JPH02179813A - Method for refining molten metal into high purity and high cleanliness - Google Patents
Method for refining molten metal into high purity and high cleanlinessInfo
- Publication number
- JPH02179813A JPH02179813A JP33186088A JP33186088A JPH02179813A JP H02179813 A JPH02179813 A JP H02179813A JP 33186088 A JP33186088 A JP 33186088A JP 33186088 A JP33186088 A JP 33186088A JP H02179813 A JPH02179813 A JP H02179813A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- refining
- flux
- metal
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 169
- 239000002184 metal Substances 0.000 title claims abstract description 169
- 238000007670 refining Methods 0.000 title claims abstract description 129
- 238000000034 method Methods 0.000 title claims abstract description 86
- 230000003749 cleanliness Effects 0.000 title claims description 11
- 230000004907 flux Effects 0.000 claims abstract description 119
- 238000003756 stirring Methods 0.000 claims abstract description 41
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 230000006698 induction Effects 0.000 abstract description 16
- 238000009849 vacuum degassing Methods 0.000 abstract description 10
- 239000012298 atmosphere Substances 0.000 abstract description 9
- 230000005674 electromagnetic induction Effects 0.000 abstract description 7
- 229910001021 Ferroalloy Inorganic materials 0.000 abstract description 4
- 239000003795 chemical substances by application Substances 0.000 abstract description 3
- 230000001174 ascending effect Effects 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 33
- 239000010959 steel Substances 0.000 description 33
- 239000002893 slag Substances 0.000 description 21
- 238000002844 melting Methods 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 18
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 10
- 229910052786 argon Inorganic materials 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000007664 blowing Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009847 ladle furnace Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
(産業上の利用分野)
本発明は、溶融金属の炉外精錬法に関するもので、特に
スラグ−メタル反応によりメタルからスラグ側に8行す
る不純物元素(例えば鋼の場合では硫黄など)の除去、
ならびに溶融金属より比重の小さい非金属介在物(以下
、介在物と称する)の除去、とりわけストークスの法則
では浮上分離の困難な微細な介在物、例えば50μm以
下の介在物を除去する精錬方法に関するものである。
(従来の技術)
炉外精錬法による不純物あるいは介在物の除去法につい
ては、従来から多種多様の方法が提案あるいは実施され
ている。
これらを概括的に整理するとおよそ次の通りである。
(a)簡易精錬法
最もシンプルな方法は、主として介在物の除去を目的と
した高温出湯−長時間保持による自然分離法(ストーク
スの法則の応用)である。この方法は、フラックス精錬
効果がないため、(S)などの除去が全くできないほか
、ストークスの法則で明らかなように100μm程度以
上の大型介在物の除去しか期待できず、また生産性も低
いため、この方法のみで金属の精錬が行われることは少
ない。
このため、改善の一つとして、ガス攪拌法と霊囲気コン
トロール可能な有蓋小室内で合金、フラックスの添加を
行うことの組合せによる簡易精錬法が出現した。
しかしこの方法は、簡便かつある程度の生産性向上に効
果があったものの、高純度・高清浄度の金属精錬法とし
ては目的を達し得ないため、その利用範囲は限られる。
(b)真空脱ガス法
この方法は、そもそも溶融金属中の(H)。
(N)、(C)などの有害ガス成分の除去法として発達
したものであるが、その最も代表的な脱ガス法であるR
H法やDH法では、(C)+ (0)=CO反応による
(0)の除去の他、強い攪拌効果による介在物の凝集・
分離効果もかなり大とく、清浄化精錬法としても役割を
果たしている。
また一部では、真空槽内にフラックスを添加して、(S
)の除去を行う試みも行われている。
しかしこれらの方法では、要求レベルの高い高純度・高
清浄度の金属精錬には満足すべき効果を挙ケるこができ
ず、技術改善が望まれている。
(c)LF法(Ladle Furnace法)取鍋の
浴面上を不活性状態にコントロールしつつ、取鍋の底ま
たは上部から挿入したランスからアルゴンガスを吹き込
みながら精錬用フラックスを添加し、サブマージド・ア
ーク加熱法によりフラックスを溶解させながら、長時間
をかけて浴面でのスラグ−メタル反応の促進を図り、(
S)ならびに介在物の除去を行おうとするもので、鋼の
精錬においては最も純度ならびに清浄度の高いものを得
る方法の一つとして利用されている。
しかしこの方法は、精錬に要する時間が著しく長く、生
産性が悪く、生産コストも高いため、その利用範囲は特
殊な範囲に限定されているのが現状である。
(d)パウダーインジェクション
精錬用フラックスをインジェクション用のランスでキャ
リアーガスとともに溶融金属中に吹き込み、(S)なら
びに介在物の除去を行おうとするもので、鋼の精錬にか
なり広く実用されている。
この方法では、吹き込まれた固体のフラックスが溶融し
ながら、メタルあるいはメタル中に存在する介在物と反
応しつつ浮上する工程と、浴面に浮いたフラックスが吹
き込まれたガスにより揺動する浴面でメタルと接触・反
応する工程とに分けられる。この方法では、−度浮上し
たフラックスは再び浴中に戻ることができず、反応工程
で最も重要な位置を占める浮上工程がフラックスの溶融
過程であるため、反応効率をできるだけ低下させている
ことになる。
またこの方法では、使用するフラックスは必ず粉体であ
ることが条件となり、輸送経路あるいは吹き込み口での
閉塞を防止するために、粒度管理、コスト増、設備の複
雑化などの問題もある。
さらに、粉体のキャリアーとしてもガスが必要であり、
吹き込み口などでの閉塞を防止するための最小ガス量が
規制され、攪拌に必要な量以上のガスを供給しなければ
ならないこともあって、気泡膨張による激しいメタル飛
沫の発生も大きな問題の一つである。
(e)回転磁界利用による攪拌精錬性
回転磁界を利用して溶融金属に水平方向の回転攪拌力を
与え、フラックスを添加してスラグ−メタル反応を起こ
させ、(S)の除去や介在物の分離除去を図ろうとする
試みもある。この方法では、回転開始の初期を除いてス
ラグはメタルの回転に曳きすられて相対速度差のない状
態で回転することに止どまるため、スラグ−メタル界面
は相対的に静止の状態に近く、その反応の進行は極めて
遅い。
これを改善するために邪魔板を挿入して乱流を起こし、
スラグ−メタルの混合・接触を良くしようとする試みも
ある(特開昭63−45316号公報)が、耐火物の損
耗が大きいこと、金属の回転による慣性力が大きいこと
による設備機構の困難性から実用性に欠けている。
(f)遠心力を利用した介在物の除去法溶融金属に介在
物吸収材を添加し、その収容容器自身を高速回転するこ
とにより発生する遠心力によって、溶融金属と比重差の
ある介在物を分離除去しようとするものであるが、回転
磁界を用いる場合とほぼ同じことになるためスラグ精錬
が期待できず、(S)などの除去が全くできないこと、
設備的に犬掻りとなること、その割りには介在物分離除
去効率が比較的小さいことなどの理由により、いわゆる
遠心鋳造法として円管の製造方法の一部として利用され
るに止どまっている。
(g)電磁話導溶解法
この方法は、小量規模の鋼またはその他の金属の溶解、
特に高級品質の金属の溶解には簡便であるため広く採用
されている。この方法はメタルの溶解を主目的とするも
ので、目的によってはガス成分の除去を行うため、真空
処理を兼ねて行われることもある。これがいわゆる真空
溶解法である。
誘導溶解法は電機利用効率を高めるため、溶解すべき金
属と8導コイル間の距離を極力近接、すなわち耐火物の
厚みを薄くするため、誘導溶解炉でフラックスを使用す
ることは禁物であフた。また炉容の大きさが大きくなる
ほど浸透深さの点から周波数を小さくする必要があるが
、周波数の低下とともに湯面の流動速度や揺動が大きく
なり、酸化などの反応が進むので、いかに静かな状態で
金属を溶解するかにポイントが置かれている。
電磁話導溶解法において、フラックス精錬を可能/とす
る方法として、例えば特開昭58−87234号公報が
ある。この方法は、第4図に示すように、誘導攪拌流の
流路を変更して溶融フラックス14と真空誘導溶解炉3
の炉壁との接触を避けながら、溶融フラックス14と溶
融金属1との接触・混合を促進させることにより溶融金
属のスラグ精錬を行う方法である。なお5は攪拌・加熱
用誘導コイルである。
しかしながらこの方法では、第4図に示したように溶融
フラックス14と溶融金属1との接触は溶融金属1の表
面層のみに限定されるだけなので、フラックスと溶融金
属との反応界面積は小さく、不純物元素、特にストーク
スの法則では浮上分離の困難な微細な介在物の除去は期
待できない。
なお前記特開昭58−87234号公報には、溶融金属
の表面を球面となし、容器壁とフラックスが接触した状
態で溶融金属とフラックスを反応させる例が第5図のよ
うに示されているが、この場合、フラックスが湯面上か
つ容器壁面部に常時滞留するため、フラックスによる容
器壁の損傷が大きく、またフラックスと溶融金属との反
応界面積も小さいので、フラックス精錬法として不適当
であることが述べられている。
(発明が解決しようとする課題)
以上に述べたように、炉外精錬法による不純物あるいは
介在物の除去方法については、多種多様の方法が提案あ
るいは実施されているが、それぞれ一長一短があり、精
錬効果、工業的生産性または経済性の点から決定的な方
法がなく、精錬技術上多くの改善、開発が望まれている
。
本発明の目的は、これらの問題点を解決して、高純度・
高清浄度の金属を得る精錬方法を提供する。
(課題を解決するための手段)
上記課題を解決するための本発明は、
(a)精錬用容器の外周に配置した固定磁場発生装置に
より、精錬用容器内に収容した溶融金属にピンチ力を与
えて上昇流を発生させるとともに溶融金属の浴面を球面
となし、前記精錬用容器器壁と溶融金属との間に少なく
とも瞬間的に0.5mm以上のギャップが繰返し生じる
状況を形成させ得る程度の磁界強さを与えながら、溶融
金属の上方及び/又は内部より精錬フラックスを添加し
て、溶融金属中への精錬フラックスの微細混合を図りつ
つ攪拌精錬することを特徴とする溶融金属の高純度・高
清浄度化精錬方法
(b)真空精錬用容器の外周に配置した固定磁場発生装
置により、真空精錬用容器内に収容した減圧下の溶融金
属にピンチ力を与えて上昇流を発生させるとともに前記
溶融金属の浴面を球面となし、真空精錬用容器器壁と溶
融金属との間に少なくとも瞬間的に0.5m+n以上の
ギャップが繰返し生しる状況を形成させ得る程度の1i
ti界強さを与えながら、溶融金属の上方及び/又は内
部より精錬フラックスを添加して、溶融金属中への精錬
フラックスの微細混合を図りつつ攪拌精錬することを特
徴とする溶融金属の高純度・高清浄度化精錬方法(c)
精錬用容器の外周に配置した固定6u場発生装置により
、精錬用容器内に収容した溶融金属にピンチ力を与えて
上昇流を発生させるとともに溶融金属の浴面を球面とな
し、前記精錬用容器器壁と溶融金属との間に少なくとも
瞬間的に0.5mn+以上のギャップが繰返し生じる状
況を形成させ得る程度の磁界強さを与えながら、溶融金
属の上方及び/又は内部より精錬フラックスを添加して
、溶融金属中への精錬フラックスの微細混合を図りつつ
攪拌精錬するとともに溶融金属を加熱することを特徴と
する溶融金属の高純度・高清浄度化精錬方法
(d)真空精錬用容器の外周に配置した固定磁場発生装
置により、真空精錬用容器内に収容した減圧下の溶融金
属にピンチ力を与えて上昇流を発生させるとともに前記
溶融金属の浴面を球面となし、真空精錬用容器器壁と溶
融金属との間に少なくとも瞬間的に0.5mm以上のギ
ャップが繰返し生じる状況を形成させ得る程度の磁界強
さを与えながら、溶融金属の上方及び/又は内部より精
錬フラックスを添加して、溶融金属中への精錬フラック
スの微細混合を図りつつ攪拌精錬することともに溶融金
属を加熱することを特徴とする溶融金属の高純度・高清
浄度化精錬方法
である。
すなわち溶融金属を収容した精錬用容器を強力な磁場の
中に置き、その溶融金属にピンチ力を与えて上昇流速を
発生させ、溶融金属を規則的な流れにより強力に攪拌し
、またこのとき上側に凸な球面を形成させ、かつ、溶融
金属と容器器壁との間に0.5mm以上の僅かなギャッ
プを生成・消滅を繰返し生じる程度の磁界強さを与え、
浴面上方より及び/または溶融金属中に精錬フラックス
を添加する。
さらに本発明は、精錬用容器が真空精錬用容器であって
、その容器内の溶融金属を減圧下で上記の精錬を行うこ
と、さらに溶融金属を不活性雰囲気下あるいは減圧下で
上記の精錬を行いつつ、溶融金属を加熱する。
本発明は、溶融金属の攪拌・加熱の手段として電FiB
誘導法を基本的に利用する点では、従来の電磁誘導攪拌
法と軌を−にするものである。
しかしながら本発明の方法は、従来の屈辱法では問題で
あった溶融金属の浴面の動揺や攪拌の強さを逆用し、従
来の単純な加熱溶解ではむしろ有害ですらある周波数の
低下と印加電力の増大を図ることによって、浴面の形状
、溶融金属−容器器壁間のギャップの形成、攪拌力の強
化を行い、フラックスを効果的に溶融金属あるいは介在
物と作用させ、(S)などの効果的な除去とともに、従
来法では除去困難な微小な介在物、例えば50μm以下
の介在物までをフラックスの液滴に付着させて溶融金属
から分離除去する方法である。
(作 用)
以下図面を参照しながら、本発明を作用とともに更に具
体的に説明する。
第1図は本発明の実施態様例を模式的に示した側断面図
である。本発明の実施に先立ち第1図において、まず精
錬用容器3に溶融金属1を収容し、密閉用蓋部6で密閉
系を構成した後排気装置7で排気し、雰囲気を真空にし
、攪拌・加熱用誘導コイル5に電力を印加し、溶融金属
1を真空脱ガス精錬する。次いで溶融金属1の上方の合
金及びフラックス添加装置9より脱酸剤や合金鉄を添加
し、溶融金属1の脱酸処理ならびに成分の調整を行う。
然る後排気装置7を停止して、アルゴン供給管11から
アルゴンガスを溶融金属1の浴面上部に供給し、雰囲気
をアルゴン雰囲気とする。
このような状態として後、本発明のフラックス精錬を行
う。攪拌・加熱用誘導コイル5の印加電力を調整して、
溶融金属1にピンチ力を与えて上昇流を発生させるとと
もに、溶融金属1の浴面を球面となし、精錬用容器3の
器壁と溶融金属1との間に少なくとも瞬間的に0.5m
m以上のギャップが、生成・消滅を繰返し生じる状況を
形成させ得る程度の磁界強さを与えながら、合金及びフ
ラックス添加装置9より精錬フラックスを添加し、溶融
金属1中への精錬フラックスを流滴2の如く微細混合を
図りつつ攪拌精錬する。
本発明の他の実施態様例を次に説明する。本発明の実施
に先立ち第1図において、まず精錬用容器3に溶融金属
1を収容し、密閉用蓋部6で密閉系を構成した後排気装
置7で排気し、雰囲気を真空にし、攪拌・加熱用誘導コ
イル5に電力を印加し、溶融金属1を真空脱ガス精錬す
る。次いで溶融金属1の上方の合金及びフラックス添加
装置9より脱酸剤や合金鉄を添加し、溶融金属1の脱酸
処理ならびに成分の調整を行う。
然る後減圧下のまま本発明のフラックス精錬を行う。攪
拌・加熱用誘導コイル5の印加電力を調整して、溶融金
属1にピンチ力を与えて上昇流を発生させるとともに、
溶融金属1の浴面を球面となし、精錬用容器3の器壁と
溶融金属1との間に少なくとも瞬間的に0.5mm以上
のギャップが、生成・消滅を繰返して生じる状況を形成
させ得る程度の磁界強さ、例えば2 、000gaus
sを与えながら、合金及びフラックス添加装置9より精
錬フラックスを添加し、溶融金属1中への精錬フラック
スを流滴2の如く微細混合を図りつつ攪拌精錬する。
また上記の攪拌精錬を行いつつ、同時に溶融金属1の温
度を誘導加熱により加熱することができ、それによって
間接的に精錬フラックスの溶融を促進することができる
。
なお第1図において、精錬用容器3は直接に容器のフラ
ンジ部を介して密閉用蓋部6と密着する構造であるが、
同図において点線で示したように、密閉用タンク13と
密閉用蓋部6を密着可能な構造とし、密閉用タンク13
内に精錬用容器3を置いてもよい。
また本発明の方法に先立つ溶融金属の真空脱ガスは、別
の真空脱ガス装置で行い、次いで本発明の方法によって
高清浄度を得ることも可能である。
以下に本発明において、精錬用容器の器壁と溶融金属間
のギャップ8の生成およびギャップ8が添加した精錬用
フラックスにおよぼす作用について、さらに詳述する。
本発明者らは、精錬用容器3の外周に配置した固定磁場
発生装置(攪拌・加熱誘導コイル5)を用いて、印加電
力を種々変動させる実験を行った。精錬用客器3内に収
容した溶融金属1にピンチ力を与えて上昇流を発生させ
て溶融金属の浴面を球面となし、精錬用容器3の器壁と
溶融金属1との間に少なくとも瞬間的にはギャップが生
じる状況を形成させ得る程度の磁界強さの例を第3図に
示す。
第3図は溶鋼を対象として、本発明者らが行った実験結
果を示している。第3図に示したように、溶鋼に印加す
る磁界強さ(磁束密度gauss)を増しても、ある磁
束密度に至るまでは静止浴面であるが、さらに磁束密度
を増すと溶鋼表面は凸状の球面に盛り上がる(A)。そ
してさらに磁束密度を増していくと、溶鋼表面は球面の
盛り上がり高さが増加するとともに、溶鋼と容器壁との
間に、少なくとも瞬間的にギャップの生成・消滅(B)
が繰返し観察される。そのギャップは磁束密度をそれ以
上増加してもあまり変わらない。
本発明者らの実験観察によれば、溶鋼の場合、溶鋼と容
器壁とのギャップが生じ始める磁界強さは、1 、20
0gaussであり、そのときのギャップは平均的に水
平方向に約0.5mmである。そしてさらに磁界を増加
してもギャップはあまり大きくならず、0.5〜1.0
mm程度である。
次に本発明者らは、溶鋼に印加する磁界の強さを変えた
ときの浴面上のフラックスの挙動について実験を行った
。浴面上より添加したフラックスの粒径は5〜35ml
11,36〜50molの2種類とした。その結果いず
れの粒径の場合も、静止浴面の場合にはフラックスは溶
融状態で浴面を全面的に覆っており、浴面が単に凸状の
球面に盛り上がった場合には、フラックスは容器壁側に
押しやられるだけであった。その場合粒径が5〜30m
rQのフラックスは、添加後すみやかに溶解して溶融状
態で容器壁側に押しやられるが、粒径が36〜50mI
nのフラックスは、添加後一部未溶解の状態で容器壁側
に押しやられることが観察された。そして溶鋼と容器壁
との間に、少なくとも瞬間的にギャップの生成・消滅が
繰返し生じる磁界1強さ以上、すなわち1 、200g
auss以上になると、第1図に示すように、添加した
フラックスは溶融しながら球面状の浴面を伝って精錬用
容器3の器壁に達し、ざらに器壁と溶融金属1間に生じ
た0、5mm以上の僅かなギャップ8の間隙を下方に降
下する過程で溶融金属1中に閉じ込められ、微細な液滴
2となって溶融金属1の流れに沿って精錬用容器3の中
心軸上方へ浮上する。この液滴2は、浴面上に浮上した
後、再び球面状の浴面を伝って精錬用容器3の器壁に達
し、器壁と溶融金属1間に生じたギャップ8の間隙を下
方に降下する過程で微細な液滴2となって溶融金属1中
に閉じ込められ、溶融金属1の流れに沿って精錬用容器
3の中心軸上方へ浮上する。フラックスはこのような挙
動を繰返し溶鋼中を循環する。
本発明の方法は、このような溶鋼盛り上がりとともに、
溶鋼と容器壁の間にギャップが生じる状態で溶鋼に精錬
用フラックスを添加し、極めて効率的にスラグ−メタル
反応ならびに介在物とスラグとの接触を進行せしめ、効
果的な溶鋼のフラックス精錬が行えるのである。
本発明の方法に使用する精錬フラックスの粒径は、浴面
上部より添加する場合には35mm以下として、フラッ
クス添加後、精錬用容器3の器壁へ押しやられるまでに
すみやかに溶融状態にすることが好ましい。フラックス
粒径の下限は特に限定するものではないが、余り粒径が
小さいと、例えば減圧下で本発明のフラックス精錬を行
う場合、添加フラックスが排気装置に吸引される可能性
があるので、粒径を3mm以上とすることが好ましい。
しかしながら容器底部から不活性ガスを搬送体としてフ
ラックスを添加する場合には、排気装置に吸引されるお
それがなく、また溶鋼中ですみやかに液滴化するように
フラックスの粒径は小さいほうが良く、粒径は3mm以
下、微粉であってもよい。第1図に示したように、精錬
フラックスは精錬用容器3の器壁を伝って溶融金属1中
へ流入し、溶融金属1中へ閉じ込められて溶融金属1の
規則的な流れにそって液滴2となって循環するため、ス
ラグ−メタル間の反応界面積は従来法に比べて著しく大
きい。本発明の方法は、印加電力が大きく攪拌力も大き
いため、溶融金属1の液柱10は絶えず緩やかに水平方
向に揺れ動く。このため、精錬用容器3の器壁と溶融金
属1間は、微視的には離脱・接触が繰返され、すなわち
、両者間では絶えずギャップ8の生成・消滅が繰返され
ている。このことが溶融した精錬用スラグの微細粒子化
(液滴2)に役立つとともに、器壁とスラグが常時接触
することを回避し、耐火物の溶損を著しく低下させる効
果を与えるもとどなる。
次に、本発明におけるフラックスの特性について説明す
る。
スラグ−メタル反応を促進するために重要なことは、
(イ)反応性に冨むフラックスをどう選択するか(ロ)
反応にあずかる界面積をいかに大きくするか(A)スラ
グならびにメタルの物質移動速度をいかに大きくするか
にある。
本発明者らの実験知見によれば、例えば鋼の場合につい
て述べれば、精錬フラックスは通常製鋼精錬フラックス
として用いられているCab−CaF2系をベースとし
、 An 203. MgO,SIO□などを一部加え
たものであっても本発明の目的を達成することができる
。本発明の方法では、フラックスは前述のように液滴と
なって溶融金属からの熱を十分に受けることができるの
で、フラックスの溶解性が著しく良いことである。この
ため、従来の方法ではフラックスの溶融特性向上のため
に溶融副材として使用されるCaF2含有量の比率を減
することができる。
本発明においては、溶融循環するスラグが微細粒子であ
るため、溶融金属からスラグへの熱の伝達がよく、スラ
グの温度が常に溶融金属温度と等しく高温であるため、
スラグ−メタル反応がよく進むことにもなる。単にスラ
グ−メタル反応だけでなく、高温で流動性のよいスラグ
が浴中を循環することは、浴中に存在する酸化物介在物
の洗浄・吸着に顕著な役割を果たす。
さらに、スラグ相ならびにメタル相の物質移動について
、本発明の方法ではスラグ相が微小粒子であること、お
よびメタルの流動によって絶えず変形を伴いながら循環
するためスラグ相同の攪拌もよく、物質移動速度が早い
。またメタル相については、その攪拌が著しく大きいた
めメタル相の物質移動速度も大きい。このためスラグ−
メタル間の反応による不純物の除去速度が極めて大きく
、従来法に比べて少量のフラックスの添加で著しく高純
度の金属を得ることができる。
また本発明の方法でスラグ−メタル間の反応による不純
物の除去を行う場合、反応速度は印加電力にほぼ比例し
て大きくなるので、単時間に精錬目的を達しようとする
場合には極力印加電力を大きくすればよい。
また本発明の方法によって、フラックスは溶融金属中で
微細な液滴となフて精錬用容器の中心軸上方へ浮上する
間に、溶融金属内の極めて微細な介在物、例えば50μ
m以下の介在物も液滴と凝集して100μm以上に大き
くなるので、フラックスPili錬に引き続きストーク
スの法則による介在物除去方法も可能である。この場合
介在物除去精錬の最終的仕上げをするために、磁界強さ
を容器器壁と溶融金属との間にギャップが生じない範囲
に下げて、静かに溶融金属を攪拌することも介在物除去
時間の効率的な短縮方法として有効である。
以上本発明について、第1図を参照しつつ説明したが、
本発明に用いる装置は第1図に限定されることなく、第
2図に示すように合金及びフラックス添加装置9からは
脱酸材や合金鉄を添加し、フラックスは精錬用容器3の
器底からフラックス吹込管12により添加する方法、あ
るいは第2図において、合金及びフラックス添加装置9
からは脱酸材、合金鉄、フラックスを添加するとともに
、器底からフラックスをフラックス吹込管12を通して
添加する方法も、本発明のフラックス精錬方法として効
果的である。なお器底のフラックス吹込管12からフラ
ックスを添加する場合には、搬送ガスとしてアルゴン等
の不活ガスを用いることは勿論である。
(実施例)
実施例1
初期組成が、C: 0.10〜0.20重量%(以下車
に%と称する’) 、 Si 二0.10〜0.30%
、 Mn: 1.0〜1.3%、 An : tr
〜0.01%、 S : 0.010〜0.13%、
p : o、ooa〜0.015%の溶鋼5トンを
第1図に示した精錬用容器3に収容し、真空雰囲気中で
周波数60Hzの固定磁界の中で磁界強さを800〜4
,500gaussを与えて誘導攪拌しながら真空脱ガ
ス処理し、あらかじめ(H)、(N)、(Industrial Application Field) The present invention relates to a method for refining molten metal outside a furnace, and in particular, the removal of impurity elements (such as sulfur in the case of steel) in eight rows from the metal to the slag by a slag-metal reaction.
It also relates to a refining method for removing non-metallic inclusions (hereinafter referred to as inclusions) that have a lower specific gravity than molten metal, especially fine inclusions that are difficult to float and separate according to Stokes' law, such as inclusions of 50 μm or less. It is. (Prior Art) A wide variety of methods have been proposed or implemented in the past for removing impurities or inclusions using an out-of-furnace refining method. A general summary of these is as follows. (a) Simple refining method The simplest method is a natural separation method (application of Stokes' law) using high-temperature tapping and long-term holding, mainly for the purpose of removing inclusions. This method has no flux refining effect, so it cannot remove (S) etc. at all, and as is clear from Stokes' law, it can only be expected to remove large inclusions of about 100 μm or more, and the productivity is low. However, metals are rarely refined using this method alone. Therefore, as one of the improvements, a simple smelting method has emerged that uses a combination of gas stirring and addition of alloys and flux in a closed chamber where aether atmosphere can be controlled. However, although this method is simple and effective in improving productivity to some extent, it cannot achieve its purpose as a highly pure and highly clean metal refining method, so its range of use is limited. (b) Vacuum degassing method This method originally removes (H) from the molten metal. It was developed as a method for removing harmful gas components such as (N) and (C), and R is the most representative degassing method.
In the H method and DH method, in addition to removing (0) by the (C) + (0) = CO reaction, a strong stirring effect causes the aggregation and aggregation of inclusions.
It has a considerable separation effect and also plays a role as a purifying and refining method. In some cases, flux is added to the vacuum chamber (S
) attempts are also being made to remove them. However, these methods have not been able to achieve satisfactory effects on metal refining to the highly required levels of high purity and cleanliness, and technological improvements are desired. (c) LF method (Ladle Furnace method) While controlling the bath surface of the ladle to an inert state, refining flux is added while blowing argon gas through a lance inserted from the bottom or top of the ladle. While melting the flux using the arc heating method, the slag-metal reaction on the bath surface is promoted over a long period of time.
S) and inclusions, and is used as one of the methods to obtain the highest purity and cleanliness in steel refining. However, this method requires an extremely long time for refining, has poor productivity, and has high production costs, so its use is currently limited to special areas. (d) Powder injection This method attempts to remove (S) and inclusions by injecting refining flux into molten metal with a carrier gas using an injection lance, and is widely used in steel refining. In this method, the blown solid flux melts and floats while reacting with the metal or inclusions present in the metal, and the bath surface where the flux floating on the bath surface is shaken by the blown gas. It can be divided into the process of contacting and reacting with metal. In this method, the flux that has floated to -degree cannot return to the bath again, and the floating process, which occupies the most important position in the reaction process, is the melting process of the flux, so the reaction efficiency is reduced as much as possible. Become. In addition, this method requires that the flux used be powder, and there are also problems such as particle size control, increased cost, and complicated equipment to prevent clogging in the transportation route or inlet. Furthermore, gas is also required as a carrier for powder.
The minimum amount of gas is regulated to prevent blockages at the blowing ports, etc., and it is necessary to supply more gas than is necessary for stirring, so the generation of violent metal splash due to bubble expansion is a major problem. It is one. (e) Stirring and refining using a rotating magnetic field A rotating magnetic field is used to apply horizontal rotational stirring force to the molten metal, and flux is added to cause a slag-metal reaction to remove (S) and remove inclusions. There are also attempts to separate and remove it. In this method, except for the initial stage of rotation, the slag is pulled by the rotation of the metal and stops rotating with no relative speed difference, so the slag-metal interface is relatively stationary. , the reaction progresses extremely slowly. To improve this, we inserted a baffle plate to create turbulence.
Some attempts have been made to improve the mixing and contact between slag and metal (Japanese Patent Application Laid-open No. 63-45316), but the equipment mechanism is difficult due to large wear and tear on the refractories and large inertia due to the rotation of the metal. It lacks practicality. (f) Method for removing inclusions using centrifugal force Adding an inclusion absorbing material to molten metal, and rotating the container itself at high speed, the centrifugal force generated removes inclusions that have a specific gravity different from that of the molten metal. Although this method is intended to separate and remove slag, it is almost the same as using a rotating magnetic field, so slag refining cannot be expected, and (S) etc. cannot be removed at all.
Due to the fact that it requires a lot of equipment and the efficiency of separating and removing inclusions is relatively low, it is only used as a part of the method for manufacturing circular pipes as the so-called centrifugal casting method. ing. (g) Electromagnetic induction melting method This method is used for the melting of steel or other metals on a small scale.
It is widely used because it is easy to melt, especially for high-quality metals. The main purpose of this method is to melt metal, and depending on the purpose, it may also be performed as a vacuum treatment to remove gas components. This is the so-called vacuum melting method. In the induction melting method, the distance between the metal to be melted and the 8-conductor coil is kept as close as possible, in other words, the thickness of the refractory is made thinner, in order to increase the efficiency of electrical equipment utilization. Therefore, it is prohibited to use flux in the induction melting furnace. Ta. In addition, as the furnace volume increases, the frequency must be lowered from the perspective of penetration depth, but as the frequency decreases, the flow rate and fluctuation of the molten metal surface increase, and reactions such as oxidation progress, so it is difficult to keep quiet. The emphasis is on melting the metal in a safe manner. In the electromagnetic conduction melting method, there is, for example, Japanese Patent Application Laid-Open No. 87234/1983 as a method for making flux refining possible. This method, as shown in FIG.
This is a method of slag refining of molten metal by promoting contact and mixing of molten flux 14 and molten metal 1 while avoiding contact with the furnace wall. Note that 5 is an induction coil for stirring and heating. However, in this method, as shown in FIG. 4, the contact between the molten flux 14 and the molten metal 1 is limited to only the surface layer of the molten metal 1, so the reaction interface area between the flux and the molten metal is small. Removal of impurity elements, especially minute inclusions that are difficult to float and separate using Stokes' law, cannot be expected. In addition, in the above-mentioned Japanese Patent Application Laid-Open No. 58-87234, an example is shown in Fig. 5 in which the surface of the molten metal is made spherical and the molten metal and flux are reacted in a state where the flux is in contact with the container wall. However, in this case, the flux remains on the surface of the hot water and on the container wall, causing significant damage to the container wall, and the reaction interface area between the flux and molten metal is small, making it unsuitable as a flux refining method. Something has been said. (Problems to be Solved by the Invention) As mentioned above, a wide variety of methods have been proposed or implemented for removing impurities or inclusions by outside-furnace refining, but each has its own merits and demerits. There is no definitive method in terms of effectiveness, industrial productivity, or economy, and many improvements and developments in refining technology are desired. The purpose of the present invention is to solve these problems and achieve high purity and
A refining method for obtaining highly clean metal is provided. (Means for Solving the Problems) The present invention for solving the above problems has the following features: (a) A fixed magnetic field generator disposed around the outer periphery of the refining container applies a pinch force to the molten metal contained in the refining container. to generate an upward flow, make the bath surface of the molten metal spherical, and create a situation where a gap of 0.5 mm or more repeatedly occurs at least momentarily between the wall of the refining container and the molten metal. High purity of molten metal characterized by stirring and refining by adding refining flux from above and/or inside the molten metal while applying a magnetic field strength of・High cleanliness refining method (b) A fixed magnetic field generator placed around the outer periphery of the vacuum refining container applies a pinch force to the molten metal under reduced pressure stored in the vacuum refining container to generate an upward flow. The bath surface of the molten metal is made into a spherical surface, and 1i is such that a gap of 0.5 m+n or more is repeatedly created at least momentarily between the wall of the vacuum refining container and the molten metal.
High purity of molten metal characterized by stirring and refining by adding refining flux from above and/or inside the molten metal and finely mixing the refining flux into the molten metal while imparting Ti field strength.・High purity refining method (c)
A fixed 6u field generating device placed around the outer periphery of the refining container applies a pinch force to the molten metal contained in the refining container to generate an upward flow and make the bath surface of the molten metal spherical. Refining flux is added from above and/or inside the molten metal while applying a magnetic field strength that can repeatedly create a gap of 0.5 mm+ at least instantaneously between the vessel wall and the molten metal. A refining method for achieving high purity and high cleanliness of molten metal, characterized by stirring and refining while finely mixing the refining flux into the molten metal and heating the molten metal. (d) Outer periphery of vacuum refining container A fixed magnetic field generator placed in the vacuum refining container applies a pinching force to the molten metal under reduced pressure stored in the vacuum refining container to generate an upward flow and make the bath surface of the molten metal spherical. Refining flux is added from above and/or inside the molten metal while applying a magnetic field strength that can repeatedly create a gap of 0.5 mm or more between the wall and the molten metal, at least momentarily. This is a refining method for improving the purity and cleanliness of molten metal, which is characterized by stirring and refining the molten metal while finely mixing the refining flux into the molten metal, and heating the molten metal. In other words, a refining vessel containing molten metal is placed in a strong magnetic field, a pinch force is applied to the molten metal to generate an upward flow velocity, the molten metal is strongly stirred by a regular flow, and the upper to form a convex spherical surface, and to give a magnetic field strength of such a degree that a slight gap of 0.5 mm or more is repeatedly generated and disappeared between the molten metal and the container wall,
Refining flux is added from above the bath surface and/or into the molten metal. Furthermore, the present invention provides that the refining container is a vacuum refining container, that the molten metal in the container is subjected to the above-mentioned refining under reduced pressure, and that the molten metal is subjected to the above-mentioned refining under an inert atmosphere or under reduced pressure. While doing so, heat the molten metal. The present invention uses electric FiB as a means of stirring and heating molten metal.
The basic use of the induction method is different from the conventional electromagnetic induction stirring method. However, the method of the present invention makes adverse use of the strength of the agitation and stirring of the molten metal bath surface, which was a problem with conventional humiliation methods, and reduces and applies the frequency, which is even harmful in conventional simple heating melting. By increasing the electric power, the shape of the bath surface, the formation of a gap between the molten metal and the container wall, and the strengthening of the stirring force are made, allowing the flux to effectively interact with the molten metal or inclusions, and producing (S), etc. In this method, fine inclusions that are difficult to remove by conventional methods, for example, inclusions of 50 μm or less, are attached to flux droplets and separated and removed from the molten metal. (Function) Hereinafter, the present invention will be explained in more detail along with the function with reference to the drawings. FIG. 1 is a side sectional view schematically showing an embodiment of the present invention. Prior to implementing the present invention, in FIG. 1, molten metal 1 is first placed in a refining container 3, a closed system is constructed with a sealing lid 6, and then evacuated with an exhaust device 7, the atmosphere is made into a vacuum, stirring and Electric power is applied to the heating induction coil 5 to refine the molten metal 1 by vacuum degassing. Next, a deoxidizing agent and a ferroalloy are added from the alloy and flux addition device 9 above the molten metal 1, and the molten metal 1 is deoxidized and its components are adjusted. After that, the exhaust device 7 is stopped, and argon gas is supplied from the argon supply pipe 11 to the upper part of the bath surface of the molten metal 1 to create an argon atmosphere. After such a state is established, the flux refining of the present invention is performed. Adjust the applied power of the stirring/heating induction coil 5,
A pinch force is applied to the molten metal 1 to generate an upward flow, and the bath surface of the molten metal 1 is made into a spherical surface, so that at least 0.5 m is momentarily created between the wall of the refining vessel 3 and the molten metal 1.
Refined flux is added from the alloy and flux adding device 9, and the refined flux is dripped into the molten metal 1 while applying a magnetic field strength that can create a situation in which a gap of m or more repeatedly generates and disappears. Stir and refine while trying to achieve fine mixing as in step 2. Other embodiments of the invention will now be described. Prior to implementing the present invention, in FIG. 1, molten metal 1 is first placed in a refining container 3, a closed system is constructed with a sealing lid 6, and then evacuated with an exhaust device 7, the atmosphere is made into a vacuum, stirring and Electric power is applied to the heating induction coil 5 to refine the molten metal 1 by vacuum degassing. Next, a deoxidizing agent and a ferroalloy are added from the alloy and flux addition device 9 above the molten metal 1, and the molten metal 1 is deoxidized and its components are adjusted. Thereafter, the flux refining of the present invention is carried out under reduced pressure. Adjusting the power applied to the stirring/heating induction coil 5 to apply a pinch force to the molten metal 1 to generate an upward flow,
The bath surface of the molten metal 1 is made into a spherical surface, and a situation can be formed in which a gap of 0.5 mm or more is repeatedly generated and destroyed at least momentarily between the wall of the refining container 3 and the molten metal 1. magnetic field strength of about 2,000 gauss, e.g.
s, a refining flux is added from the alloy and flux addition device 9, and the refining flux is stirred and refined into the molten metal 1 while finely mixing it like a droplet 2. Further, while performing the above-mentioned stirring and refining, the temperature of the molten metal 1 can be simultaneously increased by induction heating, thereby indirectly promoting the melting of the refining flux. In FIG. 1, the refining container 3 has a structure in which it is in close contact with the sealing lid 6 directly through the flange of the container.
As shown by the dotted line in the same figure, the hermetic tank 13 and the hermetic lid part 6 have a structure that allows them to be in close contact with each other, and the hermetic tank 13
A refining container 3 may be placed inside. It is also possible to carry out the vacuum degassing of the molten metal prior to the method of the invention in a separate vacuum degassing apparatus and then to obtain a high degree of cleanliness by the method of the invention. In the following, in the present invention, the formation of the gap 8 between the wall of the refining vessel and the molten metal and the effect of the gap 8 on the added refining flux will be described in further detail. The present inventors conducted an experiment in which the applied power was variously varied using a fixed magnetic field generator (stirring/heating induction coil 5) placed around the outer periphery of the refining container 3. A pinch force is applied to the molten metal 1 housed in the refining vessel 3 to generate an upward flow, so that the bath surface of the molten metal becomes a spherical surface, and at least a portion is formed between the wall of the refining vessel 3 and the molten metal 1. FIG. 3 shows an example of a magnetic field strength that can create a situation in which a gap occurs momentarily. FIG. 3 shows the results of an experiment conducted by the present inventors on molten steel. As shown in Figure 3, even if the magnetic field strength (magnetic flux density gauss) applied to molten steel is increased, the surface remains static until a certain magnetic flux density is reached, but as the magnetic flux density is further increased, the molten steel surface becomes convex. It swells into a spherical surface (A). As the magnetic flux density further increases, the molten steel surface becomes spherical and the height increases, and a gap is created and disappears at least momentarily between the molten steel and the container wall (B).
is observed repeatedly. The gap does not change much even if the magnetic flux density is increased further. According to experimental observations by the present inventors, in the case of molten steel, the magnetic field strength at which a gap begins to form between the molten steel and the container wall is 1 to 20.
0 gauss, and the gap at that time is approximately 0.5 mm in the horizontal direction on average. Even if the magnetic field is further increased, the gap does not become much larger, 0.5 to 1.0
It is about mm. Next, the present inventors conducted an experiment on the behavior of flux on the bath surface when changing the strength of the magnetic field applied to the molten steel. The particle size of the flux added from above the bath surface is 5 to 35 ml.
There were two types: 11,36 to 50 mol. As a result, for any particle size, if the bath surface is stationary, the flux will be in a molten state and completely cover the bath surface, and if the bath surface is simply raised to a convex spherical surface, the flux will be in the container. He was only pushed against the wall. In that case, the particle size is 5-30m.
The rQ flux melts immediately after addition and is pushed to the container wall side in a molten state, but if the particle size is 36 to 50 mI
It was observed that after addition, some of the flux n was pushed toward the container wall in an undissolved state. A magnetic field with a strength of 1 or more, that is, 1.200 g, causes a gap to repeatedly form and disappear at least instantaneously between the molten steel and the container wall.
When the temperature exceeds auss, as shown in Figure 1, the added flux flows along the spherical bath surface while melting and reaches the wall of the refining vessel 3, forming a rough area between the vessel wall and the molten metal 1. In the process of descending downward through a small gap 8 of 0.5 mm or more, it becomes trapped in the molten metal 1 and becomes fine droplets 2 that flow along the flow of the molten metal 1 above the center axis of the refining container 3. to surface. After floating on the bath surface, the droplet 2 travels along the spherical bath surface again, reaches the wall of the refining vessel 3, and flows downward through the gap 8 created between the vessel wall and the molten metal 1. In the process of descending, the droplets 2 become fine droplets, are trapped in the molten metal 1, and float above the central axis of the refining vessel 3 along the flow of the molten metal 1. The flux repeats this behavior and circulates in the molten steel. In the method of the present invention, along with such a rise in molten steel,
Refining flux is added to the molten steel while a gap is created between the molten steel and the container wall, and the slag-metal reaction and contact between inclusions and slag proceed extremely efficiently, allowing effective flux refining of the molten steel. It is. The particle size of the refining flux used in the method of the present invention should be 35 mm or less when added from above the bath surface, and after adding the flux, it should be quickly brought to a molten state before being pushed to the wall of the refining vessel 3. is preferred. The lower limit of the flux particle size is not particularly limited, but if the particle size is too small, the added flux may be sucked into the exhaust device when the flux refining of the present invention is performed under reduced pressure. It is preferable that the diameter is 3 mm or more. However, when adding flux from the bottom of the container using an inert gas as a carrier, the particle size of the flux should be small so that there is no risk of it being sucked into the exhaust system and it quickly turns into droplets in the molten steel. The particle size may be 3 mm or less, and it may be a fine powder. As shown in FIG. 1, the refining flux flows into the molten metal 1 along the wall of the refining vessel 3, is trapped in the molten metal 1, and flows along the regular flow of the molten metal 1. Since it circulates as droplets 2, the reaction interface area between slag and metal is significantly larger than in the conventional method. In the method of the present invention, since the applied power is large and the stirring force is large, the liquid column 10 of the molten metal 1 constantly swings gently in the horizontal direction. Therefore, the wall of the refining vessel 3 and the molten metal 1 are microscopically separated and contacted repeatedly, that is, the gap 8 is constantly generated and eliminated between the two. This helps to make the molten refining slag into fine particles (droplets 2), avoids constant contact between the vessel wall and the slag, and provides the effect of significantly reducing melting loss of the refractory. Next, the characteristics of the flux in the present invention will be explained. What is important to promote the slag-metal reaction is (a) how to select a highly reactive flux (b)
(A) How to increase the mass transfer rate of slag and metal. According to the experimental findings of the present inventors, in the case of steel, for example, the refining flux is based on the Cab-CaF2 system, which is usually used as a refining flux for steelmaking, and An 203. Even if MgO, SIO□, etc. are partially added, the object of the present invention can be achieved. In the method of the present invention, the flux becomes droplets as described above and can receive sufficient heat from the molten metal, so the solubility of the flux is extremely good. Therefore, in the conventional method, the proportion of CaF2 content used as a melting auxiliary material can be reduced in order to improve the melting characteristics of flux. In the present invention, since the slag that circulates during melting is fine particles, heat transfer from the molten metal to the slag is good, and the temperature of the slag is always as high as the molten metal temperature.
The slag-metal reaction also progresses well. Not only the slag-metal reaction, but also the circulation of high-temperature, highly fluid slag in the bath plays a significant role in cleaning and adsorbing oxide inclusions present in the bath. Furthermore, regarding the mass transfer of the slag phase and the metal phase, in the method of the present invention, the slag phase is fine particles, and since the slag phase circulates while being constantly deformed due to the flow of the metal, the slag phase is well stirred, and the mass transfer rate is increased. early. Furthermore, since the metal phase is stirred significantly, the mass transfer rate of the metal phase is also high. Therefore, the slag
The removal rate of impurities due to the reaction between metals is extremely high, and metals of extremely high purity can be obtained with the addition of a small amount of flux compared to conventional methods. Furthermore, when impurities are removed by the reaction between slag and metal using the method of the present invention, the reaction rate increases almost in proportion to the applied power. Just make it bigger. Further, according to the method of the present invention, the flux becomes fine droplets in the molten metal and floats above the central axis of the refining vessel, while extremely fine inclusions in the molten metal, for example 50μ
Since inclusions with a diameter of 100 μm or less also coagulate with droplets and become larger than 100 μm, it is also possible to use a method of removing inclusions using Stokes' law following the flux Pili process. In this case, to remove inclusions and finalize the refining, it is also possible to lower the magnetic field strength to a range that does not create a gap between the container wall and the molten metal and gently stir the molten metal. This is effective as an efficient time saving method. The present invention has been explained above with reference to FIG.
The apparatus used in the present invention is not limited to that shown in FIG. 1, but as shown in FIG. A method of adding flux through a flux blowing pipe 12 or, in FIG. 2, an alloy and flux adding device 9
A method in which a deoxidizing material, ferroalloy, and flux are added from the bottom of the vessel and flux is added from the bottom of the vessel through the flux blowing pipe 12 is also effective as the flux refining method of the present invention. Note that when adding flux from the flux blowing pipe 12 at the bottom of the vessel, an inert gas such as argon may of course be used as the carrier gas. (Example) Example 1 The initial composition is C: 0.10 to 0.20% by weight (hereinafter referred to as %), Si 20.10 to 0.30%.
, Mn: 1.0-1.3%, An: tr
~0.01%, S: 0.010~0.13%,
5 tons of molten steel with p: o, ooa ~ 0.015% was placed in the refining vessel 3 shown in Fig. 1, and the magnetic field strength was set to 800 ~ 4 in a fixed magnetic field with a frequency of 60 Hz in a vacuum atmosphere.
, 500 gauss and vacuum degassing treatment with induction stirring to prepare (H), (N),
〔0〕の除去を
行った6ついで合金及びフラックス添加装置9からAj
2を添加して溶鋼を脱酸した後、アルゴン供給管11か
らアルゴンを導入して大気圧に戻し、アルゴン雰囲気中
で1,200gauss磁界強さを与えて、合金及びフ
ラックス添加装置9から60〜70%CaO−10〜I
8%CaF2−10〜20%八へ120.−bal、
sio、の組成のフラックスを10〜50J!30して
6分間フラックス精錬を行った。
このとき、容器器壁と溶鋼との間のギャップ8が生じた
磁界強さはl 、 20Qgaussであった。
初期(S)濃度またはフラックス添加量の多寡によらず
、いずれの場合も(S ) < 3 ppm、T。
(0)<6ppmが得られた。さらにへ1添加による攪
拌ではほとんど減少しなかった10μm以下の微小介在
物が、従来の電磁誘導溶解法に比して約1/10に減少
した。その後8分間磁界強さを500 gaussに落
として静かに攪拌を継続したところ、〔S〕濃度には変
化が認められなかったが、(0)は4 ppmまで低下
し、10μm以下の微小介在物もさらに10%減少した
。
実施例2
初期組成が、C: 0.10〜0.20%、 St :
0.10〜0.30%、 Mn : 1.0〜1.3
%、 AIl: tr 〜0.01%。
S : 0.010〜0.13%、 p : o、o
oa〜0.015%の溶w15トンを第2図に示した精
錬用容器3に収容し、真空雰囲気中で周波数60)1z
の固定磁界の中で1,000〜3 、000gauss
を与えて誘導攪拌しながら真空脱ガス処理し、あらかじ
め(H)、(N)。
(0)の除去を行った。ついで合金及びフラックス添加
装置9からAj2を添加して溶鋼を脱酸し、そのまま減
圧下で1.800gaussの磁界強さを与え、武器部
よりアルゴン搬送ガスを用いて60〜7゜%CaO−1
0〜1 8%CaF、−10〜20% Au20s−b
al、5i02の組成のフラックスを10〜50kg添
加して6分間フラックス精錬を行った。
初期(S)濃度またはフラックス添加量の多寡によらず
、いずれの場合も(S ) < 3 ppm、T。
(0)<6ppmが得られた。さらにAJZ添加による
攪拌ではほとんど減少しなかった10μm以下の微小介
在物が、従来の電磁誘導溶解法に比して約1710に減
少した。その後8分間磁界強さを500 gaussに
落として静かに攪拌を継続したところ、(S)濃度には
変化が認められなかったが、After removing [0] 6, the alloy and flux addition device 9 to Aj
2 to deoxidize the molten steel, argon is introduced from the argon supply pipe 11 to return the pressure to atmospheric pressure, and a magnetic field strength of 1,200 gauss is applied in the argon atmosphere. 70%CaO-10~I
8% CaF2-10~20% 8 120. -bal,
The flux of the composition of sio is 10 to 50 J! After 30 minutes, flux refining was performed for 6 minutes. At this time, the magnetic field strength at which the gap 8 between the vessel wall and the molten steel was created was 1,20Q gauss. Regardless of the initial (S) concentration or the amount of flux added, in all cases (S) < 3 ppm, T. (0)<6 ppm was obtained. Furthermore, the minute inclusions of 10 μm or less, which were hardly reduced by stirring by adding He1, were reduced to about 1/10 compared to the conventional electromagnetic induction melting method. After that, when the magnetic field strength was lowered to 500 gauss and stirring was continued for 8 minutes, no change was observed in the [S] concentration, but (0) decreased to 4 ppm, and microscopic inclusions of 10 μm or less were observed. It also decreased by 10%. Example 2 Initial composition: C: 0.10-0.20%, St:
0.10-0.30%, Mn: 1.0-1.3
%, AIl: tr ~0.01%. S: 0.010-0.13%, p: o, o
15 tons of molten w of 0.015% oa was placed in the refining container 3 shown in Fig. 2, and heated at a frequency of 60) 1z in a vacuum atmosphere.
1,000 to 3,000 gauss in a fixed magnetic field of
(H) and (N) in advance by vacuum degassing treatment with induction stirring. (0) was removed. Next, Aj2 is added from the alloy and flux addition device 9 to deoxidize the molten steel, and a magnetic field strength of 1.800 gauss is applied under reduced pressure.
0~1 8%CaF, -10~20% Au20s-b
10 to 50 kg of flux having a composition of Al, 5i02 was added and flux refining was performed for 6 minutes. Regardless of the initial (S) concentration or the amount of flux added, in all cases (S) < 3 ppm, T. (0)<6 ppm was obtained. Furthermore, the number of microscopic inclusions of 10 μm or less, which was hardly reduced by stirring with the addition of AJZ, was reduced to about 1710 compared to the conventional electromagnetic induction melting method. After that, when the magnetic field strength was lowered to 500 gauss and stirring was continued for 8 minutes, no change was observed in the (S) concentration.
〔0〕は4 ppmまで低
下し、10μm以下の微小介在物もさらに10%減少し
た。
実施例3
初期組成が、C: 0.10〜0.20%、Si:0.
10〜0.30%、 Mn: 1.Q 〜1.3%、
AfL: tr−C1,(11%。
S : 0.010〜0.13%、 p : o、o
oa〜0.015%の溶鋼5トンを第1図に示した精錬
用容器3に収容し、真空雰囲気中で周波数60Hzの固
定磁界の中で、磁界強さを1.50Q〜5 、000g
aussを与えて誘導攪拌しながら真空脱ガス処理し、
あらかじめ(H)、(N)、(0)の除去を行った。つ
いで合金及びフラックス添加装置9からAJZを添加し
て溶鋼を脱酸した後、アルゴン供給管11からアルゴン
を導入して大気圧に戻し、アルゴン雰囲気中で3 、0
00gaussの磁界強さを与えながら、合金及びフラ
ックス添加装置9および器底から60〜70%CaO−
10〜18%CaFz −10〜20%八へl−zOs
−bal、5i02の組成のフラックスを10〜50k
gをそれぞれ半量ずつ添加して6分間フラックス精錬を
行った。
初期(S)濃度またはフラックス添加量の多寡によらず
、いずれの場合も(S ) < 3 ppm、T。
(0)<6ppmが得られた。さらにへ1添加による攪
拌ではほとんど減少しなかった10μm以下の微小介在
物が、従来の電磁誘導溶解法に比して約1710に減少
した。その後8分間磁界強さを2 、000gauss
として攪拌を継続したところ、溶鋼温度は1,570℃
から1,600℃に上昇した。一方実施例1.2の場合
と同様に、(S)濃度には変化が認められなかったが、
(0)は4 ppmまで低下し、10μm以下の微小介
在物もさらに10%減少した。
実施例4
初期組成が、C: 0.10〜0.20%、St:0.
10〜0.30%、 Mn + 1.0〜1.3%、
Aj! : tr 〜0.01%。
S : 0.010〜0.13%、 p : o、o
oa〜0.015%の溶鋼5トンを第1図に示した精錬
用容器3に収容し、真空雰囲気中で周波数60Hzの固
定磁界の中で、2,000〜5,000gaussの磁
気強さを与えて誘導攪拌しながら真空脱ガス処理し、あ
らかじめ(H)、(N)、(0)の除去を行った。合金
及びフラックス添加装置9からInを添加して溶鋼を脱
酸し、減圧下にて2,400gausSの6n界強さを
与えながら、合金及びフラックス添加装置9および器底
か660〜70%CaQ−10〜18%CaF2−10
〜20%A l 20.−bal、5io2の組成のフ
ラックスを10〜50kgをそれぞれ半量ずつ添加して
6分間フラックス精錬を行った。
初期(S)濃度またはフラックス添加量の多寡によらず
、いずれの場合も(S ) < 3 ppm、T。
(0)<6ppmが得られた。ざらにAJ2添加による
攪拌ではほとんど減少しなかった10μm以下の微小介
在物が、従来の電磁誘導溶解法に比して約1710に減
少した。その後8分間磁界強さを2.000gauss
として攪拌を継続したところ、溶鋼温度は1,580℃
から1,610℃に上昇した。また(S)濃度には変化
が認められなかったが、(0)は4 ppmまで低下し
、10μm以下の微小介在物もさらに10%減少した。
(発明の効果)
本発明の精錬方法によれば、少量のフラッフスリ、容易
に高純度・高清浄度の金属を得ることができる。[0] was reduced to 4 ppm, and minute inclusions of 10 μm or less were further reduced by 10%. Example 3 The initial composition is C: 0.10-0.20%, Si: 0.
10-0.30%, Mn: 1. Q ~1.3%,
AfL: tr-C1, (11%. S: 0.010-0.13%, p: o, o
Five tons of molten steel with an oa~0.015% content was placed in the refining vessel 3 shown in Fig. 1, and the magnetic field strength was set to 1.50Q~5,000g in a fixed magnetic field with a frequency of 60Hz in a vacuum atmosphere.
Vacuum degassing treatment is carried out while giving auss and stirring by induction.
(H), (N), and (0) were removed in advance. Next, after deoxidizing the molten steel by adding AJZ from the alloy and flux addition device 9, argon is introduced from the argon supply pipe 11 to return the temperature to atmospheric pressure, and the molten steel is heated at 3.0% in an argon atmosphere.
While applying a magnetic field strength of 00 gauss, 60 to 70% CaO-
10-18% CaFz -10-20% H-zOs
-bal, 5i02 composition flux 10-50k
Flux refining was performed for 6 minutes by adding half of each of the following. Regardless of the initial (S) concentration or the amount of flux added, in all cases (S) < 3 ppm, T. (0)<6 ppm was obtained. Furthermore, the number of microscopic inclusions of 10 μm or less, which was hardly reduced by stirring with the addition of He1, was reduced to about 1710 compared to the conventional electromagnetic induction melting method. Then increase the magnetic field strength to 2,000 gauss for 8 minutes.
As a result, the molten steel temperature reached 1,570℃.
The temperature rose from 1,600℃ to 1,600℃. On the other hand, as in Example 1.2, no change was observed in the (S) concentration;
(0) was reduced to 4 ppm, and minute inclusions of 10 μm or less were further reduced by 10%. Example 4 The initial composition is C: 0.10-0.20%, St: 0.
10-0.30%, Mn + 1.0-1.3%,
Aj! : tr~0.01%. S: 0.010-0.13%, p: o, o
Five tons of molten steel of 0.015% oa is placed in the refining vessel 3 shown in Fig. 1, and a magnetic strength of 2,000 to 5,000 gauss is applied in a fixed magnetic field with a frequency of 60 Hz in a vacuum atmosphere. (H), (N), and (0) were removed in advance by vacuum degassing treatment while stirring by induction. In is added from the alloy and flux addition device 9 to deoxidize the molten steel, and while giving a 6n field strength of 2,400 gauss under reduced pressure, the alloy and flux addition device 9 and the bottom of the vessel are heated with 660 to 70% CaQ- 10-18% CaF2-10
~20% Al 20. 10 to 50 kg of fluxes having compositions of -bal and 5io2 were added in half amounts each, and flux refining was performed for 6 minutes. Regardless of the initial (S) concentration or the amount of flux added, in all cases (S) < 3 ppm, T. (0)<6 ppm was obtained. The number of microscopic inclusions of 10 μm or less, which was hardly reduced by stirring with the addition of AJ2, was reduced to about 1710 compared to the conventional electromagnetic induction melting method. Afterwards, increase the magnetic field strength to 2.000 gauss for 8 minutes.
As a result, the molten steel temperature reached 1,580℃.
The temperature rose from 1,610℃ to 1,610℃. Further, although no change was observed in the (S) concentration, (0) decreased to 4 ppm, and minute inclusions of 10 μm or less were further reduced by 10%. (Effects of the Invention) According to the refining method of the present invention, high purity and high cleanliness metal can be easily obtained with a small amount of fluff scraping.
第1図および第2図は本発明を実施する精錬装置の実施
態様例を模式的に示した側断面図、第3図は磁束密度と
溶鋼の盛り上がり高さ、器壁と溶鋼のギャップの有無の
関係を示す図面、第4図および第5図は従来の精錬方法
を示す図面である。
1:溶融金属、2:フラックス流滴、3:精錬用容器、
4;電源設備、5:攪拌・加熱用誘導コイル、6:密閉
用蓋部、7:排気装置、8:ギャップ、9:合金および
フラックス添加装置、10:液柱(メタル)の動揺、1
1:アルゴン供給管、12:フラックス吹込管、13:
密閉用タンク、14:フラックス。
7?1図
代 理 人 弁理士 秋 沢 政 光
他1名
岸2図
71′3図
磁束密度(8ause)Figures 1 and 2 are side sectional views schematically showing embodiments of a refining apparatus implementing the present invention, and Figure 3 is a diagram showing the magnetic flux density, the height of the molten steel, and the presence or absence of a gap between the vessel wall and the molten steel. 4 and 5 are drawings showing the conventional refining method. 1: Molten metal, 2: Flux droplets, 3: Refining container,
4: Power supply equipment, 5: Stirring/heating induction coil, 6: Sealing lid, 7: Exhaust device, 8: Gap, 9: Alloy and flux addition device, 10: Fluid column (metal) agitation, 1
1: Argon supply pipe, 12: Flux blowing pipe, 13:
Sealed tank, 14: Flux. 7?1 Figure 71'3 Magnetic flux density (8ause)
Claims (4)
より、精錬用容器内に収容した溶融金属にピンチ力を与
えて上昇流を発生させるとともに溶融金属の浴面を球面
となし、前記精錬用容器器壁と溶融金属との間に少なく
とも瞬間的に0.5mm以上のギャップが繰返し生じる
状況を形成させ得る程度の磁界強さを与えながら、溶融
金属の上方及び/又は内部より精錬フラックスを添加し
て、溶融金属中への精錬フラックスの微細混合を図りつ
つ攪拌精錬することを特徴とする溶融金属の高純度・高
清浄度化精錬方法。(1) A fixed magnetic field generator placed around the outer periphery of the refining container applies a pinch force to the molten metal contained in the refining container to generate an upward flow and make the bath surface of the molten metal spherical. Refining flux is applied from above and/or inside the molten metal while applying a magnetic field strength that can repeatedly create a gap of 0.5 mm or more at least instantaneously between the container wall and the molten metal. A refining method for achieving high purity and high cleanliness of molten metal, which is characterized by stirring and refining while finely mixing the refining flux into the molten metal.
置により、真空精錬用容器内に収容した減圧下の溶融金
属にピンチ力を与えて上昇流を発生させるとともに前記
溶融金属の浴面を球面となし、真空精錬用容器器壁と溶
融金属との間に少なくとも瞬間的に0.5mm以上のギ
ャップが繰返し生じる状況を形成させ得る程度の磁界強
さを与えながら、溶融金属の上方及び/又は内部より精
錬フラックスを添加して、溶融金属中への精錬フラック
スの微細混合を図りつつ攪拌精錬することを特徴とする
溶融金属の高純度・高清浄度化精錬方法。(2) A fixed magnetic field generator placed around the outer periphery of the vacuum refining container applies a pinch force to the molten metal under reduced pressure contained in the vacuum refining container to generate an upward flow and raise the bath surface of the molten metal. While applying a magnetic field strength that can repeatedly create a gap of 0.5 mm or more between the wall of the vacuum refining vessel and the molten metal at least momentarily, Alternatively, a method for refining molten metal to achieve high purity and high cleanliness, which is characterized by adding refining flux from the inside and stirring and refining while attempting to finely mix the refining flux into the molten metal.
より、精錬用容器内に収容した溶融金属にピンチ力を与
えて上昇流を発生させるとともに溶融金属の浴面を球面
となし、前記精錬用容器器壁と溶融金属との間に少なく
とも瞬間的に0.5mm以上のギャップが繰返し生じる
状況を形成させ得る程度の磁界強さを与えながら、溶融
金属の上方及び/又は内部より精錬フラックスを添加し
て、溶融金属中への精錬フラックスの微細混合を図りつ
つ攪拌精錬するとともに溶融金属を加熱することを特徴
とする溶融金属の高純度・高清浄度化精錬方法。(3) A fixed magnetic field generator placed around the outer periphery of the refining container applies a pinch force to the molten metal contained in the refining container to generate an upward flow and make the bath surface of the molten metal spherical. Refining flux is applied from above and/or inside the molten metal while applying a magnetic field strength that can repeatedly create a gap of 0.5 mm or more at least instantaneously between the container wall and the molten metal. A refining method for achieving high purity and high cleanliness of molten metal, which is characterized by stirring and refining the molten metal while finely mixing the refining flux into the molten metal and heating the molten metal.
置により、真空精錬用容器内に収容した減圧下の溶融金
属にピンチ力を与えて上昇流を発生させるとともに前記
溶融金属の浴面を球面となし、真空精錬用容器器壁と溶
融金属との間に少なくとも瞬間的に0.5mm以上のギ
ャップが繰返し生じる状況を形成させ得る程度の磁界強
さを与えながら、溶融金属の上方及び/又は内部より精
錬フラックスを添加して、溶融金属中への精錬フラック
スの微細混合を図りつつ攪拌精錬することとともに溶融
金属を加熱することを特徴とする溶融金属の高純度・高
清浄度化精錬方法。(4) A fixed magnetic field generator placed around the outer circumference of the vacuum refining container applies a pinch force to the molten metal under reduced pressure contained in the vacuum refining container to generate an upward flow and raise the bath surface of the molten metal. While applying a magnetic field strength that can repeatedly create a gap of 0.5 mm or more between the wall of the vacuum refining vessel and the molten metal at least momentarily, Alternatively, a method for refining molten metal with high purity and high purity, which is characterized by adding refining flux from inside, stirring and refining while aiming at fine mixing of the refining flux into the molten metal, and heating the molten metal. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33186088A JPH02179813A (en) | 1988-12-28 | 1988-12-28 | Method for refining molten metal into high purity and high cleanliness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33186088A JPH02179813A (en) | 1988-12-28 | 1988-12-28 | Method for refining molten metal into high purity and high cleanliness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02179813A true JPH02179813A (en) | 1990-07-12 |
Family
ID=18248457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33186088A Pending JPH02179813A (en) | 1988-12-28 | 1988-12-28 | Method for refining molten metal into high purity and high cleanliness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02179813A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2812661A1 (en) * | 2000-06-05 | 2002-02-08 | Sanyo Special Steel Co Ltd | HIGH-CLEAN STEEL AND PROCESS FOR PRODUCING THE SAME |
GB2406580A (en) * | 2000-06-05 | 2005-04-06 | Sanyo Special Steel Co Ltd | High-cleanliness steel and processes for producing the same |
GB2410253A (en) * | 2000-06-05 | 2005-07-27 | Sanyo Special Steel Co Ltd | High-cleanliness steel and process for producing the same |
JP2006322060A (en) * | 2005-05-20 | 2006-11-30 | Kobe Steel Ltd | Method for producing high clean steel |
JP2007224387A (en) * | 2006-02-24 | 2007-09-06 | Jfe Steel Kk | Ladle-refining method and ladle-refining furnace |
WO2013146689A1 (en) * | 2012-03-28 | 2013-10-03 | 日立金属株式会社 | Method for producing mold steel, mold steel, method of producing pre-hardened mold material, and pre-hardened mold material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4117522Y1 (en) * | 1964-08-18 | 1966-08-15 | ||
JPS5887234A (en) * | 1981-11-19 | 1983-05-25 | Nippon Kokan Kk <Nkk> | Refining method by vacuum melting |
-
1988
- 1988-12-28 JP JP33186088A patent/JPH02179813A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4117522Y1 (en) * | 1964-08-18 | 1966-08-15 | ||
JPS5887234A (en) * | 1981-11-19 | 1983-05-25 | Nippon Kokan Kk <Nkk> | Refining method by vacuum melting |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2381537B (en) * | 2000-06-05 | 2005-09-14 | Sanyo Special Steel Co Ltd | High-cleanliness steel and process for producing the same |
US7396378B2 (en) | 2000-06-05 | 2008-07-08 | Sanyo Special Steel Co., Ltd. | Process for producing a high cleanliness steel |
GB2381537A (en) * | 2000-06-05 | 2003-05-07 | Sanyo Special Steel Co Ltd | High-cleanliness steel and process for producing the same |
GB2406580A (en) * | 2000-06-05 | 2005-04-06 | Sanyo Special Steel Co Ltd | High-cleanliness steel and processes for producing the same |
GB2410253A (en) * | 2000-06-05 | 2005-07-27 | Sanyo Special Steel Co Ltd | High-cleanliness steel and process for producing the same |
GB2406580B (en) * | 2000-06-05 | 2005-09-07 | Sanyo Special Steel Co Ltd | High-cleanliness steel and process for producing the same |
WO2001094648A3 (en) * | 2000-06-05 | 2002-08-08 | Sanyo Special Steel Co Ltd | High-cleanliness steel and process for producing the same |
GB2410253B (en) * | 2000-06-05 | 2005-09-14 | Sanyo Special Steel Co Ltd | High-cleanliness steel and process for producing the same |
FR2812661A1 (en) * | 2000-06-05 | 2002-02-08 | Sanyo Special Steel Co Ltd | HIGH-CLEAN STEEL AND PROCESS FOR PRODUCING THE SAME |
JP2006322060A (en) * | 2005-05-20 | 2006-11-30 | Kobe Steel Ltd | Method for producing high clean steel |
JP4627216B2 (en) * | 2005-05-20 | 2011-02-09 | 株式会社神戸製鋼所 | Melting method of high clean steel |
JP2007224387A (en) * | 2006-02-24 | 2007-09-06 | Jfe Steel Kk | Ladle-refining method and ladle-refining furnace |
WO2013146689A1 (en) * | 2012-03-28 | 2013-10-03 | 日立金属株式会社 | Method for producing mold steel, mold steel, method of producing pre-hardened mold material, and pre-hardened mold material |
CN104245984A (en) * | 2012-03-28 | 2014-12-24 | 日立金属株式会社 | Method for producing mold steel, mold steel, method of producing pre-hardened mold material, and pre-hardened mold material |
JPWO2013146689A1 (en) * | 2012-03-28 | 2015-12-14 | 日立金属株式会社 | Manufacturing method of steel for mold, steel material for mold, manufacturing method of pre-hardened material for mold, and pre-hardened material for mold |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lange | Thermodynamic and kinetic aspects of secondary steelmaking processes | |
JP6686837B2 (en) | Highly clean steel manufacturing method | |
JP6593233B2 (en) | Manufacturing method of high clean steel | |
WO1996017093A1 (en) | Method of refining molten metal | |
JPH02179813A (en) | Method for refining molten metal into high purity and high cleanliness | |
JP2018066031A (en) | Manufacturing method of high cleanliness steel | |
US3251680A (en) | Method and apparatus for treating steels | |
WO2021157628A1 (en) | PRODUCTION METHOD FOR Ti-AL BASED ALLOY | |
JP6547638B2 (en) | Method of manufacturing high purity steel | |
Dutta et al. | Secondary steelmaking | |
JP3654248B2 (en) | Method for refining molten metal | |
JPS5887234A (en) | Refining method by vacuum melting | |
JP3377325B2 (en) | Melting method of high cleanness ultra low carbon steel | |
JP3465801B2 (en) | Method for refining molten Fe-Ni alloy | |
RU2201458C1 (en) | Method of modification of steel | |
JP2538879B2 (en) | Method for refining molten metal | |
JP6848429B2 (en) | Steelmaking slag reforming method | |
SU789591A1 (en) | Method of producing low-carbon steel | |
JPH06221774A (en) | Method and device for smelting molten metal | |
JPH04202710A (en) | Vacuum refining method | |
JPH08143943A (en) | Method for refining molten metal | |
JP3282530B2 (en) | Method for producing high cleanliness low Si steel | |
JPH0364567B2 (en) | ||
JPH01216A (en) | Method for refining molten metal | |
JPH08143932A (en) | Method for refining molten metal |