JPS5952684B2 - Secondary refining method of molten steel - Google Patents

Secondary refining method of molten steel

Info

Publication number
JPS5952684B2
JPS5952684B2 JP9805679A JP9805679A JPS5952684B2 JP S5952684 B2 JPS5952684 B2 JP S5952684B2 JP 9805679 A JP9805679 A JP 9805679A JP 9805679 A JP9805679 A JP 9805679A JP S5952684 B2 JPS5952684 B2 JP S5952684B2
Authority
JP
Japan
Prior art keywords
molten steel
cylinder
ladle
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9805679A
Other languages
Japanese (ja)
Other versions
JPS5623218A (en
Inventor
徹也 藤井
征男 小口
則夫 住田
勇 五藤
貢治 三本木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9805679A priority Critical patent/JPS5952684B2/en
Publication of JPS5623218A publication Critical patent/JPS5623218A/en
Publication of JPS5952684B2 publication Critical patent/JPS5952684B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Description

【発明の詳細な説明】 本発明は、転炉等から取鍋等に出鋼された溶鋼を炉外で
精錬する二次精錬方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a secondary refining method for refining molten steel discharged from a converter or the like into a ladle or the like outside the furnace.

従来、転炉や電気炉などで一次精錬された溶鋼は、炉か
ら取鍋に出鋼され、この取鍋内で溶鋼に合金や脱酸剤が
添加され、酸素などの不純物の除去や目的の鋼の組成を
得るための成分調節などを目的とした二次精錬が炉外で
行なわれている。
Conventionally, molten steel that has been primarily refined in a converter or electric furnace is tapped from the furnace into a ladle, where alloys and deoxidizing agents are added to the molten steel to remove impurities such as oxygen and to achieve the desired purpose. Secondary refining is performed outside the furnace to adjust the composition of steel.

二次精錬方法として、従来様々の方法が提案されている
Various methods have been proposed as secondary refining methods.

これらの方法は、真空脱ガス装置を利用して処理時の大
気による溶鋼の酸化を防止するとともに、積極的に溶鋼
中の不純物であるガスの同時除去を行なう真空脱ガス方
法と、真空脱ガス装置を用いずに単にガスを用いて溶鋼
を攪拌する溶鋼攪拌方法との2方法に大別される。
These methods include a vacuum degassing method that uses a vacuum degassing device to prevent the molten steel from being oxidized by the atmosphere during processing, and simultaneously actively removes gases that are impurities in the molten steel; There are two methods: a molten steel stirring method that simply uses gas without using any equipment, and a molten steel stirring method.

真空脱ガス方法は、RH式環流脱ガス法あるいはDH式
吸上げ脱ガス法に代表され、二次精錬法として非常に優
れた方法であるが、大型の真空装置を用いることが必要
であって、装置が大規模となり、設備費用や処理コスト
が高価となる。
The vacuum degassing method is represented by the RH reflux degassing method or the DH suction degassing method, and is an excellent secondary refining method, but it requires the use of large-scale vacuum equipment. , the equipment becomes large-scale, and equipment costs and processing costs become expensive.

このために真空脱ガス方法はとくに高級な鋼材を製造す
ることを目的として実施されている。
For this reason, vacuum degassing methods have been implemented especially for the purpose of producing high-grade steel materials.

他方、溶鋼攪拌方法は真空脱ガス方法と比較して低級な
鋼材を対象として利用され、溶鋼中に不活性ガスを吹き
込み、ガス気泡の浮上刃を利用して溶鋼を攪拌するいわ
ゆる不活性ガス攪拌法がその代表であり、処理コストの
安価な方法である。
On the other hand, the molten steel stirring method is used for lower-grade steel materials compared to the vacuum degassing method, and is a so-called inert gas stirring method in which an inert gas is blown into the molten steel and the molten steel is stirred using floating blades of gas bubbles. A representative example of this is the method, which has low processing costs.

この不活性ガスによる溶鋼の攪拌方法はガス吹き込み用
ノズルあるいは多孔質プラグを用いるだけで、特別な装
置を必要とせず、また処理法が簡単であることなど二次
精錬を目的とした溶鋼の攪拌法として多くの特徴を有す
る方法である。
This method of stirring molten steel using an inert gas does not require any special equipment, as it only uses a gas blowing nozzle or porous plug, and the processing method is simple. This method has many characteristics as a method.

しかし、この方法は前述の真空脱ガス方法と比較して攪
拌力が弱く、またその攪拌の原理上、スラグと溶鋼の界
面が一番強力に攪拌されるために転炉などの一次精錬炉
から溶鋼とともに取鍋に流入した酸化性スラグが溶鋼と
反応する傾向があり、これを防止することが困難であり
、したがって例えば処理中に、アルミニウムなどの酸化
されやすい合金元素がスラグと反応してその濃度が激し
く変化し、目的の濃度に調整することが困難であること
が欠点とされている。
However, this method has weak stirring power compared to the vacuum degassing method mentioned above, and due to the principle of stirring, the interface between the slag and molten steel is most strongly stirred. The oxidizing slag that flows into the ladle with the molten steel has a tendency to react with the molten steel, which is difficult to prevent, so that during processing, for example, easily oxidized alloying elements such as aluminum can react with the slag and cause The disadvantage is that the concentration changes drastically and it is difficult to adjust it to the desired concentration.

またスラグから流入する酸素のために、処理終了時の酸
素濃度が十分に低下しないといった問題点もある。
Another problem is that the oxygen concentration at the end of the treatment does not drop sufficiently due to oxygen flowing in from the slag.

さらにまた、攪拌力を強化するために吹き込みガス流量
を増加させると、ガス気泡放出位置の溶鋼浴表面のスラ
グ層が周囲に排除され、溶鋼が大気と直接接触し、大気
中の酸素により溶鋼が酸化され、精錬能率が低下する欠
点がある。
Furthermore, when the blowing gas flow rate is increased to strengthen the stirring power, the slag layer on the surface of the molten steel bath at the gas bubble release position is removed to the surrounding area, and the molten steel comes into direct contact with the atmosphere, causing the molten steel to be heated by the oxygen in the atmosphere. It has the disadvantage of being oxidized and reducing refining efficiency.

不活性ガスによる溶鋼攪拌方法の上述した欠点を改良し
た方法として、第1図に示すように、取鍋1の底に多孔
質プラグ2を取付け、不活性ガスを管3により多孔質プ
ラグ2を経て4で示すように取鍋1内の溶湯5中に気泡
として吹込み、耐火物製円筒6を取鍋]内の溶湯中に上
部からスラグ層7を貫通して円筒6の下端が溶鋼5内に
浸漬するように沿直方向に挿入し、この円筒内にスラグ
層のない溶鋼面を露出させ、吹き込みガスを円筒6内の
露出溶湯面から大気中に逸出させる方法が提案されてい
る。
As a method to improve the above-mentioned drawbacks of the method of stirring molten steel using inert gas, as shown in FIG. Then, as shown in 4, air bubbles are blown into the molten metal 5 in the ladle 1, and the slag layer 7 is penetrated from the top into the molten metal in the refractory cylinder 6 ladle, so that the lower end of the cylinder 6 becomes the molten steel 5. A method has been proposed in which the molten steel surface without a slag layer is exposed inside the cylinder, and the blown gas escapes from the exposed molten metal surface inside the cylinder 6 into the atmosphere. .

この方法によれば、吹き込みガス気泡がスラグと溶鋼と
の界面を通過する時に生じる両相間の混合、攪拌が防止
されるので、両相間の反応を効果的に防止できる。
According to this method, mixing and agitation between the two phases that occur when the blown gas bubbles pass through the interface between the slag and the molten steel can be prevented, so that reactions between the two phases can be effectively prevented.

また、溶鋼浴と接する円筒内ガス相は吹き込みガスの溶
鋼からの放散により非酸化性雰囲気となるので、大気と
溶鋼との反応も防止できる。
Further, since the gas phase in the cylinder in contact with the molten steel bath becomes a non-oxidizing atmosphere due to the dissipation of the blown gas from the molten steel, reactions between the atmosphere and the molten steel can be prevented.

上述したように、第1図に示す方法は溶鋼とスラグある
いは溶鋼と大気間の反応の防止法として優れた方法であ
るが、従来法と比較して攪拌力の改善効果は皆無であり
、むしろ浸漬耐火物円筒がガス気泡によって生じた溶鋼
上昇流の運動エネルギーを減衰させるため、攪拌力が低
下するといった問題を生じ、また処理中の合金材の添加
が困難であり、この点で真空脱ガス方法より劣る欠点が
ある。
As mentioned above, the method shown in Figure 1 is an excellent method for preventing reactions between molten steel and slag or molten steel and the atmosphere, but it has no effect on improving stirring power compared to the conventional method, and is rather The immersed refractory cylinder attenuates the kinetic energy of the upward flow of molten steel caused by gas bubbles, resulting in problems such as reduced stirring power, and also makes it difficult to add alloying materials during processing, making vacuum degassing difficult. There are some drawbacks to this method.

本発明は、溶鋼中のH,Mなどの脱ガスを目的としない
場合で、溶鋼の攪拌効果により脱酸反応の促進や合金成
分濃度および温度の均一化などを計る二次精錬において
、溶鋼とスラグあるいは溶鋼と大気との反応の防止が可
能で処理後の到達酸素濃度が十分に低く、脱酸処理に優
れ、また添加合金の歩留りが良く成分調整の容易な二次
精錬法を提供することを目的とする。
The present invention is applicable to molten steel in secondary refining, where the purpose is not to degas H, M, etc. in molten steel, but to promote deoxidation reaction and equalize alloy component concentration and temperature by the stirring effect of molten steel. To provide a secondary refining method that can prevent reactions between slag or molten steel and the atmosphere, achieves a sufficiently low oxygen concentration after treatment, is excellent in deoxidizing treatment, has a good yield of additive alloys, and is easy to adjust components. With the goal.

本発明者らは、溶鋼の二次精錬方法について種々の攪拌
法を試験、検討し、気体力学的攪拌法を利用することに
より溶鋼の優れた二次精錬方法を発明したものである。
The present inventors tested and investigated various stirring methods for secondary refining of molten steel, and invented an excellent secondary refining method of molten steel by utilizing a gas-dynamic stirring method.

以下図面につき本発明を説明する。The invention will be explained below with reference to the drawings.

第2図は取鍋1内の溶鋼5中に耐火物製円筒6を浸漬し
、この円筒6の上端を圧力変動発生装置(図示せず)に
管8を経て接続し、圧力変動発生装置により円筒内のガ
ス相の圧力を増減させ、これに応じて溶鋼は減圧期には
取鍋1から円筒6内に流入し、加圧期には円筒6内から
取鍋1に流出するといった振動運動を繰返すよう構成し
た装置を示す。
In Figure 2, a refractory cylinder 6 is immersed in molten steel 5 in a ladle 1, and the upper end of this cylinder 6 is connected to a pressure fluctuation generator (not shown) through a pipe 8. The pressure of the gas phase inside the cylinder is increased or decreased, and accordingly, molten steel flows from the ladle 1 into the cylinder 6 during the depressurization period, and flows out from the cylinder 6 to the ladle 1 during the pressurization period. This shows a device configured to repeat.

上述した円筒5から流出する溶鋼の運動エネルギーは取
鍋内の溶鋼の攪拌力として利用され、溶鋼の振動運動の
周期と振幅の制御により目的の攪拌力が得られる。
The kinetic energy of the molten steel flowing out of the cylinder 5 described above is used as stirring force for the molten steel in the ladle, and the desired stirring force can be obtained by controlling the period and amplitude of the vibration motion of the molten steel.

上述の攪拌は第3図に示すように圧力変動の平均圧力に
応じて(a)減圧側、(b)常圧側、および(C)加圧
側の三種類の実施法があり、処理目的に応じて処理方法
の変更が可能である。
As shown in Figure 3, there are three types of stirring methods according to the average pressure of the pressure fluctuation: (a) reduced pressure side, (b) normal pressure side, and (C) pressurized side. It is possible to change the processing method.

例えば、取鍋から鋳型への溶鋼注入時には、しばしば問
題とされるように注入開始時に取鍋底部の耐火物壁で冷
やされた低温溶鋼が流出するために目的の注入温度が得
られず、また注入用のノズルが低温溶鋼で凝着閉鎖した
り開口作業が困難になることがある。
For example, when pouring molten steel from a ladle into a mold, it is often a problem that the low temperature molten steel that has been cooled by the refractory wall at the bottom of the ladle flows out at the start of pouring, making it impossible to obtain the desired pouring temperature. The injection nozzle may become clogged with low-temperature molten steel or become difficult to open.

このような問題の防止には、第3図aに示すように注入
直前に処理を行ない取鍋底部の低温溶鋼を攪拌すること
が有効であることを確めた。
In order to prevent such problems, we have confirmed that it is effective to stir the low-temperature molten steel at the bottom of the ladle by performing a treatment immediately before pouring as shown in Figure 3a.

また、円筒上部より円筒自溶鋼中に合金を添加する際に
も、第3図aに示す操業方法が好都合であることを確め
た。
It was also confirmed that the operating method shown in FIG. 3a is convenient when adding an alloy to a cylindrical self-melting steel from the upper part of the cylinder.

この理由は、添加合金は一部未溶解の状態で取鍋中に流
出するが、この際に未溶解のまま取鍋浴面に浮上し、ス
ラグあるいは大気と反応することを防止するためには円
筒からの未溶解合金を含有する溶鋼流はできるだけ取鍋
底部に達することが好都合であるからである。
The reason for this is that some of the added alloy flows into the ladle in an undissolved state, and in this case, it is necessary to prevent it from floating to the ladle bath surface undissolved and reacting with the slag or the atmosphere. This is because it is advantageous for the molten steel flow containing unmelted alloy from the cylinder to reach the bottom of the ladle as much as possible.

さらに、第3図aに示す操業法はガス相の圧力変動の平
均値が一気圧以上であるために圧力変動を発生させるた
めに必らずしも減圧装置を用いる必要がなく、エネルギ
ー効率の良い高圧ガスのみにて操業可能といった特徴を
有することを確めた。
Furthermore, in the operating method shown in Figure 3a, since the average value of pressure fluctuations in the gas phase is 1 atm or more, it is not necessary to use a pressure reducing device to generate pressure fluctuations, resulting in improved energy efficiency. It was confirmed that the system has the characteristic of being able to operate using only high-pressure gas.

これに反し、第3図Cに示す方法は上述の理由により合
金添加に対して若干不利であり、またガス相の圧力変動
の平均値が一気圧以下であるために、圧力変動の発生に
真空ポンプを用いる必要があるなどの不都合が生じる。
On the other hand, the method shown in FIG. Inconveniences arise, such as the need to use a pump.

しかし、第3図Cに示す方法は第3図aに示す方法と比
較して両面が溶鋼と接する耐火物レンガの量が少なく円
筒を構成する耐火物レンガの構築費用が安価であり、ま
た円筒の耐用期間も長く、耐火物レンガの費用か少なく
すむといった長所を有する。
However, compared to the method shown in Fig. 3a, the method shown in Fig. 3C has a smaller amount of refractory bricks that are in contact with molten steel on both sides, and the construction cost of the refractory bricks forming the cylinder is lower. It has the advantage of having a long service life and reducing the cost of refractory bricks.

結局、第3図a−Cに示す処理法はそれぞれ特徴を有す
るので処理目的に応じてそれぞれの特色を考慮して実施
することが必要である。
After all, each of the processing methods shown in FIGS. 3a to 3C has its own characteristics, and therefore, it is necessary to implement them in consideration of their respective characteristics depending on the processing purpose.

上述したように、取鍋内に出鋼した溶鋼中に円筒を浸漬
し、この円筒内のガスに圧力変動を与えることによって
溶鋼を円筒内に昇降させることによって取鍋内の溶鋼を
攪拌することにより下記のような種々の利点が得られる
As mentioned above, a cylinder is immersed in the molten steel tapped into the ladle, and the molten steel in the ladle is stirred by raising and lowering the molten steel into the cylinder by applying pressure fluctuations to the gas in the cylinder. This provides various advantages as described below.

(1)取鍋自溶鋼浴面を覆うスラグ層と溶鋼との界面が
攪拌されない。
(1) The interface between the molten steel and the slag layer covering the surface of the self-molten steel bath in the ladle is not stirred.

そのために転炉などから溶鋼と同時に取鍋内に不可避的
に注入された酸化度の高いスラグと溶鋼との反応が防止
できるので処理中の合金の酸化損失が少なく、また処理
後の酸素濃度も低下する。
This prevents the molten steel from reacting with the highly oxidized slag that is unavoidably injected into the ladle at the same time as the molten steel from the converter, reducing oxidation loss of the alloy during processing and reducing the oxygen concentration after processing. descend.

(2)溶鋼がガス相と直接接触するのは円筒内の浴面の
みであり、円筒内を不活性ガスを雰囲気とすることによ
り溶鋼の大気による酸化を防止することができる。
(2) The molten steel comes into direct contact with the gas phase only at the bath surface inside the cylinder, and by creating an inert gas atmosphere inside the cylinder, oxidation of the molten steel by the atmosphere can be prevented.

(3)円筒内ガス相の圧力変動の周期と振幅を変化させ
ることにより任意の攪拌力が得られ、また円筒浸漬深さ
を変更することにより取鍋内の目的の深さの溶鋼を特に
強く攪拌することができる。
(3) By changing the period and amplitude of the pressure fluctuation of the gas phase inside the cylinder, any stirring force can be obtained, and by changing the depth of immersion in the cylinder, the molten steel at the desired depth in the ladle can be particularly strongly stirred. Can be stirred.

(4)機械的な可動部分がなく、装置が単純であるため
、装置建設費が安価で、また処理コストも安価となる。
(4) Since there are no mechanically moving parts and the device is simple, the device construction cost is low and the processing cost is also low.

(5)機械的な可動部分がないために溶鋼の流入、流出
の周期の制御が容易で、攪拌力の増大のために周期を数
秒以下にして高速操業が容易に可能である。
(5) Since there are no mechanically moving parts, it is easy to control the cycle of inflow and outflow of molten steel, and high-speed operation is easily possible by reducing the cycle to several seconds or less to increase the stirring force.

(6)通常の真空脱ガス装置のような数mmHg以下と
いった高真空を必要としないので、大規模な設備を用い
る必要がなく、簡単な装置によって加圧、減圧の操作が
時間遅れなく容易に可能であり、特に工業的に容易な加
圧操作によって取鍋自溶鋼の攪拌力となる円筒からの流
出溶鋼の流速を増大可能にする。
(6) Since it does not require a high vacuum of several mmHg or less like a normal vacuum degassing device, there is no need to use large-scale equipment, and pressurization and depressurization operations can be easily performed without time delay with a simple device. This makes it possible to increase the flow rate of the molten steel flowing out from the cylinder, which serves as the stirring force for the self-melting steel in the ladle, by a pressurizing operation that is particularly industrially easy.

上述したように気体力学的攪拌法を用いて溶鋼の二次精
錬を効果的に行なうことによって円筒から流出する溶鋼
の有する運動エネルギーを用いて攪拌効果を増大するに
は溶鋼の円筒内への流入、流出の周期を小ならしめ、円
筒から流出する溶鋼の流速を大とすることが必須条件で
ある。
As mentioned above, in order to increase the stirring effect by using the kinetic energy of the molten steel flowing out of the cylinder by effectively performing secondary refining of the molten steel using the gas-dynamic stirring method, it is necessary to increase the stirring effect by using the kinetic energy of the molten steel flowing out of the cylinder. , it is essential to reduce the outflow period and increase the flow velocity of the molten steel flowing out from the cylinder.

しかし、水を用いたモデル実験および溶鋼を用いた実機
実験結果によれば周期をいたずらに小さくすることは以
下のような不都合を生じることが判明した。
However, according to the results of a model experiment using water and an actual machine experiment using molten steel, it has been found that unnecessarily reducing the period causes the following disadvantages.

すなわち、周期を小として円筒内での溶鋼の上昇運動を
激しくしすぎると円筒内の溶鋼浴面から溶鋼粒からなる
スプラッシュが飛散し、円筒上部の溶鋼流に洗われない
部分の耐火物壁に凝固付着し、ついにはガス流路を閉鎖
するといった不都合を生じる。
In other words, if the ascending movement of the molten steel in the cylinder is made too violent with a small period, the splash of molten steel grains will scatter from the molten steel bath surface in the cylinder, and the refractory wall in the part of the upper part of the cylinder that is not washed by the molten steel flow will be splashed. This causes inconveniences such as solidification and adhesion, eventually closing off the gas flow path.

また、溶鋼の振動運動の周期を小とするためには圧力変
動発生装置の容量が必然的に大となる。
Furthermore, in order to reduce the period of the vibration motion of the molten steel, the capacity of the pressure fluctuation generator inevitably becomes large.

加圧源に関しては10気圧程度の圧搾ガスは工業的に安
価に利用可能であり、圧力変動発生装置の大型化につい
て特別な問題は生じない。
As for the pressurization source, compressed gas of about 10 atmospheres can be used industrially at low cost, and no special problem arises in increasing the size of the pressure fluctuation generator.

しかし、減圧源に関しては円筒内圧力1〜2気圧と比較
して減圧源の圧力は最高で0気圧であり円筒内の圧力を
減少させるための推進力としてたかだか1〜2気圧の圧
力差のみが利用可能であるがために、短時間にて円筒内
の圧力を減少するには大型の減圧装置が必要となり、ま
た圧力変動発生装置から円筒までのガス配管が周期の短
時間化とともに急速に大規模となる。
However, as for the pressure reduction source, compared to the cylinder internal pressure of 1 to 2 atmospheres, the maximum pressure of the pressure reduction source is 0 atmosphere, and the pressure difference of at most 1 to 2 atmospheres is the driving force to reduce the pressure inside the cylinder. However, in order to reduce the pressure inside the cylinder in a short time, a large pressure reducing device is required, and the gas piping from the pressure fluctuation generator to the cylinder increases rapidly as the cycle time becomes shorter. It will be scale.

上述した点から、スプラッシュの付着の問題や装置の大
型化をさけて溶鋼の精錬効果を効率よく向上させる方法
として、溶鋼の円筒への流入期間を減少させることより
、流出期間を小とするように加圧時の圧力変動を増大さ
せ取鍋自溶鋼の攪拌のエネルギーとなる円筒からの流出
速度を大ならしめることが有利で゛あることが判明した
From the above points, as a way to efficiently improve the refining effect of molten steel while avoiding the problem of splash adhesion and increasing the size of the equipment, it is recommended to shorten the outflow period rather than reducing the period in which molten steel flows into the cylinder. It has been found that it is advantageous to increase the pressure fluctuation during pressurization to increase the outflow velocity from the cylinder, which serves as the energy for stirring the self-molten steel in the ladle.

さらにまた、円筒自溶鋼の流れの方向が反転する振動運
動の上限位置と下限位置での溶鋼運動の停止期間は取鍋
自溶鋼の攪拌に対して何らの役割りをはださず、振動の
周期が大となる点で不利であるが、周期が数秒以下の場
合で前述のスプラッシュの凝固付着が問題となる時には
上限位置での停止時間を十分の数秒といった極めて短時
間にすることが攪拌力の低下を伴わないスプラッシュの
防止法として有効であり、一方、下限位置での溶鋼運動
の停止期間は溶鋼の攪拌に対して全く無意味であり、む
しろ停止期間はできうるかぎり小として急激に溶鋼流の
流れの方向を反転させることに利点があり、かように急
激な流れ方向の反転の結果としてガス相と溶鋼相とが両
相の界面で混相状態となり、合金添加時に有利であるこ
とがわかった。
Furthermore, the period during which the molten steel movement stops at the upper and lower limit positions of the vibration motion, where the flow direction of the cylindrical self-molten steel is reversed, plays no role in stirring the self-molten steel in the ladle, and the vibration The disadvantage is that the period is large, but if the period is several seconds or less and the above-mentioned splash solidification and adhesion becomes a problem, it is necessary to reduce the stopping time at the upper limit position to an extremely short period of several tenths of a second. On the other hand, the period during which the molten steel movement stops at the lower limit position is completely meaningless for stirring the molten steel; rather, the period during which the molten steel movement stops at the lower limit position is kept as short as possible, and the molten steel is suddenly stopped. There is an advantage in reversing the flow direction of the flow, and as a result of such a rapid reversal of the flow direction, the gas phase and the molten steel phase form a mixed phase state at the interface of both phases, which is advantageous when adding alloys. Understood.

すなわち、円筒上部から添加された合金塊は円筒自溶鋼
の浴面に浮上しているが、これらの合金塊は下限位置で
の溶鋼流の方向の反転が急速であると容易に溶鋼中に巻
き込まれ円筒から取鍋へ流出することによる。
In other words, the alloy ingots added from the top of the cylinder float to the bath surface of the cylindrical self-melting steel, but these alloy ingots easily get caught up in the molten steel if the direction of the molten steel flow rapidly reverses at the lower limit position. This is due to water flowing out from the cylinder into the ladle.

このためには上述の停止時間は0.5秒以内、望ましく
は0.2秒以内である必要がある。
For this purpose, the above-mentioned stopping time needs to be within 0.5 seconds, preferably within 0.2 seconds.

円筒の浸漬位置は取鍋中心部に限定されるものでなく、
取鍋内の溶鋼浴深さと直径を勘案して最大の攪拌力が得
られる位置に浸漬することが望ましい。
The immersion position of the cylinder is not limited to the center of the ladle;
Considering the depth and diameter of the molten steel bath in the ladle, it is desirable to immerse it in a position where the maximum stirring force can be obtained.

また、装置の複雑化を厭わないならば取鍋内で円筒を旋
回させることによって攪拌効果をさらに向上させること
ができる。
Furthermore, if the complexity of the apparatus is not a concern, the stirring effect can be further improved by rotating the cylinder within the ladle.

また、円筒6の浸漬深さについては第3図a〜Cに示し
たように各種の方法があるが、前述のように1550℃
以上の溶鋼温度による耐火物の溶損の観点からは浸漬深
さはできるだけ少ないことが望ましい。
Regarding the immersion depth of the cylinder 6, there are various methods as shown in Fig. 3 a to C.
From the viewpoint of erosion of the refractory due to the above molten steel temperature, it is desirable that the immersion depth be as small as possible.

本発明者らは最小の浸漬深さについて種々の実験を行な
い、溶鋼の精錬効果および操業操作上の観点からその最
小浸漬深さが限定されることを見い出した。
The present inventors conducted various experiments regarding the minimum immersion depth and found that the minimum immersion depth is limited from the viewpoint of the refining effect of molten steel and the operational aspects.

すなわち溶鋼中への円筒の浸漬深さが浅すぎる場合には
円筒からの流出溶鋼流が溶鋼浴表面上のスラグを巻き込
み、スラグが溶鋼中に懸濁する。
That is, if the depth of immersion of the cylinder into the molten steel is too shallow, the flow of molten steel flowing out from the cylinder will entrain the slag on the surface of the molten steel bath, and the slag will be suspended in the molten steel.

このために通常転炉などから取鍋内に溶鋼とともに流入
した酸素濃度の高いスラグから溶鋼中への酸素の移行が
活発となり、脱酸速度が低下する。
For this reason, oxygen from the slag with a high oxygen concentration, which normally flows into the ladle together with the molten steel from a converter, becomes actively transferred into the molten steel, and the deoxidation rate decreases.

また、処理終了時の到達酸素濃度が増大し精錬能率が低
下する。
Furthermore, the oxygen concentration reached at the end of the treatment increases, and the refining efficiency decreases.

さらに、溶鋼中への円筒の浸漬深さが浅すぎる場合には
、吸込期にスラグあるいは大気を部分的に円筒内に吸入
する恐れがある。
Furthermore, if the depth of immersion of the cylinder into the molten steel is too shallow, there is a risk that slag or atmospheric air may be partially sucked into the cylinder during the suction period.

スラグを吸入した場合には前述の理由より脱酸に関する
精錬能率が低下し、また大気を吸入した場合には円筒内
の溶鋼の運動の制御が困難となる。
If slag is inhaled, the refining efficiency with respect to deoxidation will be reduced for the reasons mentioned above, and if atmospheric air is inhaled, it will be difficult to control the movement of molten steel within the cylinder.

以上の条件について、種々の浸漬深さにて実験を行なっ
た結果、好ましい浸漬深さはスラグと溶鋼の界面から1
00mm以上であることが判明した。
As a result of conducting experiments at various immersion depths under the above conditions, the preferable immersion depth is 1 point from the interface between slag and molten steel.
It turned out to be 0.00 mm or more.

以下に、実施例に基づいて本発明の詳細な説明する。The present invention will be described in detail below based on examples.

実験に使用した装置の概略を第4図に示しており、図示
の実験装置では耐火物製円筒6は内径300mm、長さ
3500mmで、耐火物の厚さは200柵とし、溶鋼と
触れない外側を15mm厚さの鋼板10で包囲している
The outline of the equipment used in the experiment is shown in Figure 4. In the experimental equipment shown in the figure, the refractory cylinder 6 has an inner diameter of 300 mm, a length of 3500 mm, the thickness of the refractory is 200mm, and the outer side does not come into contact with molten steel. is surrounded by a steel plate 10 with a thickness of 15 mm.

円筒6の上端には二系列の配管11.12を接続し、配
管11は元圧10kg/mItの高圧N2ガス配管に接
続されて高圧源とし、配管12は真空度1QQtorr
で780kgAir/hrの能力を有するスチームエジ
ェクターに接続し減圧源とした。
Two lines of piping 11 and 12 are connected to the upper end of the cylinder 6, the piping 11 is connected to a high pressure N2 gas piping with an original pressure of 10 kg/mIt as a high pressure source, and the piping 12 has a vacuum level of 1 QQ torr.
It was connected to a steam ejector having a capacity of 780 kg air/hr to serve as a depressurization source.

おのおのの配管途中にはガス流量制御弁14,15およ
び電磁弁16.17を配置し、タイマーを内蔵したコン
トローラ18を用いて該電磁弁を一定周期で交互に開閉
し、円筒内の圧力変動の振動数を制御した。
Gas flow rate control valves 14, 15 and solenoid valves 16, 17 are arranged in the middle of each pipe, and a controller 18 with a built-in timer is used to alternately open and close the solenoid valves at a fixed period to reduce pressure fluctuations inside the cylinder. The vibration frequency was controlled.

また円筒上部に設置した圧力検出器19を用いて圧力変
動の振幅を検出し、コントローラ18を用いて流量制御
弁14.15の開度の調節により、圧力変動の振幅を制
御した。
Further, the amplitude of the pressure fluctuation was detected using a pressure detector 19 installed at the top of the cylinder, and the amplitude of the pressure fluctuation was controlled using the controller 18 by adjusting the opening degree of the flow rate control valves 14 and 15.

酸素上吹き転炉にて溶製された約100トンの溶鋼を通
常の取鍋に保持し、前述の円筒を浴面がら200〜40
0mmの位置まで浸漬し、コントローラ18を用いて、
円筒内圧力を周期2.5秒、平均圧力を1気圧とし、0
.5〜2.5気圧の範囲で振動させ、約20分間処理し
た。
Approximately 100 tons of molten steel produced in an oxygen top-blown converter is held in an ordinary ladle, and the aforementioned cylinder is
Immerse it to the 0mm position and use the controller 18 to
The pressure inside the cylinder is set to 0 with a period of 2.5 seconds and an average pressure of 1 atm.
.. It was vibrated in the range of 5 to 2.5 atmospheres and treated for about 20 minutes.

圧力変動周期2.5秒のうち約2.1秒は減圧期とし、
0.4秒を加圧期とした。
Approximately 2.1 seconds out of the 2.5 second pressure fluctuation period is a decompression period,
The pressurization period was 0.4 seconds.

処理開始から5分間にわたって円筒上部に配置された密
閉型のホッパー20のゲート21を開放して脱酸用の1
0〜20mm径のAI金属塊を60〜100kg添加し
た。
For 5 minutes from the start of the process, the gate 21 of the closed hopper 20 placed at the top of the cylinder is opened and the deoxidizing 1
60-100 kg of AI metal ingots with a diameter of 0-20 mm were added.

処理溶鋼の組成を第1表に示す。The composition of the treated molten steel is shown in Table 1.

この処理溶鋼は酸化物性介在物に起因する製品の表面欠
陥が多発し易い冷延鋼板用の低炭素アルミギルド鋼であ
る。
This treated molten steel is a low-carbon aluminum guild steel for cold-rolled steel sheets, which tends to have many surface defects due to oxide inclusions.

上述の処理効果を表わすため処理終了時の酸素濃度を第
2表に示す。
In order to express the above-mentioned treatment effect, the oxygen concentration at the end of the treatment is shown in Table 2.

第2表中の比較例は取鍋底部から耐火物製のポーラスプ
ラグを介してアルゴンガスを100〜25017m1n
の速度で約20分間吹き込んだ不活性ガス攪拌処理であ
る。
In the comparative example in Table 2, 100 to 25,017 ml of argon gas was supplied from the bottom of the ladle through a refractory porous plug.
This is an inert gas stirring treatment in which the gas is blown at a rate of about 20 minutes.

第2表から明らかなように比較例とくらべて処理終了時
の酸素濃度の平均値が低下し、しかも、そのバラツキが
小となり溶鋼の清浄性の向上に効果のあることか゛わか
る。
As is clear from Table 2, the average value of the oxygen concentration at the end of the treatment was lower than that of the comparative example, and the variation was small, indicating that it was effective in improving the cleanliness of molten steel.

また、添加AIの歩留りを第3表に示すが前述の比較例
をくらべてA1歩留りが7%向上し、またその標準偏差
も3%向上しバラツキが小となった。
Further, the yield of added AI is shown in Table 3, and compared to the above-mentioned comparative example, the A1 yield was improved by 7%, and its standard deviation was also improved by 3%, and the variation was small.

次いで、上述の鋼種を連続鋳造し、得られたスラブの品
質の向上効果について述べる。
Next, the effect of improving the quality of the slab obtained by continuous casting of the above-mentioned steel type will be described.

従来、上述の鋼種では酸化物性介在物によるスラブの表
面欠陥としてアルミナを主成分とする介在物がスラブ表
面層に集積して生じるアルミナクラスターが゛問題とな
っていた。
Conventionally, in the above-mentioned steel types, alumina clusters, which are caused by the accumulation of alumina-based inclusions on the slab surface layer, have been a problem as surface defects of the slab due to oxide inclusions.

したか゛つて、スラブ表面のアルミナクラスターの出現
頻度について処理による効果を調べた。
Therefore, the effect of the treatment on the frequency of appearance of alumina clusters on the slab surface was investigated.

注入の初期と末期を除く正常鋳込み時のスラブについて
の結果を第5図に示す。
Figure 5 shows the results for the slab during normal casting, excluding the initial and final stages of pouring.

クラスター評点はスラブ表面の目視観察によりクラスタ
ー個数と大きさを考察して評価し、評点1は品質上で無
欠陥を意味し、評点5は欠陥除去のためにホットスカー
フによる全面手入れを必要とする。
The cluster score is evaluated by visually observing the slab surface and considering the number and size of clusters. A score of 1 means no defects in terms of quality, and a score of 5 requires full cleaning with a hot scarf to remove defects. .

評点2〜4はその値に応じて部分手入れを意味する。A rating of 2 to 4 means partial care depending on the value.

第5図より明らかなようにスラブの品質改善効果に優れ
、比較例とくらべて全面手入れ、部分手入れ率が著しく
減少している。
As is clear from FIG. 5, the slab quality improvement effect is excellent, and the overall and partial maintenance rates are significantly reduced compared to the comparative example.

第6図は処理中のアルミナ系介在物の個数の経時変化を
処理開始時の値に対する百分率で示す。
FIG. 6 shows the change over time in the number of alumina-based inclusions during treatment as a percentage of the value at the start of treatment.

第6図に点線で示す比較例は第1図に示す方法とした。The comparative example shown by the dotted line in FIG. 6 was carried out using the method shown in FIG.

すなわち、内径800mmの耐火物製円筒を約500m
m溶鋼中に浸漬し、取鍋底部から吹き込んだArガスは
この耐火物円筒内で大気中に逸出するようにし、円筒内
はArガス雰囲気とした。
In other words, a refractory cylinder with an inner diameter of 800 mm is approximately 500 m long.
The sample was immersed in molten steel, and the Ar gas blown from the bottom of the ladle was allowed to escape into the atmosphere within this refractory cylinder, creating an Ar gas atmosphere inside the cylinder.

第6図から明らかなように介在物の減少速度が急速であ
り、また処理終了時の個数も少なく、溶鋼中の介在物の
除去速度が優れている。
As is clear from FIG. 6, the rate of reduction of inclusions is rapid, and the number of inclusions at the end of treatment is small, and the rate of removal of inclusions from molten steel is excellent.

第7図は実施例に示す装置を用い、実施例と同様な溶鋼
を用い、円筒の溶鋼中へ浸漬深さのみを変更して、脱酸
効果におよぼす浸漬深さの影響を検討した結果得られた
酸素濃度と浸漬深さの関係を示す。
Figure 7 shows the results of examining the effect of immersion depth on the deoxidizing effect by using the apparatus shown in the example, using the same molten steel as in the example, and changing only the immersion depth of the cylinder into the molten steel. The relationship between the oxygen concentration and immersion depth is shown below.

約20分の処理後に、取鍋内浴表面下約30cmの一定
位置溶鋼から試料を採取し、酸素濃度を分析した。
After about 20 minutes of treatment, a sample was taken from the molten steel at a certain position about 30 cm below the surface of the bath in the ladle, and the oxygen concentration was analyzed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の不活性ガス攪拌法を示す取鍋の概略断面
図、第2図は本発明を実施する装置の概略断面図、第3
図は本発明方法の説明用概略断面・図、第4図は本発明
の実施例において使用した装置の概略断面図、第5図は
スラブ表面のアルミナクラスター出現頻度に関する本発
明と従来法との比較図、第6図は処理中のアルミナ系介
在物個数の経時変化に関する本発明と従来法との比較図
、第7図は耐火物円筒の溶鋼中への浸漬深さと酸素濃度
との関係を示す図である。 1・・・・・・取鍋、5・・・・・・溶鋼、6・・・・
・・耐火物円筒、7・・・・・・スラグ層、8・・・・
・・管、10・・・・・・外側鋼板、11・・・・・・
高圧ガス配管、12・・・・・・低圧ガス配管、14・
・・・・・高圧ガス流量制御弁、15・・・・・・低圧
ガス流量制御弁、16・・・・・・高圧ガス用電磁弁、
17・・・・・・低圧ガス用電磁弁、18・・・・・・
圧力制御コントローラ、19・・・・・・圧力検出器、
20・・・・・・合金材添加用ホッパー、21・・・・
・・ゲート。
Fig. 1 is a schematic sectional view of a ladle showing a conventional inert gas stirring method, Fig. 2 is a schematic sectional view of an apparatus for carrying out the present invention, and Fig. 3 is a schematic sectional view of a ladle showing a conventional inert gas stirring method.
The figure is a schematic cross-sectional view for explaining the method of the present invention, Figure 4 is a schematic cross-sectional view of the apparatus used in the example of the present invention, and Figure 5 is a comparison between the present invention and the conventional method regarding the frequency of appearance of alumina clusters on the slab surface. Comparison diagram: Figure 6 is a comparison diagram of the present invention and the conventional method regarding the change over time in the number of alumina inclusions during treatment, and Figure 7 is a diagram showing the relationship between the immersion depth of a refractory cylinder in molten steel and the oxygen concentration. FIG. 1... Ladle, 5... Molten steel, 6...
... Refractory cylinder, 7... Slag layer, 8...
...Pipe, 10...Outer steel plate, 11...
High pressure gas piping, 12...Low pressure gas piping, 14.
... High pressure gas flow control valve, 15 ... Low pressure gas flow control valve, 16 ... High pressure gas solenoid valve,
17... Solenoid valve for low pressure gas, 18...
Pressure control controller, 19...pressure detector,
20... Hopper for adding alloy material, 21...
··Gate.

Claims (1)

【特許請求の範囲】[Claims] 1 溶鋼を保持した容器内に円筒下端が容器内溶鋼表面
より少なくとも100mm以上下方に位置するよう円筒
を溶鋼中に浸漬し、円筒内のガス圧力を変動させ、前記
円筒の内側にある溶鋼に添加物を添加し、前記ガス圧力
変動により容器内溶鋼を円筒内に流入、流出させて攪拌
することを特徴とする溶鋼の二次精錬方法。
1. Immerse the cylinder in the molten steel in a container holding molten steel so that the lower end of the cylinder is located at least 100 mm below the surface of the molten steel in the container, vary the gas pressure inside the cylinder, and add to the molten steel inside the cylinder. A method for secondary refining of molten steel, characterized in that the molten steel in the container is stirred by adding a substance and causing the molten steel in the container to flow into and out of a cylinder by the fluctuation of the gas pressure.
JP9805679A 1979-08-02 1979-08-02 Secondary refining method of molten steel Expired JPS5952684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9805679A JPS5952684B2 (en) 1979-08-02 1979-08-02 Secondary refining method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9805679A JPS5952684B2 (en) 1979-08-02 1979-08-02 Secondary refining method of molten steel

Publications (2)

Publication Number Publication Date
JPS5623218A JPS5623218A (en) 1981-03-05
JPS5952684B2 true JPS5952684B2 (en) 1984-12-21

Family

ID=14209617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9805679A Expired JPS5952684B2 (en) 1979-08-02 1979-08-02 Secondary refining method of molten steel

Country Status (1)

Country Link
JP (1) JPS5952684B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913015A (en) * 1982-07-14 1984-01-23 Shinmei Eng Kk Stirrer for molten metal
JPS59232210A (en) * 1983-06-13 1984-12-27 Ishikawajima Harima Heavy Ind Co Ltd Method and device for refining molten steel
JP3821109B2 (en) * 2003-04-16 2006-09-13 住友金属工業株式会社 Method for refining molten metal

Also Published As

Publication number Publication date
JPS5623218A (en) 1981-03-05

Similar Documents

Publication Publication Date Title
JPS5952684B2 (en) Secondary refining method of molten steel
JP5082700B2 (en) Steel continuous casting method
JPH07268437A (en) Method for removing nonmetallic inclusion in molten metal by ceramic filter plate and device therefor
US6162388A (en) Metallurgical reactor for the treatment under reduced pressure of a liquid metal
JP3654181B2 (en) Method for refining molten metal
JPH06220551A (en) Method for removing nonmetallic inclusion in molten metal by ultrasonic wave
RU2737906C1 (en) Method of liquid metal degassing in ladle
KR20190061157A (en) Apparatus and method for treating molten steel and method for molten steel treatment
JP2000202603A (en) Method for continuously casting molten steel
JP3377325B2 (en) Melting method of high cleanness ultra low carbon steel
JPH11158536A (en) Method for melting extra-low carbon steel excellent in cleanliness
JP2915631B2 (en) Vacuum refining of molten steel in ladle
JPH09122846A (en) Production device for fine gas bubble
JPS6332539B2 (en)
JPH09122852A (en) Continuous casting method for high cleanness steel with using tundish arranged with gate capable of opening/ closing
JPH10249498A (en) Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part
JP2006255759A (en) Method for continuously casting steel
JPH0718322A (en) Method for refining highly clean aluminum-killed steel
JPS6360069A (en) Molten metal vessel having molten metal discharging hole
JPS5827020B2 (en) Method for cleaning molten steel in a tandate for continuous casting
JPS6043891B2 (en) Secondary refining method of molten steel
JPS6345901B2 (en)
JP2006097078A (en) Method for removing slag
JPH06238402A (en) Method and device for removing non-metallic inclusion in molten metal with refractory-made filter
JPH07148558A (en) Method for removing non-metallic inclusion in molten steel with refractory filter