low-carbon undeoxidized steel is melted in a steel refining furnace.
Tapping the ladle in a non-deoxidized state, adding a reducing agent to make the sum of the FeO concentration and the MnO concentration in the slag 4 to 8%, and then performing a decarburization treatment with a vacuum degassing device to perform C concentration. 0.0
After setting the content to 0.01 to 0.006%, when a deoxidizing agent is added in the vacuum chamber to perform a deoxidizing treatment, the Al content on the ladle slag is 8%.
A cleaner characterized by adding a powdery Al-Fe alloy having a particle size of 0.1 to 5 mm at 7 to 95% to reduce the sum of FeO concentration and MnO concentration in a ladle slag to 2% or less. Production method of ultra low carbon steel with excellent degree.
JP33201097A 1997-12-02 1997-12-02 Production of extra-low carbon steel excellent in cleanliness Withdrawn JPH11158537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33201097A JPH11158537A (en) 1997-12-02 1997-12-02 Production of extra-low carbon steel excellent in cleanliness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33201097A JPH11158537A (en) 1997-12-02 1997-12-02 Production of extra-low carbon steel excellent in cleanliness

Publications (1)

Publication Number Publication Date
JPH11158537A true JPH11158537A (en) 1999-06-15

Family

ID=18250140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33201097A Withdrawn JPH11158537A (en) 1997-12-02 1997-12-02 Production of extra-low carbon steel excellent in cleanliness

Country Status (1)

Country Link
JP (1) JPH11158537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015501382A (en) * 2011-10-25 2015-01-15 宝山鋼鉄股▲分▼有限公司 Smelting method of high aluminum low silicon ultra pure ferritic stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015501382A (en) * 2011-10-25 2015-01-15 宝山鋼鉄股▲分▼有限公司 Smelting method of high aluminum low silicon ultra pure ferritic stainless steel

Similar Documents

Publication Publication Date Title
RU2433189C2 (en) Method for obtaining steel for steel pipes with excellent resistance in acid medium
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP6202776B2 (en) Manufacturing method of high cleanliness steel
JP2008063647A (en) Method for desulfurizing molten steel
JP2000129335A (en) Production of extra-low sulfur steel excellent in cleanliness
JP2015042777A (en) Method for smelting high nitrogen steel
JP3903580B2 (en) Method of melting high cleanliness steel
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP2008169407A (en) Method for desulfurizing molten steel
JP2014148737A (en) Method for producing extra-low-sulfur low-nitrogen steel
JP4360270B2 (en) Method for refining molten steel
JP2018100427A (en) Method for producing low sulfur steel
JPH11158537A (en) Production of extra-low carbon steel excellent in cleanliness
JP4534734B2 (en) Melting method of low carbon high manganese steel
JPH11279631A (en) Method for refining molten stainless steel
JP7468567B2 (en) Method for denitrification of molten steel
JPH06306442A (en) Production of extra low sulfur steel
JP4352898B2 (en) Method of melting high cleanliness steel
JPH10330829A (en) Method for melting high cleanliness extra-low carbon steel
JP2000239729A (en) Production of extra-low carbon steel excellent in cleanliness
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JP3277763B2 (en) Refining method of ultra clean low carbon steel
JP2003155517A (en) Method for producing low carbon and high manganese steel
JP3327062B2 (en) Melting method of ultra-low carbon / ultra low sulfur steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301