JP2003213319A - Method for refining molten metal - Google Patents

Method for refining molten metal

Info

Publication number
JP2003213319A
JP2003213319A JP2002005425A JP2002005425A JP2003213319A JP 2003213319 A JP2003213319 A JP 2003213319A JP 2002005425 A JP2002005425 A JP 2002005425A JP 2002005425 A JP2002005425 A JP 2002005425A JP 2003213319 A JP2003213319 A JP 2003213319A
Authority
JP
Japan
Prior art keywords
molten steel
refining
ladle
slag
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002005425A
Other languages
Japanese (ja)
Other versions
JP3654248B2 (en
Inventor
Katsuhiko Yamada
勝彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002005425A priority Critical patent/JP3654248B2/en
Publication of JP2003213319A publication Critical patent/JP2003213319A/en
Application granted granted Critical
Publication of JP3654248B2 publication Critical patent/JP3654248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refining method with which the reaction speed is increased at a low cost in a ladle refining of molten steel including deoxidation, desulfurization, de-nonmetallic inclusion, degassing and reduction. <P>SOLUTION: Downward or upward spiral stream is introduced by setting a spiral rotating magnetic field generating apparatus on the same axis 14 as the center axis of the cylindrical ladle 11 to form circulating streams 7, 7' in the whole vessel, in which the core part and the outer peripheral part are made to flow in vertically reverse direction. Intense bubble-containing tornado streams 20 accelerating the circulating stream, are formed in the core part by applying the downward spiral stream in the gas bubbling under reducing pressure. Non-reacting molten steel at the lower zone is effectively shifted to a reaction range composed of four phases of gas-slag-molten steel-pseudo vacuum at the upper zone, and the improvement in refining speed and the enlargement of refining range are attained. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は溶融金属、特に溶鋼
の精錬方法に関し、精錬速度及び精錬反応の内容に強く
影響を与える溶鋼、ガス及びスラグ間の攪拌方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining molten metal, particularly molten steel, and more particularly to a method for stirring molten steel, gas and slag, which has a strong influence on the refining rate and the content of refining reaction.

【0002】[0002]

【従来の技術】溶鋼の酸化、還元、脱ガス、脱非金属介
在物等の精錬において溶鋼とスラグの攪拌は反応促進の
重要なキーとなっている。溶解炉において粗精錬された
溶鋼はレードルに移されスラグレス又は適切なスラグの
もとで攪拌装置、脱ガス装置、加熱装置などを駆使して
製品仕様及び次の鋳造工程に適合するよう、(1)溶鋼
成分、温度の均一化と的中、(2)脱酸、脱硫、脱非金
属介在物、脱炭、脱ガス等の溶鋼の清浄化、(3)スラ
グ中の有用成分の還元回収等の仕上精錬がなされてい
る。
2. Description of the Related Art Stirring of molten steel and slag is an important key for accelerating the reaction in the refining of molten steel such as oxidation, reduction, degassing and demetallized inclusions. The molten steel that has been refined in the melting furnace is transferred to a ladle, and with a slagless or suitable slag, by using a stirring device, a degassing device, a heating device, etc., to meet the product specifications and the next casting process, (1 ) Molten steel composition, temperature uniformity and target, (2) Deoxidation, desulfurization, demetallization, decarburization, degassing, etc. cleaning of molten steel, (3) Reduction and recovery of useful components in slag, etc. Has been refined.

【0003】製品品質は主に精錬内容とその水準に、精
錬コストは精錬内容と精錬速度に強く関わっている。速
度が小さいと結果的に再加熱の必要や耐火物の消耗など
によりコスト増になる。どの精錬方法においても溶鋼、
スラグ及び精錬媒体ガスの攪拌は精錬速度に大きな影響
力を持つ。
Product quality is mainly related to refining content and its level, and refining cost is related to refining content and refining speed. If the speed is low, the cost will increase due to the necessity of reheating and the consumption of refractory materials. Molten steel in any refining method,
Agitation of the slag and refining medium gas has a great influence on the refining rate.

【0004】精錬速度に影響する攪拌の目安として、通
常攪拌エネルギー密度即ち溶鋼単位質量当たりの動力E
(W/トン)が使用される。
As a standard for stirring that affects the refining rate, the stirring energy density, that is, the power E per unit mass of molten steel is usually used.
(W / ton) is used.

【0005】一方精錬能率の主体をなす反応速度は次式
に示される反応速度係数k(1/min)が使用され
る。 (C−Ce)/(Co−Ce)=exp(−k×t) C;濃度(1/1),Ce;平衡濃度,Co;初期濃度,
t;時間(分) 上記特性値Eとkを基に種々の攪拌方法の先行事例を比
較、検討する。
On the other hand, a reaction rate coefficient k (1 / min) shown in the following equation is used for the reaction rate which is the main factor of refining efficiency. (C−Ce) / (Co−Ce) = exp (−k × t) C; concentration (1/1), Ce; equilibrium concentration, Co; initial concentration,
t: Time (minute) Based on the characteristic values E and k, precedent examples of various stirring methods are compared and examined.

【0006】事例(1) 特公平1−46563号公報及び文献1には以下の内容
が開示されている。レードル上方の雰囲気圧を30〜1
50torrに減圧しつつ容器底部より溶鋼内にガスを
吹き込むことにより溶鋼上層部が強力に攪拌される。レ
ードル容量が小さい故にその攪拌エネルギー密度Eは
0.2(kW/トン)、脱酸速度係数kは0.4(1/
分)に達すると示され数分で精錬が完了するほど早い。
Case (1) The following contents are disclosed in Japanese Examined Patent Publication No. 1-45633 and Document 1. The atmospheric pressure above the ladle is 30 to 1
By blowing gas into the molten steel from the bottom of the container while reducing the pressure to 50 torr, the molten steel upper layer is strongly stirred. Since the ladle capacity is small, the stirring energy density E is 0.2 (kW / ton), and the deoxidation rate coefficient k is 0.4 (1 /
Minutes) and it is quick enough to complete refining in a few minutes.

【0007】欠点として、減圧下のガス・バブリング
は、原理上溶鋼上層部の攪拌は強烈であるが下層部では
限られた量の吹き込みガスの膨張・浮上による攪拌だけ
であるから極めて弱くこれが反応律速になっている。従
って小容量レードルでは成功しても大容量レードルには
不都合という問題がある。 文献1; The Institute of Metals; 3rd Internation
al Conference on CleanSteel,1985,June,P.250
As a drawback, the gas bubbling under reduced pressure causes intense stirring in the upper layer of molten steel in principle, but extremely weak stirring in the lower layer due to expansion / floating of a limited amount of blown gas. It is rate limiting. Therefore, even if the small-capacity ladle is successful, there is a problem that the large-capacity ladle is inconvenient. Reference 1; The Institute of Metals; 3rd Internation
al Conference on CleanSteel, 1985, June, P.250

【0008】事例(2) 特開平7−179927号公報には、上記方法におい
て、上記問題解決のため吹込みガス量、雰囲気圧などの
処理条件を適正化する方法が提示されている。本方法に
より改善はなされるが大容量レードルにおける反応速度
の低下は否めない。
Case (2) Japanese Unexamined Patent Publication No. 7-179927 proposes a method of optimizing the processing conditions such as the amount of blown gas and the atmospheric pressure in order to solve the above problems. Although improvement can be made by this method, a decrease in reaction rate in large-capacity ladle cannot be denied.

【0009】事例(3) ASEA JOURNAL4,1971に溶鋼の誘導攪
拌について各種の方法が詳細に述べられている。移動磁
界装置を円筒状のレードルの側面に配置して溶鋼を壁面
に沿って上方または下方に流動させる型式、レードル外
周に移動磁界コイルを同軸に配置してレードル壁面全周
に沿って上昇流を与える型式、同様にソレノイド型単相
コイルにより溶鋼にピンチ力を作用させて攪拌する型式
など示されている。いずれの方法においても平均攪拌エ
ネルギー密度Eは0.1(kW/トン)程度は得られそ
うで、反応は促進される。
Case (3) Various methods for induction stirring of molten steel are described in detail in ASEA JOURNAL 4,1971. A model in which a moving magnetic field device is arranged on the side surface of a cylindrical ladle to flow molten steel upward or downward along a wall surface, and a moving magnetic field coil is coaxially arranged on the outer periphery of the ladle to generate an upward flow along the entire circumference of the ladle wall surface. A given type, similarly a type in which a solenoid type single-phase coil is used to apply a pinch force to molten steel to stir it is shown. In either method, the average stirring energy density E is likely to be about 0.1 (kW / ton), and the reaction is accelerated.

【0010】問題の一つはスラグは直接攪拌されない上
に溶鋼とスラグ間の接触は層流的であるので両相間の反
応は強くない。第2の問題は低周波による穏やかな且つ
不定形な流れであるからスラグによって処理された溶鋼
と未処理溶鋼が漫然と混合し、精錬反応は漸減的にな
る。脱酸速度係数kは通常0.1〜0.2(1/分)程
度と推定される。従って脱酸、脱硫、脱非金属介在物等
スラグによる精錬が主体をなす場合には精錬時間の短縮
はあまり期待できず再加熱の必要性が生ずる。その結果
スラグによる耐火物の溶蝕と言う問題も生ずる。
One of the problems is that the reaction between the two phases is not strong because the slag is not directly stirred and the contact between the molten steel and the slag is laminar. The second problem is the gentle and irregular flow due to the low frequency, so that the molten steel treated by the slag and the untreated molten steel are mixed with each other, and the refining reaction is gradually reduced. The deoxidation rate coefficient k is usually estimated to be about 0.1 to 0.2 (1 / min). Therefore, when refining by slag such as deoxidation, desulfurization, and demetalization by non-metallic inclusions is the main constituent, shortening of refining time cannot be expected so much and reheating becomes necessary. As a result, a problem called erosion of refractory due to slag also occurs.

【0011】事例(4) いわゆるASEA−SKF法と称しレードルに上記誘導
攪拌装置、真空脱ガス装置及びアーク再加熱装置を付設
して高度精錬を行う方法がある。上記同等のEとkの値
が得られる。
Case (4) There is a so-called ASEA-SKF method in which a ladle is provided with the above-mentioned induction stirring device, vacuum degassing device and arc reheating device to perform advanced refining. Equivalent values of E and k are obtained.

【0012】この場合、長時間の精錬に耐えるためレー
ドル壁面のスラグ・レベルには塩基性高級耐火物が使用
される。当該耐火物は熱伝導、熱容量とも大きく溶鋼の
熱損を招き再加熱負荷を大きくする。これが耐火物の溶
蝕を助長させる。高度の品質が得られるが設備費の他、
精錬時間、電力、電極棒、耐火物などコスト上の問題が
大きい。
In this case, in order to endure refining for a long time, a basic high-grade refractory is used for the slag level on the ladle wall surface. The refractory has a large heat conduction and a large heat capacity and causes a heat loss of the molten steel to increase a reheating load. This promotes the corrosion of refractory materials. High quality can be obtained, but in addition to equipment costs,
Cost problems such as refining time, electric power, electrode rods and refractories are large.

【0013】事例(5) 特開平11−335719号公報には、円筒状のタンデ
ィシュの中の溶鋼を水平回転磁界により遠心攪拌しつつ
ガス吹込み条件を特定して微細気泡を分散させ、非金属
介在物の浮上分離を促進させる方法が提示されている。
Case (5) In Japanese Patent Laid-Open No. 11-335719, a molten steel in a cylindrical tundish is centrifugally agitated by a horizontal rotating magnetic field and a gas blowing condition is specified to disperse fine air bubbles in a non-metallic material. A method of promoting floating separation of inclusions is proposed.

【0014】気泡分散に対して攪拌が効果的に利用され
ているが、問題は、遠心攪拌は意外に混合性が大きくな
い。即ち均一化時間が小さくないので多くの精錬反応で
は必ずしも効果的ではない。また精錬作用が気泡による
非金属介在物の吸着と分離にとどまり、単機能故に他の
精錬効果を求めることには無理がある。
Stirring is effectively used for air bubble dispersion, but the problem is that centrifugal stirring is not so large in mixing property. That is, since the homogenization time is not small, it is not always effective in many refining reactions. Further, the refining action is limited to adsorption and separation of non-metallic inclusions by bubbles, and it is impossible to obtain another refining effect because it has a single function.

【0015】[0015]

【発明が解決しようとする課題】本発明はレードル精錬
工程における上記問題点を解決するため、溶融金属の効
果的な誘導攪拌と減圧下のガス・バブリングとの相乗効
果により溶鋼−スラグ−ガス−疑似真空間の反応を促進
して多様な精錬を高効率即ち短時間で且つ低コストで実
施できる精錬方法を提供するものである。
In order to solve the above-mentioned problems in the ladle refining process, the present invention uses a synergistic effect of effective induction stirring of molten metal and gas bubbling under reduced pressure to produce molten steel-slag-gas- It is intended to provide a refining method capable of promoting a reaction between pseudo vacuums and performing various refining with high efficiency, that is, in a short time and at low cost.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
反応速度のキーとなっている攪拌エネルギー密度を再検
討し二つの指針を得た。一つは、公知の攪拌エネルギー
密度Eと反応速度係数kとの経験的関係式(図4参照)
は必ずしも反応速度の限界を規定するものではない。律
速過程が存在し、反応領域へのマクロ物質移動にあるら
しい。与えた攪拌エネルギーはこの物質移動に対して効
果的に作用していない。
To achieve the above object, the stirring energy density, which is the key to the reaction rate, was reexamined and two guidelines were obtained. One is the empirical relational expression between the known stirring energy density E and the reaction rate coefficient k (see FIG. 4).
Does not necessarily specify the limit of reaction rate. There seems to be a rate-determining process, and it seems that there is a macro mass transfer to the reaction region. The stirring energy applied does not act effectively on this mass transfer.

【0017】もう一つの指針は、従来の種々の攪拌方法
では容器の中で回分式に処理され一見規則的攪拌に見え
ても反応進行部、既反応部、未反応部の三者が漫然と混
合するので効率的な反応進行ではない。即ち上記2点か
ら攪拌の様態次第で反応高速化の可能性があることに気
づき、実験によりこの仮説がほぼ立証できたので以下の
発明を構成した。
Another guideline is that various conventional stirring methods are batchwise processed in a container, and even if seemingly regular stirring, the reaction progressing portion, the reacted portion and the unreacted portion are mixed gently. Therefore, the reaction does not proceed efficiently. That is, from the above two points, it was found that there is a possibility of speeding up the reaction depending on the mode of stirring, and this hypothesis could be almost proved by experiments, so the following invention was constructed.

【0018】本発明の第1は、回転磁界と回転軸方向移
動磁界を合成した螺旋回転磁界を発する電磁コイルを直
立する円筒状の冶金容器の外周に該容器中心軸と同軸に
配置することにより該容器内の溶鋼に螺旋回転攪拌を付
与することを特徴とする溶融金属の精錬方法である。
The first aspect of the present invention is to arrange an electromagnetic coil for generating a spiral rotating magnetic field, which is a combination of a rotating magnetic field and a moving magnetic field in the rotating axis direction, on the outer periphery of an upright cylindrical metallurgical container coaxially with the center axis of the container. A molten metal refining method is characterized in that the molten steel in the container is subjected to spiral rotation stirring.

【0019】第2の発明は第1の発明において、溶融金
属を溶鋼とし、冶金容器をレードルとし、螺旋回転磁界
の推力の方向を下方とし、該レードル底面より精錬用ガ
スを該溶鋼中に吹き込み、該溶鋼上方の雰囲気を減圧す
ることにより該溶鋼中に含気泡上昇トルネード流を発生
せしめ、該レードル内の下層の溶鋼を上層へ移動・促進
せしめることを特徴とする溶融金属の精錬方法である。
In a second aspect of the invention, in the first aspect, the molten metal is molten steel, the metallurgical container is a ladle, the direction of the thrust of the spiral rotating magnetic field is downward, and a refining gas is blown into the molten steel from the bottom of the ladle. The molten metal refining method is characterized in that by depressurizing the atmosphere above the molten steel, a bubble-containing rising tornado flow is generated in the molten steel, and the molten steel in the lower layer in the ladle is moved / promoted to the upper layer. .

【0020】第3の発明は第2の発明において、精錬用
ガスの流量を2〜20Nリットル/分/溶鋼トンとし、
雰囲気圧を3〜30kPaに維持し、螺旋回転磁界の回
転数をレードル内壁面における周速が0.5〜20m/
秒となるよう設定することを特徴とする溶融金属の精錬
方法である。
According to a third aspect of the invention, in the second aspect, the flow rate of the refining gas is 2 to 20 N liter / min / ton of molten steel,
The atmospheric pressure is maintained at 3 to 30 kPa, and the rotation speed of the spiral rotating magnetic field is 0.5 to 20 m / peripheral speed on the inner wall surface of the ladle.
It is a method for refining molten metal, which is characterized by setting to be seconds.

【0021】第4の発明は第1の発明において、溶融金
属を溶鋼とし、冶金容器をレードルとし、該溶鋼上に精
錬用スラグを置き、該レードル底面より精錬用ガスを2
〜20Nリットル/分/溶鋼トンの流量で該溶鋼中に吹
き込み、該スラグ上方の雰囲気圧を3〜30kPaに維
持し、螺旋回転磁界の推力の方向を上方とし、渦流の回
転数を10〜60rpmとして該溶鋼上面を放物面状に
陥没させ、浮遊している該スラグとレードル内壁面の耐
火物との接触反応を抑制しつつ該レードル内の下層の溶
鋼を上層へ移動・促進することを特徴とする溶融金属の
精錬方法である。
In a fourth aspect based on the first aspect, the molten metal is molten steel, the metallurgical container is a ladle, the refining slag is placed on the molten steel, and refining gas is supplied from the bottom of the ladle to 2
It is blown into the molten steel at a flow rate of ˜20 N liters / minute / tonne of molten steel, the atmospheric pressure above the slag is maintained at 3 to 30 kPa, the direction of the thrust of the spiral rotating magnetic field is upward, and the rotational speed of the vortex is 10 to 60 rpm. As to lower the molten steel of the lower layer in the ladle to the upper layer while suppressing the contact reaction between the molten slag and the refractory on the inner wall surface of the ladle by sinking the upper surface of the molten steel into a parabolic shape. It is a feature of refining molten metal.

【0022】第5の発明は第3又は第4の発明におい
て、Mn、Cr、Ni、Cu、V、Nb、Mo、W、Z
n,Pbの酸化物の1種以上を精錬用スラグ中に含有さ
せ、還元剤としてC、Si、Al、Ca、CaC、S
iCの1種以上を上記金属の酸化物とほぼ化学的等量で
溶鋼又はスラグ中に添加して上記金属を還元回収するこ
とを特徴とする溶融金属の精錬方法である。
A fifth invention is the third or fourth invention, wherein Mn, Cr, Ni, Cu, V, Nb, Mo, W and Z are included.
One or more oxides of n and Pb are contained in the refining slag, and C, Si, Al, Ca, CaC 2 , S as a reducing agent.
A method for refining a molten metal, which comprises adding one or more kinds of iC to molten steel or slag in an approximately chemical equivalent amount to the oxide of the metal to reduce and recover the metal.

【0023】第6の発明は第5の発明を使用して、蒸発
性不純物であるZn,Pb,Sb,Asを含有している
溶鋼から、又は上記金属の酸化物を含有しているスラグ
から、上記金属を蒸発除去することを特徴とする溶融金
属の精錬方法である。
A sixth aspect of the present invention uses the fifth aspect of the invention, from molten steel containing evaporative impurities Zn, Pb, Sb, As or from slag containing oxides of the above metals. A method for refining a molten metal, characterized in that the above metal is removed by evaporation.

【0024】[0024]

【発明の実施の形態】以下、本発明を図面に従って説明
する。図1は第1の発明に適用される精錬装置を例示す
る概略側面図である。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to the drawings. FIG. 1 is a schematic side view illustrating a refining apparatus applied to the first invention.

【0025】非磁性鋼板の外皮に耐火物2で内張りされ
た円筒状の冶金容器1を直立させ、溶融金属3を保持す
る。該容器1の外周に、該容器1の中心軸4と同軸に一
般的な回転磁界装置5が配置され、通電による回転磁界
の発生により、該溶融金属3は磁界に引きずられて回転
運動即ち渦流が発生する。
A cylindrical metallurgical vessel 1 lined with a refractory 2 is erected on the outer surface of a non-magnetic steel plate to hold a molten metal 3. A general rotating magnetic field device 5 is arranged on the outer periphery of the container 1 coaxially with the center axis 4 of the container 1, and the molten metal 3 is dragged by the magnetic field due to the generation of a rotating magnetic field due to energization, thereby causing a rotating motion, that is, a vortex flow. Occurs.

【0026】このとき該回転磁界装置5を昇降機6によ
り上下に大きく往復運動をさせると、同様に溶鋼も上下
動の電磁力を受ける。上昇時は電流を切り、下降時のみ
通電すると間欠的であるが下向き螺旋回転磁界が発生す
る。該溶融金属3は該容器1の壁面に沿って螺旋下降
し、底面に達して、底面中央部から上昇する。上層部は
順次周辺に引き寄せら容器内全体の循環流7が形成され
る。該循環流7は必ずしも定型的、安定的ではないが、
加えられた攪拌エネルギーは局所的混合にあまり浪費さ
れず、溶融金属各部は主たる反応領域である上層部に効
果的に移動する。
At this time, when the rotating magnetic field device 5 is largely reciprocated up and down by the elevator 6, the molten steel is also similarly subjected to the vertical electromagnetic force. A downward spiral rotating magnetic field is generated intermittently when the current is cut off when rising and energized only when falling. The molten metal 3 spirally descends along the wall surface of the container 1, reaches the bottom surface, and rises from the central portion of the bottom surface. The upper layer portion is attracted to the periphery in sequence, and a circulating flow 7 in the entire container is formed. The circulating flow 7 is not always regular and stable,
The added stirring energy is not wasted in the local mixing so much, and the molten metal parts effectively move to the upper layer part which is the main reaction region.

【0027】螺旋回転磁界の発生方法についてはこの他
にも考え得るが例示に止める。
The method of generating the spiral rotating magnetic field can be considered other than this, but the method will be described as an example.

【0028】図2は第2の発明の精錬方法に適用される
装置の構造を例示する概略側面図である。第2の発明は
第1の発明をレードル精錬に応用した例で、気密性且つ
非磁性の鉄皮で形成された円筒状のレードル11の中に
溶鋼13を保持し、螺旋回転磁界を発する電磁コイル1
5を該レードル11の外周に該レードル中心軸14と同
軸に配置し、通電することにより該溶鋼13に螺旋回転
攪拌を与える。
FIG. 2 is a schematic side view illustrating the structure of an apparatus applied to the refining method of the second invention. The second invention is an example in which the first invention is applied to the ladle refining, and an electromagnetic wave which holds a molten steel 13 in a cylindrical ladle 11 formed of an airtight and non-magnetic iron shell and emits a spiral rotating magnetic field. Coil 1
5 is arranged on the outer periphery of the ladle 11 coaxially with the ladle center shaft 14 and is energized to give the molten steel 13 spiral rotation stirring.

【0029】一方排気管16を付設した真空カバー17
で該レードル11を密閉し、該レードル内空間を真空ポ
ンプ18により排気することにより精錬雰囲気を所定圧
に維持することができる。
On the other hand, a vacuum cover 17 provided with an exhaust pipe 16
Then, the ladle 11 is sealed and the space inside the ladle is evacuated by the vacuum pump 18, whereby the refining atmosphere can be maintained at a predetermined pressure.

【0030】該レードル11の底面より耐火物製の通気
プラグ19を介してArガス等の精錬ガスを適切な流量
で該溶鋼13中に吹き込むと、浮上する気泡群は螺旋回
転攪拌の作用を受けレードル中心軸周辺にトルネード流
(竜巻状渦)を形成し、強力な上昇流となって螺旋回転
攪拌による循環流7が安定的に強化される。
When a refining gas such as Ar gas is blown into the molten steel 13 from the bottom surface of the ladle 11 through a ventilation plug 19 made of a refractory material, the floating bubbles are subjected to the action of spiral rotation stirring. A tornado flow (tornado-like vortex) is formed around the center axis of the ladle, and becomes a strong upward flow, and the circulation flow 7 by spiral rotary stirring is steadily strengthened.

【0031】ガス吹き込みにより沸騰状態にある溶鋼、
スラグ表面は真空ポンプの作動により、雰囲気圧が低下
すると様相が一変し発泡状になる。そこでは猛烈な攪乱
によって気泡−スラグ−溶鋼−疑似真空の4相混合域2
1が形成される。
Molten steel in a boiling state due to gas injection,
The appearance of the slag surface changes to foam when the atmospheric pressure decreases due to the operation of the vacuum pump. There, a four-phase mixing region of bubbles-slag-molten steel-pseudo-vacuum due to violent disturbance 2
1 is formed.

【0032】精錬処理条件に従い、該混合域21で脱
酸、脱硫、脱非金属介在物、脱ガス、還元などの諸反応
が急速に進行する。公知のように、スラグレスであれば
脱ガスに対して、非酸化性塩基性スラグであれば脱酸・
脱硫に対して、酸性スラグであれば脱非金属介在物に対
して、還元性スラグであれば有用金属酸化物の還元回収
に対してそれぞれ効果的精錬が進む。
In accordance with the refining treatment conditions, various reactions such as deoxidation, desulfurization, denonmetallic inclusions, degassing and reduction rapidly proceed in the mixing zone 21. As is well known, if slagless, it is degassed; if it is non-oxidizing basic slag, it is deoxidized.
For desulfurization, effective refining proceeds for non-metallic inclusions in the case of acidic slag and reduction recovery of useful metal oxides in the case of reducing slag.

【0033】図3は第4の発明の精錬方法に適用される
装置の構造を例示する概略側面図である。第4の発明は
第2の発明において螺旋回転攪拌の推力方向を上下逆転
したもので、強力なトルネード流は形成されにくいが循
環流7’は形成される。同様に溶鋼上層部の発泡現象も
随伴する。
FIG. 3 is a schematic side view illustrating the structure of an apparatus applied to the refining method of the fourth invention. The fourth aspect of the present invention is one in which the thrust direction of the spiral rotary stirring is reversed upside down in the second aspect of the invention, and a strong tornado flow is difficult to form, but a circulating flow 7'is formed. Similarly, the phenomenon of foaming in the molten steel upper layer is also accompanied.

【0034】電磁コイルの位置、磁束密度、回転数、推
力等の攪拌条件を適切に設定すると、強力な渦流により
溶鋼上面が放物面状に陥没し、且つ溶鋼より低密度のス
ラグは遠心力差で中央に引き寄せられる。スラグ/耐火
物間接触反応を抑制したい場合には当該攪拌方法が有効
である。
If the stirring conditions such as the position of the electromagnetic coil, the magnetic flux density, the number of revolutions, and the thrust are properly set, the powerful eddy current causes the upper surface of the molten steel to sink into a parabolic shape, and the slag having a density lower than that of the molten steel has a centrifugal force. The difference pulls it to the center. The stirring method is effective for suppressing the slag / refractory contact reaction.

【0035】第3、第4の発明を実施する際、Cr,V
等酸素との親和力が比較的強くない合金元素の酸化物と
ほぼ化学等量分のC,Si等の還元剤を溶鋼又はスラグ
中に追加すると、上記酸化物は急速に還元されほぼ全量
溶鋼中に回収される。
When carrying out the third and fourth inventions, Cr, V
When a reducing agent such as C, Si, etc., which is almost chemically equivalent to the oxide of an alloying element having a relatively low affinity for isooxygen, is added to the molten steel or slag, the oxide is rapidly reduced and almost all of the molten steel is dissolved. Will be collected.

【0036】前項同様に、産業廃棄物的である電気炉製
鋼ダストを添加すると、ダスト中に多量に含有している
Zn,Pb等は溶鋼中のC、Si等により急速に還元さ
れ蒸発する。
As in the previous section, when electric furnace steelmaking dust, which is an industrial waste product, is added, Zn, Pb, etc. contained in a large amount in the dust are rapidly reduced by C, Si, etc. in the molten steel and evaporated.

【0037】該蒸気は排気管16の途中で酸化処理を受
けつつ集塵機22に誘導され、そこで高濃度酸化物とし
て回収することができる。
The vapor is guided to the dust collector 22 while undergoing oxidation treatment in the middle of the exhaust pipe 16 and can be recovered there as high-concentration oxide.

【0038】[0038]

【作用】適切な螺旋流は精錬反応に極めて有効であるこ
とを次に説明する。透明円筒容器と回転攪拌翼を用いた
水モデルによって流れと混合の状況を観察した。単純渦
流の場合、インキを渦のどの部分に滴下しても同心円状
に拡散するが意外に均一化が遅い。
Next, it will be explained that a proper spiral flow is extremely effective in the refining reaction. The state of flow and mixing was observed by a water model using a transparent cylindrical container and a rotary stirring blade. In the case of a simple vortex flow, even if the ink is dropped on any part of the vortex, it diffuses concentrically, but the uniformity is unexpectedly slow.

【0039】容器内面に部分的に螺旋案内翼を取り付け
ると回転方向に依存して容易に上昇または下降の螺旋流
が得られた。そして円筒芯部と周辺部が上下逆方向の比
較的安定・規則的な循環流が観察された。この場合イン
キや懸濁物は急速に均一化した。第1の発明はこの事実
をもとに構成された。
When the spiral guide vanes were partially attached to the inner surface of the container, an ascending or descending spiral flow was easily obtained depending on the rotation direction. A relatively stable and regular circulation flow was observed in the cylinder core and the peripheral part in the upside down direction. In this case, the ink and the suspension rapidly became uniform. The first invention was constructed based on this fact.

【0040】円筒内の単純渦流に底部よりガス吹込みを
加えると回転と上昇の合成により螺旋流が認められ、芯
部上昇・周辺部下降の循環流も得られた。同時に不安定
だが状況により含気泡トルネードの発生も見られた。
When gas was blown into the simple vortex in the cylinder from the bottom, a spiral flow was recognized due to the combination of rotation and ascent, and a circulating flow of core rising and peripheral descending was also obtained. At the same time, although it was unstable, generation of bubble-containing tornado was also observed depending on the situation.

【0041】螺旋案内翼により下向き螺旋攪拌しつつ円
筒底部よりガス吹込みを加えると含気泡トルネードと循
環流が安定的に持続した。
When gas was blown from the bottom of the cylinder while agitating downward with a spiral guide vane, the bubble-containing tornado and the circulating flow were stably maintained.

【0042】次に液面上方を減圧して行くと、液面は急
速に上昇し沸騰状から発泡状に変化して気相・液相・泡
のそれぞれの境界面が不明瞭になり攪乱の激しさととも
にトルネードと循環流が維持されることが観察された。
第2の発明はこの観察事実に基づいて構成された。
Next, when the pressure is depressurized above the liquid surface, the liquid surface rises rapidly and changes from boiling to foaming, making the boundaries between the gas phase, liquid phase and bubbles unclear and disturbing. It was observed that the tornado and circulating flow were maintained with the intensity.
The second invention was constructed based on this observation.

【0043】次に攪拌エネルギーについて検討する。吹
き込まれた精錬用ガスは該プラグ19上で気泡を形成す
るとともに直ちに昇温・膨張して最初の攪拌エネルギー
が発生する。次に気泡の上昇と緩やかな膨張による第2
の攪拌動エネルギー、液面直下に接近すると気泡外圧
(=溶鋼静圧+雰囲気圧)の急減による急膨張で第3の
攪拌エネルギーが発生する。
Next, the stirring energy will be examined. The blown refining gas forms bubbles on the plug 19 and immediately rises in temperature and expands to generate initial stirring energy. Next, the second due to the rise of bubbles and gentle expansion
When the stirring kinetic energy of (3) approaches immediately below the liquid surface, the third stirring energy is generated due to the rapid expansion due to the sudden decrease in the bubble external pressure (= molten steel static pressure + ambient pressure).

【0044】各種反応自体は既述のように大部分は発泡
・攪乱状態にある気泡−スラグ−溶鋼−疑似真空の4相
混合域20で進行し、且つ周知のように反応自体の速度
は極めて大きい。これは充分な量である第3の攪拌エネ
ルギーからもたらされる。一方種々のプロセスにおいて
攪拌エネルギーの増加につれ全体の反応速度が増加する
という事実は反応領域への物質移動が律速となっている
ことを示唆している。
As described above, most of the various reactions proceed in the four-phase mixing region 20 of bubbles-slag-molten steel-pseudo-vacuum in the foaming / disturbing state, and as is well known, the speed of the reaction itself is extremely high. large. This comes from a sufficient amount of the third stirring energy. On the other hand, the fact that the overall reaction rate increases as the stirring energy increases in various processes suggests that the mass transfer to the reaction region is rate limiting.

【0045】先行事例(2)に説明されているように単
なる減圧下のガス・バブリングでは通常第3の攪拌エネ
ルギー量に対して第1、第2の攪拌エネルギー量は充分
ではない。第1の発明は上記第1,第2の攪拌エネルギ
ーを補強するものである。
As described in the preceding case (2), in the gas bubbling simply under reduced pressure, the first and second stirring energy amounts are usually insufficient with respect to the third stirring energy amount. The first invention reinforces the first and second stirring energies.

【0046】攪拌エネルギーの量とともに攪拌エネルギ
ーの作用のあり方も重要である。即ち混合域以外に与え
た攪拌エネルギーが主に当該物質移動に消費されるのが
望ましい。そのためには攪拌エネルギーが局所攪乱には
消費されず、大きな安定的循環流が形成されことが必要
である。第1の発明は攪拌エネルギーの強化だけではな
く、加えた攪拌エネルギーが循環流の形成を通して物質
移動に効果的に作用するメカニズムを具体化したもので
もある。
It is important that the amount of stirring energy as well as how the stirring energy works. That is, it is desirable that the stirring energy applied to the area other than the mixing zone is mainly consumed for the mass transfer. For that purpose, it is necessary that the stirring energy is not consumed for local disturbance and a large stable circulation flow is formed. The first invention not only strengthens the stirring energy, but also embodies the mechanism by which the added stirring energy effectively acts on the mass transfer through the formation of a circulating flow.

【0047】次に第3,第4の発明における処理条件の
特定化の根拠を述べる。精錬用ガス流量を2〜20Nリ
ットル/分/溶鋼トンとしたのは、2Nリットル/分/
溶鋼トン未満では作用力が不足、20Nリットル/分/
溶鋼トンを越えると気泡の合体により吹き抜け現象が発
生し易くなるためである。
Next, the grounds for specifying the processing conditions in the third and fourth inventions will be described. The refining gas flow rate was set to 2 to 20 N liters / minute / ton of molten steel because 2 N liters / minute /
If the molten steel is less than ton, the working force is insufficient, 20N liter / min /
This is because if the molten steel exceeds the ton, blow-through phenomenon easily occurs due to coalescence of bubbles.

【0048】雰囲気圧を3〜30kPaとしたのは、3
kPa未満では脱ガスには有利だが排気装置としてスチ
ーム・エジェクターが必要になりエネルギーコスト上不
利になる。3kPa以上では設備・操業ともコスト有利
な各種ポンプが使用可能となる。30kPaを越えると
減圧下のガス・バブリングの効果が小さくなる。
The atmosphere pressure is set to 3 to 30 kPa because it is 3
If it is less than kPa, it is advantageous for degassing, but it requires a steam ejector as an exhaust device, which is disadvantageous in terms of energy cost. At 3 kPa or higher, various pumps that are cost-effective for equipment and operation can be used. When it exceeds 30 kPa, the effect of gas bubbling under reduced pressure becomes small.

【0049】螺旋回転磁界の回転数を溶鋼外周面での周
速が0.5〜20m/分となるよう特定した根拠は、誘
導される導体即ち溶鋼と移動磁界の相対速度が小さいと
誘導電磁力は小さく、逆に大きいと表皮効果により鉄皮
や溶鋼表皮部で誘導加熱として消費され電磁力が小さく
なるからである。事例及び実験から上記範囲が概ね実用
可能という事実に基づく。
The reason why the rotation speed of the spiral rotating magnetic field is specified so that the peripheral speed on the outer peripheral surface of the molten steel is 0.5 to 20 m / min is that the induced electromagnetic wave is small when the relative speed of the molten steel and the moving magnetic field is small. This is because if the force is small, on the contrary, if it is large, it is consumed as induction heating in the iron skin or molten steel skin portion due to the skin effect, and the electromagnetic force becomes small. Based on the fact that the above range is practically applicable from cases and experiments.

【0050】第4の発明において渦流の回転数を10〜
60rpmと特定した理由は以下である。螺旋流の強さ
がある限度を越えると渦流を形成する。渦表面の形状は
放物面になる。陥没の深さは強制渦の方程式より容器内
径と回転数の積の二乗に比例する。渦は溶融金属の表面
を覆っているスラグを向心させ耐火物壁面から離反させ
る。10rpm以下では大型レードルにおいても陥没深
さが0.2m以下となり、スラグの向心力も弱くスラグ
が壁面耐火物から離反しないからである。60rpm以
上では小型レードルでも渦深さは1mを越え、危険性が
増すからである。
In the fourth invention, the rotation speed of the vortex is set to 10 to 10.
The reason for specifying 60 rpm is as follows. When the strength of the spiral flow exceeds a certain limit, a vortex is formed. The shape of the vortex surface is parabolic. The depth of the depression is proportional to the square of the product of the inner diameter of the container and the number of rotations according to the forced vortex equation. The vortex causes the slag covering the surface of the molten metal to be centered and separated from the refractory wall. At 10 rpm or less, the depression depth becomes 0.2 m or less even in a large ladle, the centripetal force of the slag is weak, and the slag does not separate from the wall refractory. At 60 rpm or more, the eddy depth exceeds 1 m even with a small ladle, and the risk increases.

【0051】第5の発明は、事例(1)、事例(2)の
方法が開示はしていないが潜在的に保有している強力な
還元精錬能、即ち有用元素酸化物の還元回収を効果的に
具体化したものである。周知のように、スラグ中の酸化
物の還元反応はスラグ内から溶鋼/スラグ界面への物質
移動が律速となっている。減圧下のガス・バブリングは
溶鋼/スラグ間攪乱に極めて好都合であり、電磁力によ
る循環流の付加は還元から仕上げまでを効率的に処理す
ることを可能とする。
The fifth aspect of the invention does not disclose the methods of the cases (1) and (2), but has a strong reduction refining capability that is potentially possessed, that is, reduction and recovery of useful element oxides. It was specifically embodied. As is well known, in the reduction reaction of oxides in slag, mass transfer from the inside of the slag to the molten steel / slag interface is rate-determining. Gas bubbling under reduced pressure is extremely convenient for molten steel / slag disturbance, and the addition of a circulating flow by electromagnetic force enables efficient processing from reduction to finishing.

【0052】還元対象元素としてはMn,Cr,Ni,
Cu,V,Nb,Mo,W,Zn,Pb等があげられ
る。Zn,Pbは製鋼温度では蒸気圧が大きいので溶鋼
中には回収されず、蒸気として系外に排出され、例えば
集塵機22で回収される。還元剤としてはC,Si,A
l,Ca,CaC,SiC等が実用的である。
The elements to be reduced are Mn, Cr, Ni,
Cu, V, Nb, Mo, W, Zn, Pb and the like can be mentioned. Since Zn and Pb have a large vapor pressure at the steelmaking temperature, they are not recovered in the molten steel, but are discharged outside the system as steam, and are recovered by the dust collector 22, for example. C, Si, A as the reducing agent
1, Ca, CaC 2 , SiC and the like are practical.

【0053】鉄源として低級スクラップを多量に使用し
た場合、溶鋼中にはZn,Pb,Sb,As等の不純
物、スラグ中にはそれらの酸化物が残存、増加して品質
低下になるが第3,第4の発明の適用により還元、蒸発
により除去される。
When a large amount of low-grade scrap is used as an iron source, impurities such as Zn, Pb, Sb and As in molten steel and their oxides in slag remain and increase, but the quality deteriorates. By the application of the third and fourth inventions, it is removed by reduction and evaporation.

【0054】[0054]

【実施例】実験1(第3発明の検証) 高炭素鋼を対象に容量30トンの同一レードルを使用
し、脱酸速度係数について比較例として事例(1)の方
法と本発明の方法を比較した。数10チャージの比較例
の処理条件と結果は、溶解炉からの受鋼時の温度は15
70〜1590℃、非酸化性の塩基性スラグを未脱酸溶
鋼に上置し、溶解酸素量は65〜85ppm、雰囲気圧
力は約14〜21kPa、Arガスの吹き込み量は15
0〜200Nリットル/分、処理時間は3〜9分。精錬
終了時の溶解酸素量は18〜32ppm、溶鋼温度は1
535から1540℃、脱酸速度係数kは平均0.36
(1/分)となった。
EXAMPLES Experiment 1 (Verification of Third Invention) The same ladle having a capacity of 30 tons was used for high carbon steel, and the deoxidation rate coefficient was compared as a comparative example between the method of case (1) and the method of the present invention. did. The processing conditions and results of the comparative example of several tens of charges are as follows:
70 to 1590 ° C., non-oxidizing basic slag is placed on undeoxidized molten steel, the dissolved oxygen amount is 65 to 85 ppm, the atmospheric pressure is about 14 to 21 kPa, and the Ar gas blowing amount is 15
0-200 N liters / minute, processing time 3-9 minutes. The amount of dissolved oxygen at the end of refining is 18 to 32 ppm, and the molten steel temperature is 1
535 to 1540 ° C, deoxidation rate coefficient k is 0.36 on average
It became (1 / min).

【0055】上記と同様の条件において本発明の下向き
螺旋回転攪拌を適用した。入力160kVA、周波数1
Hzの2極回転磁界をレードルの下1/3の領域に作用
させた。電磁力の正確な計算ないし実測が困難なため磁
束密度分布測定値と磁界移動速度から概算して攪拌エネ
ルギー密度は約0.2kW/トンと推測した。処理時間
は2.5から6.0分、終了時の溶解酸素量は13〜2
4ppmm、溶鋼温度は1540から1550℃、脱酸
速度係数kは約0.5〜0.7に増加して精錬能率が向
上した。脱酸速度係数の増加によって脱酸のみならず、
脱硫その他の精錬についても能率向上の基盤が確立され
る。
The downward spiral rotary stirring of the present invention was applied under the same conditions as above. Input 160kVA, frequency 1
A 2-pole rotating magnetic field of Hz was applied to the lower 1/3 region of the ladle. Since it is difficult to accurately calculate or actually measure the electromagnetic force, the stirring energy density was estimated to be about 0.2 kW / ton by roughly estimating from the measured value of the magnetic flux density distribution and the magnetic field moving speed. The processing time is 2.5 to 6.0 minutes, and the amount of dissolved oxygen at the end is 13 to 2
4 ppmm, molten steel temperature was 1540 to 1550 ° C, deoxidation rate coefficient k was increased to about 0.5 to 0.7, and refining efficiency was improved. Not only deoxidation due to the increase of deoxidation rate coefficient,
For desulfurization and other refining, a basis for improving efficiency is established.

【0056】実験2(第4及び第5発明の検証) ばね鋼を対象に実験1と類似の条件で、両者とも出鋼時
にCr鉱石をCr分で1.0%相当、酸化VをV分で
0.15%相当を投入し、精錬直前にスラグ上にFe−
Si粉をCr、Vの還元に必要な化学等量分を添加し
た。
Experiment 2 (Verification of Fourth and Fifth Inventions) Under the same conditions as in Experiment 1 for spring steel, both Cr ore equivalent to 1.0% by Cr content and V content by V content at the time of tapping. 0.15% equivalent was added to the slag immediately before refining.
A chemical equivalent amount of Si powder required for reduction of Cr and V was added.

【0057】両者ともスラグ中のCr濃度は初期の約3
0%から0.4〜0.7%まで減少しCrの還元回収が
充分なされたが、比較例では8分以上かかり、本発明で
5分以内で処理できた。
In both cases, the Cr concentration in the slag was about 3 at the initial stage.
Although it was reduced from 0% to 0.4 to 0.7% and the reduction and recovery of Cr was sufficient, it took 8 minutes or more in the comparative example, and the present invention could be processed within 5 minutes.

【0058】実験3(第6発明の検証) 上記同様に、脱Zn反応の確認と比較を行った。電気炉
溶解工程で電気炉ダストを溶鋼量の約1%挿入した。ダ
ストの組成はZnOが約25%、FeOが約55%であ
る。比較例ではZnはレードル精錬後のスラグ中に0.
01〜0.03%、溶鋼中に10〜30ppm残存、本
発明ではそれぞれ0.01〜0.02%、8〜16pp
mの残存となり、脱Znが効率よくなされた。
Experiment 3 (Verification of Sixth Invention) The Zn removal reaction was confirmed and compared in the same manner as above. In the electric furnace melting step, electric furnace dust was inserted by about 1% of the molten steel amount. The composition of dust is about 25% ZnO and about 55% FeO. In the comparative example, Zn was added to the slag after ladle refining at 0.
01 to 0.03%, 10 to 30 ppm remaining in molten steel, 0.01 to 0.02% and 8 to 16 pp in the present invention, respectively.
Therefore, Zn was efficiently removed.

【0059】[0059]

【発明の効果】本発明によれば第1の発明では円筒状容
器内の溶融金属に円筒内面に沿う螺旋状の電磁誘導攪拌
流を生じさせるので非反応領域から反応領域への物質移
動を促進させ、精錬諸反応を促進させる。第2の発明で
は下向き螺旋流と減圧下のガス・バブリングの相互作用
によりガス−スラグ−溶鋼−疑似真空間の強烈な接触反
応の領域に、含気泡トルネード流を伴う循環流を相乗的
に作用させるので一層精錬諸反応を促進させる。第3の
発明は上記第2の発明の具体条件を提示したものであ
る。第5の発明を使用するとスラグ中に添加されたCr
鉱石のような合金元素の酸化物が高速、且つ歩留まり良
く還元回収され、しかも耐火物溶損が少ないのでコスト
上有利となる。第6の発明では溶鋼ないしスラグ中のZ
n等の有害酸化物が容易に蒸発除去される。この効果は
低級スクラップの使用拡大や産業破棄物的な電気炉ダス
トの溶解処理を可能とする等、コスト上極めて効果が大
きい。
According to the present invention, in the first aspect of the present invention, a spiral electromagnetic induction stirring flow along the inner surface of the cylinder is generated in the molten metal in the cylindrical container, so that mass transfer from the non-reaction region to the reaction region is promoted. And accelerate the refining reactions. In the second invention, the interaction between the downward spiral flow and the gas bubbling under reduced pressure synergistically acts on the circulating flow accompanied by the bubble-containing tornado flow in the region of the intense contact reaction between the gas-slag-molten steel-pseudo vacuum. Therefore, various refining reactions are further promoted. The third aspect of the invention presents the specific conditions of the second aspect of the invention. Using the fifth invention, the Cr added in the slag
Oxides of alloying elements such as ores can be reduced and recovered at high speed and with a good yield, and the melting loss of refractory material is small, which is advantageous in terms of cost. In the sixth invention, Z in molten steel or slag
The harmful oxides such as n are easily evaporated and removed. This effect is extremely effective in terms of cost, such as expansion of use of low-grade scrap and dissolution treatment of electric furnace dust, which is an industrial waste.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明に適用される精錬装置を例示する概
略側面図である。
FIG. 1 is a schematic side view illustrating a refining device applied to a first invention.

【図2】第2の発明に適用される精錬装置を例示する概
略側面図である。
FIG. 2 is a schematic side view illustrating a refining device applied to a second invention.

【図3】第3の発明に適用される精錬装置を例示する概
略側面図である。
FIG. 3 is a schematic side view illustrating a refining device applied to a third invention.

【図4】攪拌エネルギー密度Eと脱酸速度係数kの関係
を示す図である。
FIG. 4 is a diagram showing a relationship between a stirring energy density E and a deoxidation rate coefficient k.

【符号の説明】[Explanation of symbols]

1:冶金容器 2:耐火物 3:溶融金属 4:中心軸
5:回転磁界装置 6:昇降機 7,7’:循環流
11:レードル 13:溶鋼 14:中心軸 15:電
磁コイル 16:排気管 17:真空カバー 18:真
空ポンプ 19:通気プラグ 20:トルネード流 2
1:4相混合域 22:集塵機
1: Metallurgical container 2: Refractory material 3: Molten metal 4: Central axis 5: Rotating magnetic field device 6: Elevator 7, 7 ': Circulating flow
11: Ladle 13: Molten Steel 14: Central Axis 15: Electromagnetic Coil 16: Exhaust Pipe 17: Vacuum Cover 18: Vacuum Pump 19: Vent Plug 20: Tornado Flow 2
1: 4 phase mixing area 22: Dust collector

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 回転磁界と回転軸方向移動磁界を合成し
た螺旋回転磁界を発する電磁コイルを直立する円筒状の
冶金容器の外周に該容器中心軸と同軸に配置することに
より該容器内の溶融金属に螺旋回転攪拌を付与すること
を特徴とする溶融金属の精錬方法。
1. Melting in a container by arranging an electromagnetic coil for generating a spiral rotating magnetic field, which is a combination of a rotating magnetic field and a moving magnetic field in the rotating shaft direction, on the outer circumference of an upright cylindrical metallurgical container coaxially with the central axis of the container. A method for refining a molten metal, which comprises applying spiral rotation stirring to the metal.
【請求項2】 溶融金属を溶鋼とし、冶金容器をレード
ルとし、螺旋回転磁界の推力の方向を下方とし、該レー
ドル底面より精錬用ガスを該溶鋼中に吹き込み、該溶鋼
上方の雰囲気を減圧することにより該溶鋼中に含気泡上
昇トルネード流を発生せしめ、該レードル内の下層の溶
鋼を上層へ移動・促進せしめることを特徴とする請求項
1に記載の溶融金属の精錬方法。
2. The molten metal is molten steel, the metallurgical container is a ladle, the direction of the thrust of the spiral rotating magnetic field is downward, a refining gas is blown into the molten steel from the bottom of the ladle, and the atmosphere above the molten steel is depressurized. The molten metal refining method according to claim 1, wherein an ascending bubble-containing tornado flow is generated in the molten steel, and the molten steel in the lower layer in the ladle is moved / promoted to the upper layer.
【請求項3】 精錬用ガスの流量を2〜20Nリットル
/分/溶鋼トンとし、雰囲気圧を3〜30kPaに維持
し、螺旋回転磁界の回転数をレードル内壁面における周
速が0.5〜20m/秒となるよう設定することを特徴
とする請求項2に記載の溶融金属の精錬方法。
3. The refining gas flow rate is set to 2 to 20 N liters / minute / ton of molten steel, the atmospheric pressure is maintained at 3 to 30 kPa, and the rotational speed of the spiral rotating magnetic field is set to 0.5 to about the peripheral speed on the inner surface of the ladle. The method for refining molten metal according to claim 2, wherein the refining method is set to 20 m / sec.
【請求項4】 溶融金属を溶鋼とし、冶金容器をレード
ルとし、該溶鋼上に精錬用スラグを置き、該レードル底
面より精錬用ガスを2〜20Nリットル/分/溶鋼トン
の流量で該溶鋼中に吹き込み、該スラグ上方の雰囲気圧
を3〜30kPaに維持し、螺旋回転磁界の推力の方向
を上方とし、渦流の回転数を10〜60rpmとして該
溶鋼上面を放物面状に陥没させ、浮遊している該スラグ
とレードル内壁面の耐火物との接触反応を抑制しつつ該
レードル内の下層の溶鋼を上層へ移動・促進することを
特徴とする請求項1に記載の溶融金属の精錬方法。
4. The molten metal is molten steel, the metallurgical container is a ladle, the refining slag is placed on the molten steel, and the refining gas is supplied from the bottom of the ladle at a flow rate of 2 to 20 Nl / min / ton of molten steel in the molten steel. And maintain the atmospheric pressure above the slag at 3 to 30 kPa, make the direction of the thrust of the spiral rotating magnetic field upward, and set the rotating speed of the vortex to 10 to 60 rpm to sink the molten steel upper surface into a parabolic shape and float. The method for refining molten metal according to claim 1, wherein the molten steel in the lower layer in the ladle is moved and promoted to the upper layer while suppressing the contact reaction between the slag and the refractory on the inner wall surface of the ladle that are being formed. .
【請求項5】 Mn、Cr、Ni、Cu、V、Nb、M
o、W、Zn,Pbの酸化物の1種以上を精錬用スラグ
中に含有させ、還元剤としてC、Si、Al、Ca、C
aC、SiCの1種以上を上記金属の酸化物とほぼ化
学的等量で溶鋼又はスラグ中に添加して上記金属を還元
回収することを特徴とする請求項3又は請求項4に記載
の溶融金属の精錬方法。
5. Mn, Cr, Ni, Cu, V, Nb, M
One or more oxides of o, W, Zn and Pb are contained in the smelting slag, and C, Si, Al, Ca and C are used as a reducing agent.
The one or more kinds of aC 2 and SiC are added to the molten steel or slag in an approximately chemical equivalent amount to the oxide of the metal to reduce and recover the metal. Method for refining molten metal.
【請求項6】 蒸発性不純物であるZn,Pb,Sb,
Asを含有している溶鋼から、又は上記金属の酸化物を
含有しているスラグから、請求項3又は請求項4の方法
により上記金属を蒸発除去することを特徴とする溶融金
属の精錬方法。
6. A vaporizable impurity such as Zn, Pb, Sb,
A method for refining a molten metal, comprising vaporizing and removing the metal from a molten steel containing As or from a slag containing an oxide of the metal according to the method of claim 3 or 4.
JP2002005425A 2002-01-15 2002-01-15 Method for refining molten metal Expired - Fee Related JP3654248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005425A JP3654248B2 (en) 2002-01-15 2002-01-15 Method for refining molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005425A JP3654248B2 (en) 2002-01-15 2002-01-15 Method for refining molten metal

Publications (2)

Publication Number Publication Date
JP2003213319A true JP2003213319A (en) 2003-07-30
JP3654248B2 JP3654248B2 (en) 2005-06-02

Family

ID=27644471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005425A Expired - Fee Related JP3654248B2 (en) 2002-01-15 2002-01-15 Method for refining molten metal

Country Status (1)

Country Link
JP (1) JP3654248B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224387A (en) * 2006-02-24 2007-09-06 Jfe Steel Kk Ladle-refining method and ladle-refining furnace
CN111876554A (en) * 2020-08-10 2020-11-03 华北理工大学 Method for strengthening metal structure by using oxide metallurgy
CN115069133A (en) * 2022-07-22 2022-09-20 北京科技大学 Electromagnetic stirrer for uniformly mixing molten steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224387A (en) * 2006-02-24 2007-09-06 Jfe Steel Kk Ladle-refining method and ladle-refining furnace
CN111876554A (en) * 2020-08-10 2020-11-03 华北理工大学 Method for strengthening metal structure by using oxide metallurgy
CN115069133A (en) * 2022-07-22 2022-09-20 北京科技大学 Electromagnetic stirrer for uniformly mixing molten steel

Also Published As

Publication number Publication date
JP3654248B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
JP2004143483A (en) Method for treating aluminum melt
JP2007332432A (en) Method for refining molten steel
JP3654248B2 (en) Method for refining molten metal
JP2003207283A (en) Method and device for mixing molten metal
JP2018066031A (en) Manufacturing method of high cleanliness steel
TWI816422B (en) Refining method of molten steel
KR930009387B1 (en) Method of and apparatus for removing non-metallic inclusions from molten metal
JPH02179813A (en) Method for refining molten metal into high purity and high cleanliness
WO2005095026A1 (en) Melting apparatus and method
JP5096779B2 (en) Method of adding rare earth elements to molten steel
US5454854A (en) Method of refining molten metal or molten alloy
EP3086069A1 (en) Furnace for melting and treating metal and metallic waste and method therefor
JP6443192B2 (en) Slag reforming method using FeSi alloy grains
JP4816138B2 (en) Ladle refining method and ladle refining furnace
JP2018127683A (en) Method for removing nonmetallic inclusions in molten steel
JP2538879B2 (en) Method for refining molten metal
JP2007162085A (en) Method of producing steel with dispersion of fine oxide particles
RU2026365C1 (en) Device for treatment of molten metal
JPS6043420A (en) Decarbonization for metal and alloy
JPS5952684B2 (en) Secondary refining method of molten steel
JP2014148695A (en) High efficiency dehydrogenation method of molten steel
JP3282530B2 (en) Method for producing high cleanliness low Si steel
CN103741050A (en) Superhigh-strength high-flexibility steel and production method thereof
Sundberg Magnetic traveling fields for metallurgical processes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees