JP3654248B2 - Method for refining molten metal - Google Patents

Method for refining molten metal Download PDF

Info

Publication number
JP3654248B2
JP3654248B2 JP2002005425A JP2002005425A JP3654248B2 JP 3654248 B2 JP3654248 B2 JP 3654248B2 JP 2002005425 A JP2002005425 A JP 2002005425A JP 2002005425 A JP2002005425 A JP 2002005425A JP 3654248 B2 JP3654248 B2 JP 3654248B2
Authority
JP
Japan
Prior art keywords
molten steel
refining
ladle
slag
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002005425A
Other languages
Japanese (ja)
Other versions
JP2003213319A (en
Inventor
勝彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002005425A priority Critical patent/JP3654248B2/en
Publication of JP2003213319A publication Critical patent/JP2003213319A/en
Application granted granted Critical
Publication of JP3654248B2 publication Critical patent/JP3654248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は溶融金属、特に溶鋼の精錬方法に関し、精錬速度及び精錬反応の内容に強く影響を与える溶鋼、ガス及びスラグ間の攪拌方法に関するものである。
【0002】
【従来の技術】
溶鋼の酸化、還元、脱ガス、脱非金属介在物等の精錬において溶鋼とスラグの攪拌は反応促進の重要なキーとなっている。溶解炉において粗精錬された溶鋼はレードルに移されスラグレス又は適切なスラグのもとで攪拌装置、脱ガス装置、加熱装置などを駆使して製品仕様及び次の鋳造工程に適合するよう、(1)溶鋼成分、温度の均一化と的中、(2)脱酸、脱硫、脱非金属介在物、脱炭、脱ガス等の溶鋼の清浄化、(3)スラグ中の有用成分の還元回収等の仕上精錬がなされている。
【0003】
製品品質は主に精錬内容とその水準に、精錬コストは精錬内容と精錬速度に強く関わっている。速度が小さいと結果的に再加熱の必要や耐火物の消耗などによりコスト増になる。どの精錬方法においても溶鋼、スラグ及び精錬媒体ガスの攪拌は精錬速度に大きな影響力を持つ。
【0004】
精錬速度に影響する攪拌の目安として、通常攪拌エネルギー密度即ち溶鋼単位質量当たりの動力E(W/トン)が使用される。
【0005】
一方精錬能率の主体をなす反応速度は次式に示される反応速度係数k(1/min)が使用される。
(C−Ce)/(Co−Ce)=exp(−k×t)
C;濃度(1/1),Ce;平衡濃度,Co;初期濃度,t;時間(分)
上記特性値Eとkを基に種々の攪拌方法の先行事例を比較、検討する。
【0006】
事例(1)
特公平1−46563号公報及び文献1には以下の内容が開示されている。
レードル上方の雰囲気圧を30〜150torrに減圧しつつ容器底部より溶鋼内にガスを吹き込むことにより溶鋼上層部が強力に攪拌される。レードル容量が小さい故にその攪拌エネルギー密度Eは0.2(kW/トン)、脱酸速度係数kは0.4(1/分)に達すると示され数分で精錬が完了するほど早い。
【0007】
欠点として、減圧下のガス・バブリングは、原理上溶鋼上層部の攪拌は強烈であるが下層部では限られた量の吹き込みガスの膨張・浮上による攪拌だけであるから極めて弱くこれが反応律速になっている。従って小容量レードルでは成功しても大容量レードルには不都合という問題がある。
文献1; The Institute of Metals; 3rd International Conference on CleanSteel,1985,June,P.250
【0008】
事例(2)
特開平7−179927号公報には、上記方法において、上記問題解決のため吹込みガス量、雰囲気圧などの処理条件を適正化する方法が提示されている。本方法により改善はなされるが大容量レードルにおける反応速度の低下は否めない。
【0009】
事例(3)
ASEA JOURNAL4,1971に溶鋼の誘導攪拌について各種の方法が詳細に述べられている。移動磁界装置を円筒状のレードルの側面に配置して溶鋼を壁面に沿って上方または下方に流動させる型式、レードル外周に移動磁界コイルを同軸に配置してレードル壁面全周に沿って上昇流を与える型式、同様にソレノイド型単相コイルにより溶鋼にピンチ力を作用させて攪拌する型式など示されている。いずれの方法においても平均攪拌エネルギー密度Eは0.1(kW/トン)程度は得られそうで、反応は促進される。
【0010】
問題の一つはスラグは直接攪拌されない上に溶鋼とスラグ間の接触は層流的であるので両相間の反応は強くない。第2の問題は低周波による穏やかな且つ不定形な流れであるからスラグによって処理された溶鋼と未処理溶鋼が漫然と混合し、精錬反応は漸減的になる。脱酸速度係数kは通常0.1〜0.2(1/分)程度と推定される。従って脱酸、脱硫、脱非金属介在物等スラグによる精錬が主体をなす場合には精錬時間の短縮はあまり期待できず再加熱の必要性が生ずる。その結果スラグによる耐火物の溶蝕と言う問題も生ずる。
【0011】
事例(4)
いわゆるASEA−SKF法と称しレードルに上記誘導攪拌装置、真空脱ガス装置及びアーク再加熱装置を付設して高度精錬を行う方法がある。上記同等のEとkの値が得られる。
【0012】
この場合、長時間の精錬に耐えるためレードル壁面のスラグ・レベルには塩基性高級耐火物が使用される。当該耐火物は熱伝導、熱容量とも大きく溶鋼の熱損を招き再加熱負荷を大きくする。これが耐火物の溶蝕を助長させる。高度の品質が得られるが設備費の他、精錬時間、電力、電極棒、耐火物などコスト上の問題が大きい。
【0013】
事例(5)
特開平11−335719号公報には、円筒状のタンディシュの中の溶鋼を水平回転磁界により遠心攪拌しつつガス吹込み条件を特定して微細気泡を分散させ、非金属介在物の浮上分離を促進させる方法が提示されている。
【0014】
気泡分散に対して攪拌が効果的に利用されているが、問題は、遠心攪拌は意外に混合性が大きくない。即ち均一化時間が小さくないので多くの精錬反応では必ずしも効果的ではない。また精錬作用が気泡による非金属介在物の吸着と分離にとどまり、単機能故に他の精錬効果を求めることには無理がある。
【0015】
【発明が解決しようとする課題】
本発明はレードル精錬工程における上記問題点を解決するため、溶融金属の効果的な誘導攪拌と減圧下のガス・バブリングとの相乗効果により溶鋼−スラグ−ガス−疑似真空間の反応を促進して多様な精錬を高効率即ち短時間で且つ低コストで実施できる精錬方法を提供するものである。
【0016】
【課題を解決するための手段】
上記目的を達成するため反応速度のキーとなっている攪拌エネルギー密度を再検討し二つの指針を得た。一つは、公知の攪拌エネルギー密度Eと反応速度係数kとの経験的関係式(図4参照)は必ずしも反応速度の限界を規定するものではない。律速過程が存在し、反応領域へのマクロ物質移動にあるらしい。与えた攪拌エネルギーはこの物質移動に対して効果的に作用していない。
【0017】
もう一つの指針は、従来の種々の攪拌方法では容器の中で回分式に処理され一見規則的攪拌に見えても反応進行部、既反応部、未反応部の三者が漫然と混合するので効率的な反応進行ではない。即ち上記2点から攪拌の様態次第で反応高速化の可能性があることに気づき、実験によりこの仮説がほぼ立証できたので以下の発明を構成した。
【0018】
本発明の第1は、回転磁界と回転軸方向移動磁界を合成した螺旋回転磁界を発する電磁コイルを直立する円筒状の冶金容器の外周に該容器中心軸と同軸に配置することにより該容器内の溶鋼に螺旋回転攪拌を付与することを特徴とする溶融金属の精錬方法である。
【0019】
第2の発明は第1の発明において、溶融金属を溶鋼とし、冶金容器をレードルとし、螺旋回転磁界の推力の方向を下方とし、該レードル底面より精錬用ガスを該溶鋼中に吹き込み、該溶鋼上方の雰囲気を減圧することにより該溶鋼中に含気泡上昇トルネード流を発生せしめ、該レードル内の下層の溶鋼を上層へ移動・促進せしめることを特徴とする溶融金属の精錬方法である。
【0020】
第3の発明は第2の発明において、精錬用ガスの流量を2〜20Nリットル/分/溶鋼トンとし、雰囲気圧を3〜30kPaに維持し、螺旋回転磁界の回転数をレードル内壁面における周速が0.5〜20m/秒となるよう設定することを特徴とする溶融金属の精錬方法である。
【0021】
第4の発明は第1の発明において、溶融金属を溶鋼とし、冶金容器をレードルとし、該溶鋼上に精錬用スラグを置き、該レードル底面より精錬用ガスを2〜20Nリットル/分/溶鋼トンの流量で該溶鋼中に吹き込み、該スラグ上方の雰囲気圧を3〜30kPaに維持し、螺旋回転磁界の推力の方向を上方とし、渦流の回転数を10〜60rpmとして該溶鋼上面を放物面状に陥没させ、浮遊している該スラグとレードル内壁面の耐火物との接触反応を抑制しつつ該レードル内の下層の溶鋼を上層へ移動・促進することを特徴とする溶融金属の精錬方法である。
【0022】
第5の発明は第3又は第4の発明において、Mn、Cr、Ni、Cu、V、Nb、Mo、W、Zn,Pbの酸化物の1種以上を精錬用スラグ中に含有させ、還元剤としてC、Si、Al、Ca、CaC、SiCの1種以上を上記金属の酸化物とほぼ化学的等量で溶鋼又はスラグ中に添加して上記金属を還元回収することを特徴とする溶融金属の精錬方法である。
【0023】
第6の発明は第5の発明を使用して、蒸発性不純物であるZn,Pb,Sb,Asを含有している溶鋼から、又は上記金属の酸化物を含有しているスラグから、上記金属を蒸発除去することを特徴とする溶融金属の精錬方法である。
【0024】
【発明の実施の形態】
以下、本発明を図面に従って説明する。図1は第1の発明に適用される精錬装置を例示する概略側面図である。
【0025】
非磁性鋼板の外皮に耐火物2で内張りされた円筒状の冶金容器1を直立させ、溶融金属3を保持する。該容器1の外周に、該容器1の中心軸4と同軸に一般的な回転磁界装置5が配置され、通電による回転磁界の発生により、該溶融金属3は磁界に引きずられて回転運動即ち渦流が発生する。
【0026】
このとき該回転磁界装置5を昇降機6により上下に大きく往復運動をさせると、同様に溶鋼も上下動の電磁力を受ける。上昇時は電流を切り、下降時のみ通電すると間欠的であるが下向き螺旋回転磁界が発生する。該溶融金属3は該容器1の壁面に沿って螺旋下降し、底面に達して、底面中央部から上昇する。上層部は順次周辺に引き寄せら容器内全体の循環流7が形成される。該循環流7は必ずしも定型的、安定的ではないが、加えられた攪拌エネルギーは局所的混合にあまり浪費されず、溶融金属各部は主たる反応領域である上層部に効果的に移動する。
【0027】
螺旋回転磁界の発生方法についてはこの他にも考え得るが例示に止める。
【0028】
図2は第2の発明の精錬方法に適用される装置の構造を例示する概略側面図である。第2の発明は第1の発明をレードル精錬に応用した例で、気密性且つ非磁性の鉄皮で形成された円筒状のレードル11の中に溶鋼13を保持し、螺旋回転磁界を発する電磁コイル15を該レードル11の外周に該レードル中心軸14と同軸に配置し、通電することにより該溶鋼13に螺旋回転攪拌を与える。
【0029】
一方排気管16を付設した真空カバー17で該レードル11を密閉し、該レードル内空間を真空ポンプ18により排気することにより精錬雰囲気を所定圧に維持することができる。
【0030】
該レードル11の底面より耐火物製の通気プラグ19を介してArガス等の精錬ガスを適切な流量で該溶鋼13中に吹き込むと、浮上する気泡群は螺旋回転攪拌の作用を受けレードル中心軸周辺にトルネード流(竜巻状渦)を形成し、強力な上昇流となって螺旋回転攪拌による循環流7が安定的に強化される。
【0031】
ガス吹き込みにより沸騰状態にある溶鋼、スラグ表面は真空ポンプの作動により、雰囲気圧が低下すると様相が一変し発泡状になる。そこでは猛烈な攪乱によって気泡−スラグ−溶鋼−疑似真空の4相混合域21が形成される。
【0032】
精錬処理条件に従い、該混合域21で脱酸、脱硫、脱非金属介在物、脱ガス、還元などの諸反応が急速に進行する。公知のように、スラグレスであれば脱ガスに対して、非酸化性塩基性スラグであれば脱酸・脱硫に対して、酸性スラグであれば脱非金属介在物に対して、還元性スラグであれば有用金属酸化物の還元回収に対してそれぞれ効果的精錬が進む。
【0033】
図3は第4の発明の精錬方法に適用される装置の構造を例示する概略側面図である。第4の発明は第2の発明において螺旋回転攪拌の推力方向を上下逆転したもので、強力なトルネード流は形成されにくいが循環流7’は形成される。同様に溶鋼上層部の発泡現象も随伴する。
【0034】
電磁コイルの位置、磁束密度、回転数、推力等の攪拌条件を適切に設定すると、強力な渦流により溶鋼上面が放物面状に陥没し、且つ溶鋼より低密度のスラグは遠心力差で中央に引き寄せられる。スラグ/耐火物間接触反応を抑制したい場合には当該攪拌方法が有効である。
【0035】
第3、第4の発明を実施する際、Cr,V等酸素との親和力が比較的強くない合金元素の酸化物とほぼ化学等量分のC,Si等の還元剤を溶鋼又はスラグ中に追加すると、上記酸化物は急速に還元されほぼ全量溶鋼中に回収される。
【0036】
前項同様に、産業廃棄物的である電気炉製鋼ダストを添加すると、ダスト中に多量に含有しているZn,Pb等は溶鋼中のC、Si等により急速に還元され蒸発する。
【0037】
該蒸気は排気管16の途中で酸化処理を受けつつ集塵機22に誘導され、そこで高濃度酸化物として回収することができる。
【0038】
【作用】
適切な螺旋流は精錬反応に極めて有効であることを次に説明する。透明円筒容器と回転攪拌翼を用いた水モデルによって流れと混合の状況を観察した。単純渦流の場合、インキを渦のどの部分に滴下しても同心円状に拡散するが意外に均一化が遅い。
【0039】
容器内面に部分的に螺旋案内翼を取り付けると回転方向に依存して容易に上昇または下降の螺旋流が得られた。そして円筒芯部と周辺部が上下逆方向の比較的安定・規則的な循環流が観察された。この場合インキや懸濁物は急速に均一化した。第1の発明はこの事実をもとに構成された。
【0040】
円筒内の単純渦流に底部よりガス吹込みを加えると回転と上昇の合成により螺旋流が認められ、芯部上昇・周辺部下降の循環流も得られた。同時に不安定だが状況により含気泡トルネードの発生も見られた。
【0041】
螺旋案内翼により下向き螺旋攪拌しつつ円筒底部よりガス吹込みを加えると含気泡トルネードと循環流が安定的に持続した。
【0042】
次に液面上方を減圧して行くと、液面は急速に上昇し沸騰状から発泡状に変化して気相・液相・泡のそれぞれの境界面が不明瞭になり攪乱の激しさとともにトルネードと循環流が維持されることが観察された。第2の発明はこの観察事実に基づいて構成された。
【0043】
次に攪拌エネルギーについて検討する。吹き込まれた精錬用ガスは該プラグ19上で気泡を形成するとともに直ちに昇温・膨張して最初の攪拌エネルギーが発生する。次に気泡の上昇と緩やかな膨張による第2の攪拌動エネルギー、液面直下に接近すると気泡外圧(=溶鋼静圧+雰囲気圧)の急減による急膨張で第3の攪拌エネルギーが発生する。
【0044】
各種反応自体は既述のように大部分は発泡・攪乱状態にある気泡−スラグ−溶鋼−疑似真空の4相混合域20で進行し、且つ周知のように反応自体の速度は極めて大きい。これは充分な量である第3の攪拌エネルギーからもたらされる。一方種々のプロセスにおいて攪拌エネルギーの増加につれ全体の反応速度が増加するという事実は反応領域への物質移動が律速となっていることを示唆している。
【0045】
先行事例(2)に説明されているように単なる減圧下のガス・バブリングでは通常第3の攪拌エネルギー量に対して第1、第2の攪拌エネルギー量は充分ではない。第1の発明は上記第1,第2の攪拌エネルギーを補強するものである。
【0046】
攪拌エネルギーの量とともに攪拌エネルギーの作用のあり方も重要である。即ち混合域以外に与えた攪拌エネルギーが主に当該物質移動に消費されるのが望ましい。そのためには攪拌エネルギーが局所攪乱には消費されず、大きな安定的循環流が形成されことが必要である。第1の発明は攪拌エネルギーの強化だけではなく、加えた攪拌エネルギーが循環流の形成を通して物質移動に効果的に作用するメカニズムを具体化したものでもある。
【0047】
次に第3,第4の発明における処理条件の特定化の根拠を述べる。精錬用ガス流量を2〜20Nリットル/分/溶鋼トンとしたのは、2Nリットル/分/溶鋼トン未満では作用力が不足、20Nリットル/分/溶鋼トンを越えると気泡の合体により吹き抜け現象が発生し易くなるためである。
【0048】
雰囲気圧を3〜30kPaとしたのは、3kPa未満では脱ガスには有利だが排気装置としてスチーム・エジェクターが必要になりエネルギーコスト上不利になる。3kPa以上では設備・操業ともコスト有利な各種ポンプが使用可能となる。30kPaを越えると減圧下のガス・バブリングの効果が小さくなる。
【0049】
螺旋回転磁界の回転数を溶鋼外周面での周速が0.5〜20m/分となるよう特定した根拠は、誘導される導体即ち溶鋼と移動磁界の相対速度が小さいと誘導電磁力は小さく、逆に大きいと表皮効果により鉄皮や溶鋼表皮部で誘導加熱として消費され電磁力が小さくなるからである。事例及び実験から上記範囲が概ね実用可能という事実に基づく。
【0050】
第4の発明において渦流の回転数を10〜60rpmと特定した理由は以下である。螺旋流の強さがある限度を越えると渦流を形成する。渦表面の形状は放物面になる。陥没の深さは強制渦の方程式より容器内径と回転数の積の二乗に比例する。渦は溶融金属の表面を覆っているスラグを向心させ耐火物壁面から離反させる。10rpm以下では大型レードルにおいても陥没深さが0.2m以下となり、スラグの向心力も弱くスラグが壁面耐火物から離反しないからである。60rpm以上では小型レードルでも渦深さは1mを越え、危険性が増すからである。
【0051】
第5の発明は、事例(1)、事例(2)の方法が開示はしていないが潜在的に保有している強力な還元精錬能、即ち有用元素酸化物の還元回収を効果的に具体化したものである。周知のように、スラグ中の酸化物の還元反応はスラグ内から溶鋼/スラグ界面への物質移動が律速となっている。減圧下のガス・バブリングは溶鋼/スラグ間攪乱に極めて好都合であり、電磁力による循環流の付加は還元から仕上げまでを効率的に処理することを可能とする。
【0052】
還元対象元素としてはMn,Cr,Ni,Cu,V,Nb,Mo,W,Zn,Pb等があげられる。Zn,Pbは製鋼温度では蒸気圧が大きいので溶鋼中には回収されず、蒸気として系外に排出され、例えば集塵機22で回収される。還元剤としてはC,Si,Al,Ca,CaC,SiC等が実用的である。
【0053】
鉄源として低級スクラップを多量に使用した場合、溶鋼中にはZn,Pb,Sb,As等の不純物、スラグ中にはそれらの酸化物が残存、増加して品質低下になるが第3,第4の発明の適用により還元、蒸発により除去される。
【0054】
【実施例】
実験1(第3発明の検証)
高炭素鋼を対象に容量30トンの同一レードルを使用し、脱酸速度係数について比較例として事例(1)の方法と本発明の方法を比較した。数10チャージの比較例の処理条件と結果は、溶解炉からの受鋼時の温度は1570〜1590℃、非酸化性の塩基性スラグを未脱酸溶鋼に上置し、溶解酸素量は65〜85ppm、雰囲気圧力は約14〜21kPa、Arガスの吹き込み量は150〜200Nリットル/分、処理時間は3〜9分。精錬終了時の溶解酸素量は18〜32ppm、溶鋼温度は1535から1540℃、脱酸速度係数kは平均0.36(1/分)となった。
【0055】
上記と同様の条件において本発明の下向き螺旋回転攪拌を適用した。入力160kVA、周波数1Hzの2極回転磁界をレードルの下1/3の領域に作用させた。電磁力の正確な計算ないし実測が困難なため磁束密度分布測定値と磁界移動速度から概算して攪拌エネルギー密度は約0.2kW/トンと推測した。処理時間は2.5から6.0分、終了時の溶解酸素量は13〜24ppmm、溶鋼温度は1540から1550℃、脱酸速度係数kは約0.5〜0.7に増加して精錬能率が向上した。脱酸速度係数の増加によって脱酸のみならず、脱硫その他の精錬についても能率向上の基盤が確立される。
【0056】
実験2(第4及び第5発明の検証)
ばね鋼を対象に実験1と類似の条件で、両者とも出鋼時にCr鉱石をCr分で1.0%相当、酸化VをV分で0.15%相当を投入し、精錬直前にスラグ上にFe−Si粉をCr、Vの還元に必要な化学等量分を添加した。
【0057】
両者ともスラグ中のCr濃度は初期の約30%から0.4〜0.7%まで減少しCrの還元回収が充分なされたが、比較例では8分以上かかり、本発明で5分以内で処理できた。
【0058】
実験3(第6発明の検証)
上記同様に、脱Zn反応の確認と比較を行った。電気炉溶解工程で電気炉ダストを溶鋼量の約1%挿入した。ダストの組成はZnOが約25%、FeOが約55%である。比較例ではZnはレードル精錬後のスラグ中に0.01〜0.03%、溶鋼中に10〜30ppm残存、本発明ではそれぞれ0.01〜0.02%、8〜16ppmの残存となり、脱Znが効率よくなされた。
【0059】
【発明の効果】
本発明によれば第1の発明では円筒状容器内の溶融金属に円筒内面に沿う螺旋状の電磁誘導攪拌流を生じさせるので非反応領域から反応領域への物質移動を促進させ、精錬諸反応を促進させる。第2の発明では下向き螺旋流と減圧下のガス・バブリングの相互作用によりガス−スラグ−溶鋼−疑似真空間の強烈な接触反応の領域に、含気泡トルネード流を伴う循環流を相乗的に作用させるので一層精錬諸反応を促進させる。第3の発明は上記第2の発明の具体条件を提示したものである。第5の発明を使用するとスラグ中に添加されたCr鉱石のような合金元素の酸化物が高速、且つ歩留まり良く還元回収され、しかも耐火物溶損が少ないのでコスト上有利となる。第6の発明では溶鋼ないしスラグ中のZn等の有害酸化物が容易に蒸発除去される。この効果は低級スクラップの使用拡大や産業破棄物的な電気炉ダストの溶解処理を可能とする等、コスト上極めて効果が大きい。
【図面の簡単な説明】
【図1】第1の発明に適用される精錬装置を例示する概略側面図である。
【図2】第2の発明に適用される精錬装置を例示する概略側面図である。
【図3】第3の発明に適用される精錬装置を例示する概略側面図である。
【図4】攪拌エネルギー密度Eと脱酸速度係数kの関係を示す図である。
【符号の説明】
1:冶金容器 2:耐火物 3:溶融金属 4:中心軸 5:回転磁界装置 6:昇降機 7,7’:循環流 11:レードル 13:溶鋼 14:中心軸 15:電磁コイル 16:排気管 17:真空カバー 18:真空ポンプ 19:通気プラグ 20:トルネード流 21:4相混合域 22:集塵機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for refining molten metal, particularly molten steel, and relates to a method for stirring between molten steel, gas, and slag that strongly affects the refining speed and the content of the refining reaction.
[0002]
[Prior art]
In the refining of oxidation, reduction, degassing, and non-metallic inclusions of molten steel, stirring of molten steel and slag is an important key for promoting the reaction. In order to meet the product specifications and the next casting process, the molten steel that has been refined in the melting furnace is transferred to a ladle and used with slagless or appropriate slag by using a stirrer, degasser, heating device, etc. ) Molten steel components, temperature uniformity and target, (2) Deoxidation, desulfurization, denon-metallic inclusions, decarburization, degassing, etc. of molten steel, (3) Reduction recovery of useful components in slag, etc. The finishing refining is done.
[0003]
Product quality is mainly related to refining content and level, and refining cost is strongly related to refining content and refining speed. Lower speed results in increased costs due to the need for reheating and refractory consumption. In any refining method, stirring of molten steel, slag and refining medium gas has a great influence on the refining speed.
[0004]
As a measure of stirring that affects the refining speed, a stirring energy density, that is, power E (W / ton) per unit mass of molten steel is usually used.
[0005]
On the other hand, the reaction rate coefficient k (1 / min) shown in the following equation is used as the reaction rate that forms the main part of the refining efficiency.
(C−Ce) / (Co−Ce) = exp (−k × t)
C: concentration (1/1), Ce: equilibrium concentration, Co: initial concentration, t: time (minutes)
Based on the above characteristic values E and k, the preceding examples of various stirring methods are compared and examined.
[0006]
Case (1)
Japanese Patent Publication No. 1-46563 and Document 1 disclose the following contents.
The upper part of the molten steel is strongly stirred by blowing gas into the molten steel from the bottom of the container while reducing the atmospheric pressure above the ladle to 30 to 150 torr. Since the ladle capacity is small, the stirring energy density E is 0.2 (kW / ton) and the deoxidation rate coefficient k is 0.4 (1 / min), and the refining is completed in a few minutes.
[0007]
Disadvantageously, gas bubbling under reduced pressure is extremely weak in the upper part of the molten steel in principle, but is extremely weak in the lower part because it is only agitated by the expansion and levitation of a limited amount of blown gas. ing. Therefore, there is a problem that even if the small-capacity ladle is successful, the large-capacity ladle is inconvenient.
Reference 1; The Institute of Metals; 3rd International Conference on CleanSteel, 1985, June, P.250
[0008]
Case (2)
Japanese Laid-Open Patent Publication No. 7-179927 proposes a method for optimizing processing conditions such as the amount of blown gas and atmospheric pressure in order to solve the above problems. Although this method is improved, the reaction rate in a large-capacity ladle cannot be reduced.
[0009]
Case (3)
In ASEA JOURNAL 4,1971, various methods for induction stirring of molten steel are described in detail. A type in which the moving magnetic field device is arranged on the side surface of the cylindrical ladle so that the molten steel flows upward or downward along the wall surface, and the moving magnetic field coil is coaxially arranged on the outer periphery of the ladle so that upward flow is generated along the entire circumference of the ladle wall surface. The type to give, the type which stirs by applying a pinch force to molten steel with a solenoid type single phase coil similarly, etc. are shown. In either method, an average stirring energy density E of about 0.1 (kW / ton) is likely to be obtained, and the reaction is promoted.
[0010]
One of the problems is that the slag is not directly stirred and the contact between the molten steel and the slag is laminar, so the reaction between the two phases is not strong. The second problem is a gentle and irregular flow due to a low frequency, so that the molten steel treated by the slag and the untreated molten steel are mixed gently, and the refining reaction becomes gradually decreasing. The deoxidation rate coefficient k is usually estimated to be about 0.1 to 0.2 (1 / min). Therefore, when refining by slag such as deoxidation, desulfurization, denon-metallic inclusions, etc. is the main, shortening of the refining time cannot be expected so much and reheating is required. As a result, there arises a problem of refractory corrosion due to slag.
[0011]
Case (4)
There is a so-called ASEA-SKF method, and there is a method in which the above-mentioned induction stirring device, vacuum degassing device and arc reheating device are attached to a ladle to perform high-level refining. Equivalent values of E and k are obtained.
[0012]
In this case, a basic high-grade refractory is used for the slag level of the ladle wall in order to endure refining for a long time. The refractory material has large heat conduction and heat capacity, which causes the heat loss of the molten steel and increases the reheating load. This promotes refractory corrosion. Although high quality can be obtained, in addition to equipment costs, there are significant cost problems such as refining time, electric power, electrode rods, and refractories.
[0013]
Case (5)
In JP-A-11-335719, the molten steel in a cylindrical tundish is centrifugally agitated by a horizontal rotating magnetic field while gas blowing conditions are specified to disperse fine bubbles and promote the floating separation of nonmetallic inclusions. A way to do it is presented.
[0014]
Stirring is effectively used for bubble dispersion, but the problem is that centrifugal stirring is not surprisingly high in mixing. That is, since the homogenization time is not small, it is not always effective in many refining reactions. Also, the refining action is limited to the adsorption and separation of nonmetallic inclusions by bubbles, and it is impossible to obtain other refining effects because of the single function.
[0015]
[Problems to be solved by the invention]
In order to solve the above-mentioned problems in the ladle refining process, the present invention promotes the reaction between molten steel-slag-gas-pseudo-vacuum by synergistic effect of effective induction stirring of molten metal and gas bubbling under reduced pressure. The present invention provides a refining method capable of performing various refining with high efficiency, that is, in a short time and at low cost.
[0016]
[Means for Solving the Problems]
In order to achieve the above objective, we reviewed the stirring energy density, which is the key to the reaction rate, and obtained two guidelines. For one, the known empirical relationship between the stirring energy density E and the reaction rate coefficient k (see FIG. 4) does not necessarily define the limit of the reaction rate. There seems to be a rate-limiting process and macro mass transfer to the reaction zone. The applied stirring energy does not act effectively on this mass transfer.
[0017]
Another guideline is that various conventional stirring methods are processed batch-wise in a container, and even if it seems to be regular stirring at first glance, the reaction progressing part, the already reacted part, and the unreacted part are mixed gently, so the efficiency is high. It is not a typical reaction progress. That is, from the above two points, it was noticed that there was a possibility of speeding up the reaction depending on the state of stirring, and this hypothesis was almost verified by experiments, so the following invention was constructed.
[0018]
In the first aspect of the present invention, an electromagnetic coil that generates a helical rotating magnetic field obtained by combining a rotating magnetic field and a moving magnetic field in the rotational axis direction is disposed on the outer periphery of a cylindrical metallurgical container upright and coaxially with the central axis of the container. This is a method for refining a molten metal, characterized in that spiral molten stirring is applied to the molten steel.
[0019]
According to a second invention, in the first invention, the molten metal is molten steel, the metallurgical vessel is a ladle, the direction of thrust of the spiral rotating magnetic field is downward, and a refining gas is blown into the molten steel from the bottom of the ladle. A molten metal refining method characterized by generating a bubble-containing tornado flow in the molten steel by depressurizing the upper atmosphere, and moving and promoting the lower molten steel in the ladle to the upper layer.
[0020]
According to a third invention, in the second invention, the flow rate of the refining gas is 2 to 20 N liters / minute / ton of molten steel, the atmospheric pressure is maintained at 3 to 30 kPa, and the rotational speed of the spiral rotating magnetic field is set on the inner wall surface of the ladle. It is a molten metal refining method characterized in that the speed is set to 0.5 to 20 m / sec.
[0021]
According to a fourth invention, in the first invention, the molten metal is molten steel, the metallurgical vessel is a ladle, a smelting slag is placed on the molten steel, and the smelting gas is 2 to 20 N liters / minute / molten steel ton from the bottom of the ladle. The molten steel is blown into the molten steel at a flow rate of, the atmospheric pressure above the slag is maintained at 3 to 30 kPa, the direction of thrust of the spiral rotating magnetic field is upward, the rotational speed of the vortex is 10 to 60 rpm, and the upper surface of the molten steel is parabolic A molten metal refining method characterized in that the molten steel of the lower layer in the ladle is moved and promoted to the upper layer while suppressing the contact reaction between the floating slag and the refractory on the inner wall surface of the ladle. It is.
[0022]
The fifth invention is the third or fourth invention, wherein one or more oxides of Mn, Cr, Ni, Cu, V, Nb, Mo, W, Zn, and Pb are contained in the slag for refining and reduced. One or more of C, Si, Al, Ca, CaC 2 , and SiC as an agent is added to molten steel or slag in a substantially chemical equivalent amount to the metal oxide, and the metal is reduced and recovered. This is a method for refining molten metal.
[0023]
The sixth invention uses the fifth invention, from the molten steel containing evaporable impurities Zn, Pb, Sb, As, or from the slag containing the metal oxide, the metal This is a method for refining molten metal, characterized by evaporating and removing water.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings. FIG. 1 is a schematic side view illustrating a refining apparatus applied to the first invention.
[0025]
A cylindrical metallurgical vessel 1 lined with a refractory 2 is erected on the outer skin of a nonmagnetic steel plate to hold the molten metal 3. A general rotating magnetic field device 5 is disposed on the outer periphery of the container 1 coaxially with the central axis 4 of the container 1. When a rotating magnetic field is generated by energization, the molten metal 3 is dragged by the magnetic field to rotate, that is, eddy current. Will occur.
[0026]
At this time, when the rotating magnetic field device 5 is reciprocated up and down largely by the elevator 6, the molten steel also receives the electromagnetic force of the vertical movement. When the current is raised, the current is cut off, and when the current is lowered only, the downward spiral rotating magnetic field is generated. The molten metal 3 spirally descends along the wall surface of the container 1, reaches the bottom surface, and rises from the center of the bottom surface. The upper layer portion is sequentially drawn to the periphery to form a circulating flow 7 throughout the container. Although the circulating flow 7 is not necessarily regular and stable, the added stirring energy is not wasted much in the local mixing, and each part of the molten metal is effectively transferred to the upper layer part which is the main reaction region.
[0027]
Although the generation method of the spiral rotating magnetic field can be considered in addition to this, it is only illustrated.
[0028]
FIG. 2 is a schematic side view illustrating the structure of an apparatus applied to the refining method of the second invention. The second invention is an example in which the first invention is applied to ladle refining, in which a molten steel 13 is held in a cylindrical ladle 11 formed of an airtight and non-magnetic iron skin, and an electromagnetic wave that generates a spiral rotating magnetic field is generated. A coil 15 is arranged on the outer periphery of the ladle 11 coaxially with the ladle central shaft 14 and energized to give spiral stirring to the molten steel 13.
[0029]
On the other hand, the refining atmosphere can be maintained at a predetermined pressure by sealing the ladle 11 with the vacuum cover 17 provided with the exhaust pipe 16 and exhausting the space inside the ladle with the vacuum pump 18.
[0030]
When a refining gas such as Ar gas is blown into the molten steel 13 through the refractory vent plug 19 from the bottom surface of the ladle 11 at an appropriate flow rate, the rising bubbles are subjected to the action of spiral rotation stirring and the center axis of the ladle A tornado flow (tornado-like vortex) is formed in the periphery, and becomes a strong upward flow, and the circulation flow 7 by spiral rotation stirring is stably strengthened.
[0031]
The molten steel and slag surfaces that are in a boiling state due to gas blowing are foamed as the appearance changes when the atmospheric pressure is lowered by the operation of the vacuum pump. There, a four-phase mixed zone 21 of bubble-slag-molten steel-pseudo-vacuum is formed by severe disturbance.
[0032]
In accordance with the refining treatment conditions, various reactions such as deoxidation, desulfurization, denon-metallic inclusions, degassing, and reduction proceed rapidly in the mixing zone 21. As is well known, for slagless, degassing, for non-oxidizing basic slag, for deoxidation / desulfurization, for acidic slag, for de-non-metallic inclusions, for reducing slag, If there is, effective refining progresses for the reduction and recovery of useful metal oxides.
[0033]
FIG. 3 is a schematic side view illustrating the structure of an apparatus applied to the refining method of the fourth invention. The fourth invention is the one in which the thrust direction of the spiral rotation stirring is reversed upside down in the second invention, and a strong tornado flow is hardly formed, but a circulating flow 7 'is formed. Similarly, the foaming phenomenon of the upper part of the molten steel is accompanied.
[0034]
If the stirring conditions such as the position of the electromagnetic coil, magnetic flux density, rotation speed, thrust, etc. are set appropriately, the upper surface of the molten steel will collapse into a parabolic surface due to strong eddy currents, and the slag with a lower density than the molten steel will be centered by the difference in centrifugal force. Be drawn to. The stirring method is effective when it is desired to suppress the slag / refractory contact reaction.
[0035]
When carrying out the third and fourth inventions, an oxide of an alloying element having a relatively low affinity for oxygen such as Cr and V and a reducing agent such as C and Si in an amount equivalent to chemical equivalents are contained in the molten steel or slag. In addition, the oxide is rapidly reduced and recovered almost entirely in the molten steel.
[0036]
As in the previous section, when electric furnace steelmaking dust that is industrial waste is added, Zn, Pb, etc. contained in a large amount in the dust are rapidly reduced and evaporated by C, Si, etc. in the molten steel.
[0037]
The steam is guided to the dust collector 22 while being oxidized in the middle of the exhaust pipe 16, and can be recovered there as a high concentration oxide.
[0038]
[Action]
It will be explained next that an appropriate spiral flow is very effective for the refining reaction. The flow and mixing conditions were observed by a water model using a transparent cylindrical vessel and a rotating stirring blade. In the case of a simple vortex, the ink diffuses concentrically regardless of where the ink is dropped, but it is surprisingly slow to homogenize.
[0039]
When the spiral guide vanes were partially attached to the inner surface of the container, an upward or downward spiral flow was easily obtained depending on the direction of rotation. A relatively stable and regular circulation flow was observed in which the cylindrical core and the peripheral part were upside down. In this case, the ink and suspension were rapidly homogenized. The first invention was constructed based on this fact.
[0040]
When gas was blown into the simple vortex inside the cylinder from the bottom, a spiral flow was recognized by the combination of rotation and rise, and a circulation flow with the core up and the periphery down was also obtained. At the same time, although it was unstable, generation of bubble-containing tornado was observed depending on the situation.
[0041]
When gas was blown in from the bottom of the cylinder while stirring downward with a spiral guide blade, the bubble-containing tornado and the circulation flow were stably maintained.
[0042]
Next, when the pressure above the liquid level is reduced, the liquid level rises rapidly and changes from a boiling state to a foaming state, and the boundary surfaces of the gas phase, the liquid phase, and the bubbles become unclear, and the intensity of the disturbance is increased. It was observed that the tornado and the circulation flow were maintained. The second invention is configured based on this observation fact.
[0043]
Next, the stirring energy is examined. The refining gas blown forms bubbles on the plug 19 and immediately rises in temperature and expands to generate initial stirring energy. Next, the second agitation kinetic energy due to the rising of the bubbles and the gentle expansion, when approaching just below the liquid level, the third agitation energy is generated due to the rapid expansion due to the rapid decrease of the bubble external pressure (= static pressure of molten steel + atmospheric pressure).
[0044]
As described above, most of the various reactions themselves proceed in the four-phase mixing zone 20 of bubbles / slag / molten steel / pseudo-vacuum in a foamed / disturbed state, and as is well known, the speed of the reaction itself is extremely high. This results from a sufficient amount of the third agitation energy. On the other hand, the fact that the overall reaction rate increases as the stirring energy increases in various processes suggests that the mass transfer to the reaction region is rate limiting.
[0045]
As explained in the preceding case (2), in the gas bubbling under a reduced pressure, the first and second stirring energy amounts are usually not sufficient with respect to the third stirring energy amount. 1st invention reinforces the said 1st, 2nd stirring energy.
[0046]
The manner in which the stirring energy works as well as the amount of stirring energy is important. That is, it is desirable that the stirring energy applied outside the mixing zone is mainly consumed for the mass transfer. For this purpose, it is necessary that the stirring energy is not consumed for local disturbance and a large stable circulation flow is formed. The first invention not only strengthens the stirring energy, but also embodies a mechanism by which the added stirring energy effectively acts on mass transfer through the formation of a circulating flow.
[0047]
Next, the grounds for specifying the processing conditions in the third and fourth inventions will be described. The refining gas flow rate was set to 2 to 20 N liter / minute / molten steel ton. The action force was insufficient if it was less than 2 N liter / minute / molten steel ton. It is because it becomes easy to generate | occur | produce.
[0048]
The atmospheric pressure of 3 to 30 kPa is advantageous for degassing if it is less than 3 kPa, but a steam ejector is required as an exhaust device, which is disadvantageous in terms of energy cost. Above 3 kPa, various pumps that are cost-effective for both equipment and operation can be used. If it exceeds 30 kPa, the effect of gas bubbling under reduced pressure is reduced.
[0049]
The reason for specifying the rotational speed of the spiral rotating magnetic field so that the peripheral speed on the outer peripheral surface of the molten steel is 0.5 to 20 m / min is that the induced electromagnetic force is small when the relative speed of the induced conductor, that is, the molten steel and the moving magnetic field is small. On the other hand, if it is large, it is consumed as induction heating in the skin or molten steel skin due to the skin effect, and the electromagnetic force becomes small. Based on the fact that the above range is generally practical from examples and experiments.
[0050]
The reason why the rotational speed of the vortex is specified as 10 to 60 rpm in the fourth invention is as follows. When the strength of the spiral flow exceeds a certain limit, a vortex flow is formed. The shape of the vortex surface is a paraboloid. The depth of the depression is proportional to the square of the product of the inner diameter of the container and the number of revolutions, based on the forced vortex equation. The vortex causes the slag covering the surface of the molten metal to face away from the refractory wall. This is because, at 10 rpm or less, the depression depth is 0.2 m or less even in a large ladle, the centripetal force of the slag is weak, and the slag does not separate from the wall refractory. This is because even at a small ladle above 60 rpm, the vortex depth exceeds 1 m, and the danger increases.
[0051]
The fifth invention effectively implements the powerful reduction refining ability that is not possessed by the methods of case (1) and case (2) but potentially possesses, that is, reduction and recovery of useful element oxides. It has become. As is well known, the mass transfer from the slag to the molten steel / slag interface is rate-limiting in the reduction reaction of the oxide in the slag. Gas bubbling under reduced pressure is very convenient for molten steel / slag disturbance, and the addition of a circulating flow by electromagnetic force allows efficient processing from reduction to finishing.
[0052]
Examples of elements to be reduced include Mn, Cr, Ni, Cu, V, Nb, Mo, W, Zn, and Pb. Since Zn and Pb have a high vapor pressure at the steelmaking temperature, they are not recovered in the molten steel, but are discharged out of the system as steam and recovered by, for example, the dust collector 22. As the reducing agent, C, Si, Al, Ca, CaC 2 , SiC and the like are practical.
[0053]
When a large amount of low-grade scrap is used as the iron source, impurities such as Zn, Pb, Sb, As, etc. remain in the molten steel, and their oxides remain in the slag and increase, resulting in a decrease in quality. 4 is removed by reduction and evaporation.
[0054]
【Example】
Experiment 1 (Verification of the third invention)
The same ladle with a capacity of 30 tons was used for high carbon steel, and the method of the case (1) was compared with the method of the present invention as a comparative example for the deoxidation rate coefficient. The treatment conditions and results of the comparative example of several tens of charges are as follows: the temperature at the time of receiving steel from the melting furnace is 1570 to 1590 ° C., non-oxidizing basic slag is placed on the non-deoxidized molten steel, and the dissolved oxygen amount is 65 -85 ppm, atmospheric pressure is about 14-21 kPa, Ar gas blowing rate is 150-200 Nl / min, treatment time is 3-9 minutes. The amount of dissolved oxygen at the end of refining was 18 to 32 ppm, the molten steel temperature was 1535 to 1540 ° C., and the deoxidation rate coefficient k was 0.36 (1 / min) on average.
[0055]
The downward spiral rotating stirring of the present invention was applied under the same conditions as described above. A dipole rotating magnetic field having an input of 160 kVA and a frequency of 1 Hz was applied to the lower third region of the ladle. Since accurate calculation or actual measurement of the electromagnetic force is difficult, the stirring energy density was estimated to be about 0.2 kW / ton from the magnetic flux density distribution measurement value and the magnetic field moving speed. The treatment time is 2.5 to 6.0 minutes, the dissolved oxygen amount at the end is 13 to 24 ppmm, the molten steel temperature is 1540 to 1550 ° C., and the deoxidation rate coefficient k is increased to about 0.5 to 0.7 for refining. Efficiency improved. By increasing the deoxidation rate coefficient, not only deoxidation but also the foundation for efficiency improvement is established for desulfurization and other refining.
[0056]
Experiment 2 (Verification of the fourth and fifth inventions)
For spring steel, under the same conditions as in Experiment 1, both put ore with Cr ore equivalent to 1.0% for Cr and 0.15% equivalent for V for V at the time of steel production. The chemical equivalent of Fe-Si powder required for the reduction of Cr and V was added.
[0057]
In both cases, the Cr concentration in the slag decreased from about 30% in the initial stage to 0.4 to 0.7%, and the reduction and recovery of Cr was sufficient, but it took 8 minutes or more in the comparative example, and within 5 minutes in the present invention. I was able to handle it.
[0058]
Experiment 3 (Verification of the sixth invention)
As above, confirmation and comparison of the Zn removal reaction were performed. In the electric furnace melting process, electric furnace dust was inserted by about 1% of the molten steel amount. The composition of the dust is about 25% for ZnO and about 55% for FeO. In the comparative example, Zn is 0.01 to 0.03% in the slag after ladle refining, and 10 to 30 ppm remains in the molten steel. In the present invention, 0.01 to 0.02% and 8 to 16 ppm remain, respectively. Zn was made efficiently.
[0059]
【The invention's effect】
According to the present invention, in the first invention, a helical electromagnetic induction stirring flow along the inner surface of the cylinder is generated in the molten metal in the cylindrical container, so that the mass transfer from the non-reaction region to the reaction region is promoted, and the various refining reactions To promote. In the second invention, a circulating flow with a bubble-containing tornado flow acts synergistically in the region of intense contact reaction between gas, slag, molten steel and pseudo-vacuum due to the interaction of downward spiral flow and gas bubbling under reduced pressure. To promote further refining reactions. The third invention presents the specific conditions of the second invention. When the fifth invention is used, the oxide of the alloy element such as Cr ore added to the slag is reduced and recovered at a high speed and with a high yield, and the refractory melts less, which is advantageous in terms of cost. In the sixth invention, harmful oxides such as Zn in molten steel or slag are easily removed by evaporation. This effect is extremely effective in terms of cost, for example, by expanding the use of low-grade scrap and enabling melting treatment of electric furnace dust that is an industrial waste.
[Brief description of the drawings]
FIG. 1 is a schematic side view illustrating a refining apparatus applied to the first invention.
FIG. 2 is a schematic side view illustrating a refining apparatus applied to the second invention.
FIG. 3 is a schematic side view illustrating a refining apparatus applied to the third invention.
FIG. 4 is a diagram showing the relationship between stirring energy density E and deoxidation rate coefficient k.
[Explanation of symbols]
1: Metallurgical vessel 2: Refractory material 3: Molten metal 4: Central shaft 5: Rotating magnetic field device 6: Elevator 7, 7 ': Circulating flow 11: Ladle 13: Molten steel 14: Central shaft 15: Electromagnetic coil 16: Exhaust pipe 17 : Vacuum cover 18: Vacuum pump 19: Ventilation plug 20: Tornado flow 21: Four-phase mixing zone 22: Dust collector

Claims (6)

回転磁界と回転軸方向移動磁界を合成した螺旋回転磁界を発する電磁コイルを直立する円筒状の冶金容器の外周に該容器中心軸と同軸に配置することにより該容器内の溶融金属に螺旋回転攪拌を付与することを特徴とする溶融金属の精錬方法。An electromagnetic coil that generates a helical rotating magnetic field that combines a rotating magnetic field and a moving magnetic field in the rotational axis direction is placed on the outer periphery of a cylindrical metallurgical vessel upright and coaxial with the central axis of the vessel to spirally stir the molten metal in the vessel. A method for refining molten metal, characterized in that: 溶融金属を溶鋼とし、冶金容器をレードルとし、螺旋回転磁界の推力の方向を下方とし、該レードル底面より精錬用ガスを該溶鋼中に吹き込み、該溶鋼上方の雰囲気を減圧することにより該溶鋼中に含気泡上昇トルネード流を発生せしめ、該レードル内の下層の溶鋼を上層へ移動・促進せしめることを特徴とする請求項1に記載の溶融金属の精錬方法。The molten metal is made into molten steel, the metallurgical vessel is made into a ladle, the direction of the thrust of the spiral rotating magnetic field is made downward, and a refining gas is blown into the molten steel from the bottom of the ladle, and the atmosphere above the molten steel is reduced in pressure. 2. The method for refining molten metal according to claim 1, wherein a bubble-containing tornado flow is generated in the ladle, and the lower molten steel in the ladle is moved and promoted to the upper layer. 精錬用ガスの流量を2〜20Nリットル/分/溶鋼トンとし、雰囲気圧を3〜30kPaに維持し、螺旋回転磁界の回転数をレードル内壁面における周速が0.5〜20m/秒となるよう設定することを特徴とする請求項2に記載の溶融金属の精錬方法。The flow rate of the refining gas is 2 to 20 N liters / minute / ton of molten steel, the atmospheric pressure is maintained at 3 to 30 kPa, and the rotational speed of the spiral rotating magnetic field is 0.5 to 20 m / second on the inner wall surface of the ladle. The molten metal refining method according to claim 2, wherein the setting is performed as follows. 溶融金属を溶鋼とし、冶金容器をレードルとし、該溶鋼上に精錬用スラグを置き、該レードル底面より精錬用ガスを2〜20Nリットル/分/溶鋼トンの流量で該溶鋼中に吹き込み、該スラグ上方の雰囲気圧を3〜30kPaに維持し、螺旋回転磁界の推力の方向を上方とし、渦流の回転数を10〜60rpmとして該溶鋼上面を放物面状に陥没させ、浮遊している該スラグとレードル内壁面の耐火物との接触反応を抑制しつつ該レードル内の下層の溶鋼を上層へ移動・促進することを特徴とする請求項1に記載の溶融金属の精錬方法。A molten metal is used as a molten steel, a metallurgical vessel is used as a ladle, a smelting slag is placed on the molten steel, and a smelting gas is blown into the molten steel from the bottom of the ladle at a flow rate of 2 to 20 Nliters / minute / toned steel. The upper atmospheric pressure is maintained at 3 to 30 kPa, the direction of thrust of the spiral rotating magnetic field is set upward, the rotational speed of the vortex is set to 10 to 60 rpm, the molten steel upper surface is depressed into a parabolic shape, and the slag floating 2. The molten metal refining method according to claim 1, wherein the molten steel in the lower layer in the ladle is moved and promoted to the upper layer while suppressing a contact reaction between the steel and the refractory on the inner wall surface of the ladle. Mn、Cr、Ni、Cu、V、Nb、Mo、W、Zn,Pbの酸化物の1種以上を精錬用スラグ中に含有させ、還元剤としてC、Si、Al、Ca、CaC、SiCの1種以上を上記金属の酸化物とほぼ化学的等量で溶鋼又はスラグ中に添加して上記金属を還元回収することを特徴とする請求項3又は請求項4に記載の溶融金属の精錬方法。One or more oxides of Mn, Cr, Ni, Cu, V, Nb, Mo, W, Zn, and Pb are contained in the slag for refining, and C, Si, Al, Ca, CaC 2 , SiC as a reducing agent 5. The refining of molten metal according to claim 3, wherein one or more of the above are added to molten steel or slag in a substantially chemical equivalent amount to the metal oxide to reduce and recover the metal. Method. 蒸発性不純物であるZn,Pb,Sb,Asを含有している溶鋼から、又は上記金属の酸化物を含有しているスラグから、請求項3又は請求項4の方法により上記金属を蒸発除去することを特徴とする溶融金属の精錬方法。The metal is evaporated and removed from the molten steel containing evaporable impurities such as Zn, Pb, Sb, As or from the slag containing the metal oxide by the method of claim 3 or claim 4. A method for refining molten metal characterized by the above.
JP2002005425A 2002-01-15 2002-01-15 Method for refining molten metal Expired - Fee Related JP3654248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005425A JP3654248B2 (en) 2002-01-15 2002-01-15 Method for refining molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005425A JP3654248B2 (en) 2002-01-15 2002-01-15 Method for refining molten metal

Publications (2)

Publication Number Publication Date
JP2003213319A JP2003213319A (en) 2003-07-30
JP3654248B2 true JP3654248B2 (en) 2005-06-02

Family

ID=27644471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005425A Expired - Fee Related JP3654248B2 (en) 2002-01-15 2002-01-15 Method for refining molten metal

Country Status (1)

Country Link
JP (1) JP3654248B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816138B2 (en) * 2006-02-24 2011-11-16 Jfeスチール株式会社 Ladle refining method and ladle refining furnace
CN111876554A (en) * 2020-08-10 2020-11-03 华北理工大学 Method for strengthening metal structure by using oxide metallurgy
CN115069133A (en) * 2022-07-22 2022-09-20 北京科技大学 Electromagnetic stirrer for uniformly mixing molten steel

Also Published As

Publication number Publication date
JP2003213319A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
CN106086710B (en) A kind of Rare earth heat-resistant steel and its casting technique
Zhang et al. Formation of plastic inclusions in U71Mnk high-speed heavy-rail steel refined by CaO-SiO 2-Al 2 O 3-MgO slag
US3918692A (en) Apparatus for refining molten metals and molten metal refining process
US4769066A (en) Method for removing inclusions from a bath of molten metal and a device for carrying out this method
JP2007332432A (en) Method for refining molten steel
JP3654248B2 (en) Method for refining molten metal
US3579324A (en) Method for induction melting of fine particles
JP2003207283A (en) Method and device for mixing molten metal
CN109128058B (en) Device and method for producing ODS steel by composite field casting method
JP2018066031A (en) Manufacturing method of high cleanliness steel
NO743247L (en)
CN110423862A (en) A kind of double hose electromagnetic agitation RH device and method
JPH02179813A (en) Method for refining molten metal into high purity and high cleanliness
RU2233344C1 (en) Apparatus for electromagnetic refining of aluminum and its alloys
WO2005095026A1 (en) Melting apparatus and method
FI81383C (en) FOERFARANDE FOER BEHANDLING AV SMAELT METALL OCH ANORDNING FOER UTFOERANDE AV FOERFARANDET.
Shi et al. Effect of electromagnetic stirring on metallurgical quality of GCr15 electroslag ingot
Schlatter Melting and refining technology of high-temperature steels and superalloys: a review of recent process developments
KR101765465B1 (en) Manufacturing method of ferro-tungsten
US3934863A (en) Apparatus for refining molten metal and molten metal refining process
JP5096779B2 (en) Method of adding rare earth elements to molten steel
Dutta et al. Secondary steelmaking
JP4816138B2 (en) Ladle refining method and ladle refining furnace
RU2026365C1 (en) Device for treatment of molten metal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees