JPH01215820A - Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device - Google Patents

Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device

Info

Publication number
JPH01215820A
JPH01215820A JP3939888A JP3939888A JPH01215820A JP H01215820 A JPH01215820 A JP H01215820A JP 3939888 A JP3939888 A JP 3939888A JP 3939888 A JP3939888 A JP 3939888A JP H01215820 A JPH01215820 A JP H01215820A
Authority
JP
Japan
Prior art keywords
epoxy resin
linear expansion
resin composition
silicone polymer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3939888A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hozoji
裕之 宝蔵寺
Masaji Ogata
正次 尾形
Masanori Segawa
正則 瀬川
Tatsuo Kawada
達男 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3939888A priority Critical patent/JPH01215820A/en
Publication of JPH01215820A publication Critical patent/JPH01215820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title epoxy resin composition having decreased coefficient of linear expansion, modulus and thermal stress generation, by mixing an epoxy resin with an amino-modified silicone polymer of a specified MW. CONSTITUTION:The title composition is obtained by mixing 100pts.wt. epoxy resin (e.g., o-cresol novolac epoxy resin) with 5-20pts.wt. amino-modified silicone polymer of an MW >=100. This composition is useful for sealing semiconductor elements of a resin-sealed semiconductor device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、線膨張係数、弾性率が小さく、発生する熱応
力の小さい半導体封止用エポキシ樹脂組成物および樹脂
封止型半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epoxy resin composition for encapsulating semiconductors that has a small coefficient of linear expansion, a small modulus of elasticity, and generates little thermal stress, and a resin-sealed semiconductor device.

〔従来の技術〕[Conventional technology]

半導体封止用エポキシ樹脂組成物の熱応力を小さくする
為には、線膨張係数の小さい充填材を添加して線膨張係
数を小さくする方法と、特開昭61−4721号公報に
記載のように、ゴム成分を添加することによって弾性率
を小さくする方法が知られている。しかし、線膨張係数
を小さくする為に充。
In order to reduce the thermal stress of an epoxy resin composition for semiconductor encapsulation, there are two methods: adding a filler with a small coefficient of linear expansion to reduce the coefficient of linear expansion, and a method as described in JP-A-61-4721. A known method is to reduce the elastic modulus by adding a rubber component. However, in order to reduce the coefficient of linear expansion, it is filled.

填材の添加量を増加してゆくと、弾性率が高くなるとい
う問題が生じ、充填材の添加量にも限界があった。また
、後者のようにゴム成分を添加することによって弾性率
を小さくすることはできるが、同時に線膨張係数を小さ
くするという手法はなく、熱応力を小さくする方法とし
ては、まだ不十分であった。なお、この種の組成物とし
て関連するものとしては、上記以外に例えば特開昭61
−1.33223号公報等が挙げられる。
As the amount of filler added increases, a problem arises in that the modulus of elasticity increases, and there is also a limit to the amount of filler added. In addition, although it is possible to reduce the elastic modulus by adding a rubber component as in the latter case, there is no method to simultaneously reduce the coefficient of linear expansion, and this is still insufficient as a method to reduce thermal stress. . In addition to the above, related compositions of this type include, for example, Japanese Patent Application Laid-open No. 61
-1.33223 publication etc. are mentioned.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

エポキシ樹脂組成物は、一般に誘電特性、体積抵抗率等
の電気特性、曲げ強度、衝撃強度等の機械特性に優れて
いるため、現在半導体封止用として広く使用されている
。しかし、エポキシ樹脂は、一般に堅い樹脂である為、
半導体素子の封止に使用した場合、素子に大きな機械的
ス1−レスを与える。このため素子が正常に機能しなか
ったり、素子の一部が破壊されたり、素子表面に形成さ
れているパッシベーション膜にクラックが生じたり、あ
るいは、素子上の配線の切断、ズレ等が発生し信頼性を
低下させる原因となっている。また、半導体素子は、集
積度の向上に伴ない素子の大型化、配線の微細化、高密
度化、多層化が進む一方で、パッケージ寸法は、小型・
薄型化の傾向にあり、封止樹脂層は益々薄肉化が進んで
おり、機械的なストレスにより封止樹脂層に割れが発生
し易くなっている。このような機械的ス1−レスが生じ
る原因の1つに、半導体素子と封止材料の線膨張係数や
、成形後の収縮率の違いが掲げられる。半導体素子は、
線膨張係数や収縮率が非常に小さいが、成形材料は大き
な値を示す。両者の線膨張係数や収縮率の違いが、封止
、アフタキュア、あるいはその後の様々な熱履歴を経る
ことにより、半導体素子や封止材料、その他の構成材料
に大きな熱応力を与えることになる。そこで、今後半導
体素子の寸法がさらに大きくなり、封止材料の薄肉化が
益々進んでゆくと、このような熱応力を低下させること
が半導体の信頼性を向上させる上で極めて重要な課題と
なっている。
Epoxy resin compositions are currently widely used for semiconductor encapsulation because they generally have excellent dielectric properties, electrical properties such as volume resistivity, and mechanical properties such as bending strength and impact strength. However, since epoxy resin is generally a hard resin,
When used to encapsulate a semiconductor device, it imparts large mechanical stress to the device. As a result, the device may not function properly, part of the device may be destroyed, cracks may occur in the passivation film formed on the surface of the device, or wiring on the device may be cut or misaligned, resulting in unreliable reliability. It causes a decline in sexual performance. In addition, as the degree of integration of semiconductor devices increases, devices become larger, wiring becomes finer, higher density, and multilayered.
With the trend towards thinner devices, the sealing resin layer is becoming thinner and thinner, making it easier for the sealing resin layer to crack due to mechanical stress. One of the causes of such mechanical stress is the difference in the coefficient of linear expansion between the semiconductor element and the sealing material and the shrinkage rate after molding. The semiconductor element is
The coefficient of linear expansion and shrinkage are very small, but molding materials show large values. The difference in linear expansion coefficient and contraction rate between the two causes large thermal stress to be applied to the semiconductor element, the encapsulating material, and other constituent materials through encapsulation, after-cure, and various subsequent thermal histories. Therefore, as the dimensions of semiconductor elements become larger and the thickness of encapsulating materials become increasingly thinner, reducing such thermal stress will become an extremely important issue in improving the reliability of semiconductors. ing.

樹脂によって封止された半導体素子に加わる熱応力は、
下式によって求められる。
Thermal stress applied to a semiconductor element sealed with resin is
It is determined by the following formula.

ただし、σ :素子に加わる熱応力 k :定数 αr :封止材料の線膨張係数 αS :半導体素子の線膨張係数 Tg :封止材料のガラス転移温度 Trt:室温 E、:封止材料の弾性率 よって熱応力を低下させる為には、(1)封止材料のガ
ラス転移温度(T、)を下げる、(2)封止材料の線膨
張係数(α、)を小さくする、(3)封止材料の弾性率
(E、)を小さくする、という方法が考えられる。
However, σ: Thermal stress k applied to the element; αr: Constant αr: Coefficient of linear expansion of the sealing material αS: Coefficient of linear expansion of the semiconductor element Tg: Glass transition temperature of the sealing material Trt: Room temperature E: Modulus of elasticity of the sealing material. Therefore, in order to reduce thermal stress, (1) lower the glass transition temperature (T, ) of the sealing material, (2) lower the linear expansion coefficient (α, ) of the sealant, and (3) seal. One possible method is to reduce the elastic modulus (E,) of the material.

しかし、(1)の方法は、半導体の耐熱性、耐湿性が低
下し、信頼性を損う為、半導体素子封止用材料に適用す
ることができない。(2)の方法として、線膨張係数の
小さい無機質充填材を添加する方法が知られているが、
さらに線膨張係数を小さくしようとして、充填材の添加
量を増加していくと、封止材料の粘度」二昇が起こり作
業性を低下させる。そこで、球状の充填材を用いること
によって封止材料の粘度上昇を少なくする工夫がされて
いるが、充填材の添加量を増すことによって弾性率が上
昇するという問題が生じ、添加量にも限界がある。さら
に、(3)の方法としては、末端にカルボキシル基を有
するブタジェン−アクリロニトリル共重合物やシリコー
ン重合体、固形のシリコーンゴムなどの可撓性付与剤を
添加する方法等が知られている。今後、半導体素子の集
積度の向」二C5) に伴ない、さらに熱応力を小さくする為には、このよう
な弾性率の低下だけでは不十分である。そこで、耐熱性
などを低下させずに熱応力を小さくするには、封止材料
のガラス転移温度を下げずに、弾性率を低下させ、さら
に、各構成材料間の線膨張係数の差を少なくすること、
つまり封止材料の線膨張係数を小さくすることが重要で
ある。
However, method (1) cannot be applied to materials for encapsulating semiconductor elements because the heat resistance and moisture resistance of the semiconductor are reduced and reliability is impaired. As a method (2), a method of adding an inorganic filler with a small coefficient of linear expansion is known.
If the amount of filler added is increased in an attempt to further reduce the coefficient of linear expansion, the viscosity of the sealing material increases, reducing workability. Therefore, attempts have been made to reduce the increase in the viscosity of the sealing material by using spherical fillers, but there is a problem that increasing the amount of filler added increases the elastic modulus, and there is a limit to the amount of filler added. There is. Further, as the method (3), a method of adding a flexibility imparting agent such as a butadiene-acrylonitrile copolymer having a carboxyl group at the terminal, a silicone polymer, or a solid silicone rubber is known. In the future, as the degree of integration of semiconductor devices increases, such a reduction in the elastic modulus alone will not be sufficient to further reduce thermal stress. Therefore, in order to reduce thermal stress without reducing heat resistance, etc., we must lower the elastic modulus of the sealing material without lowering its glass transition temperature, and further reduce the difference in linear expansion coefficient between each constituent material. to do,
In other words, it is important to reduce the linear expansion coefficient of the sealing material.

本発明の目的は、特に半導体封止用として有用なエポキ
シ樹脂組成物に関し、ガラス転移温度は従来のエポキシ
樹脂硬化物と同等であり、線膨張係数と弾性率の両方を
同時に小さくすることによって、従来のエポキシ樹脂硬
化物よりも熱応力の小さい半導体封止用エポキシ樹脂組
成物およびそのエポキシ樹脂組成物で封止した樹脂封止
型半導体装置を提供することにある。
An object of the present invention is to provide an epoxy resin composition particularly useful for semiconductor encapsulation, which has a glass transition temperature equivalent to that of conventional epoxy resin cured products and simultaneously reduces both the coefficient of linear expansion and the modulus of elasticity. It is an object of the present invention to provide an epoxy resin composition for semiconductor encapsulation that has lower thermal stress than conventional cured epoxy resin compositions, and a resin-encapsulated semiconductor device encapsulated with the epoxy resin composition.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題点は、エポキシ樹脂に分子量10000以上の
アミン変成シリコーン重合体を含有した半導体封止用エ
ポキシ樹脂組成物により、または、前・記アミン変成シ
リコーン重合体の添加量を前記工ポキシ樹脂100重量
部に対し5〜20重量部とした半導体封止用エポキシ樹
脂組成物により、または、半導体素子をエポキシ樹脂組
成物で封止した樹脂封止型半導体装置において、前記エ
ポキシ樹脂組成物が分子量10000以上のアミン変成
シリコーン重合体を含有する樹脂封止型半導体装置によ
り解決される。
The above problem can be solved by using an epoxy resin composition for semiconductor encapsulation containing an amine-modified silicone polymer having a molecular weight of 10,000 or more in an epoxy resin, or by adding an amount of the amine-modified silicone polymer to 100% by weight of the epoxy resin. 5 to 20 parts by weight of an epoxy resin composition for semiconductor encapsulation, or a resin-encapsulated semiconductor device in which a semiconductor element is encapsulated with an epoxy resin composition, wherein the epoxy resin composition has a molecular weight of 10,000 or more. The problem is solved by a resin-encapsulated semiconductor device containing an amine-modified silicone polymer.

〔実施例〕〔Example〕

以下、本発明の内容と一実施例を第1図〜第3図により
説明する。
Hereinafter, the content and one embodiment of the present invention will be explained with reference to FIGS. 1 to 3.

半導体対市川として有用なエポキシ樹脂組成物の熱応力
を小さくする方法は、樹脂そのものの線膨張係数と弾性
率の両方を同時に低下することができれば達成可能であ
ると思われる。そこで、本発明者らは、半導体封止用エ
ポキシ樹脂に各種分子量の変性剤を添加した場合におけ
る、硬化物の諸物性の関係について検討を行った。
It seems possible to reduce the thermal stress of an epoxy resin composition useful for semiconductors if both the coefficient of linear expansion and modulus of elasticity of the resin itself can be reduced at the same time. Therefore, the present inventors investigated the relationship between various physical properties of cured products when modifiers of various molecular weights were added to epoxy resins for semiconductor encapsulation.

その結果、エポキシ樹脂に各種官能基を持つシリコーン
重合体を添加することによって、硬化物の線膨張係数や
弾性率は大きく変化し、特に添加するシリコーン重合体
の分子量が大きくなるほど、硬化物の線膨張係数は小さ
な値となることを見出した。
As a result, by adding silicone polymers with various functional groups to epoxy resin, the linear expansion coefficient and elastic modulus of the cured product change greatly. It was found that the expansion coefficient was a small value.

官能基を有するシリコーン重合体は、官能基としてアミ
ン基、カルボキシル基、エポキシ基、水酸基などを有す
るポリジメチルシロキサンを使用することができる。そ
のなかでも特にアミノ基を有するポリジメチルシロキサ
ンは、線膨張係数および弾性率の低下が大きく、熱応力
を大きく低下させることができる。
As the silicone polymer having a functional group, polydimethylsiloxane having an amine group, carboxyl group, epoxy group, hydroxyl group, etc. as a functional group can be used. Among them, polydimethylsiloxane having an amino group has a large decrease in linear expansion coefficient and elastic modulus, and can greatly reduce thermal stress.

さらに、アミン変性シリコーン重合体の分子量としては
、10000以上が好ましく、分子量が10000より
小さいシリコーン重合体を添加した場合には、硬化物の
弾性率は小さいが、線膨張係数はシリコーン重合体を添
加しないものに比べて大きな値となり、熱応力を大きく
低下させることができない。分子量が10000より小
さいシリコーン重合体を添加した場合には、成形時に金
型汚れや、硬化性に問題があり、分子量が非常に大きく
ても官能基を持たない固形のシリコーン重合体等では、
シリコーン重合体として1−リツクス樹脂との間の接着
が悪い等の理由から熱劣化が激しかったり、低応力の作
用が小さかったりする。
Furthermore, the molecular weight of the amine-modified silicone polymer is preferably 10,000 or more, and when a silicone polymer with a molecular weight smaller than 10,000 is added, the elastic modulus of the cured product is small, but the linear expansion coefficient is lower than that of the silicone polymer added. The value is larger than that without, making it impossible to significantly reduce thermal stress. If a silicone polymer with a molecular weight smaller than 10,000 is added, there will be mold stains during molding and problems with curability.
As a silicone polymer, thermal deterioration is severe due to poor adhesion with 1-Rix resin, and the effect of low stress is small.

また、低応力化の為には、各構成材料間の線膨張係数の
差を少なくすることが極めて効果が大きく、現在半導体
素7のボンディングに使われている金ワイヤ−(線膨張
係数1.4×10−5/°C)以下の線膨張係数にする
ためには、添加する変性剤の分子量としては、1000
0以上が望ましい。
In addition, in order to reduce stress, it is extremely effective to reduce the difference in linear expansion coefficient between each component material, and the gold wire (linear expansion coefficient 1. In order to obtain a linear expansion coefficient of 4×10-5/°C or less, the molecular weight of the modifier to be added should be 1000
0 or more is desirable.

これらシリコーン重合体は、エポキシ樹脂]、 O0重
量部に対し、2〜40重量部添加することができるが、
特に耐熱性、耐湿性、機械的性質が良好な範囲としては
、5〜20重量部添加するのが好ましい。また、これら
シリコーン重合体は、他の素材と同時に配合することも
可能であり、さらに、エポキシ樹脂、硬化剤等とあらか
じめ予備反応してから用いることもできる。
These silicone polymers can be added in an amount of 2 to 40 parts by weight based on 0 parts by weight of the epoxy resin.
In particular, it is preferable to add 5 to 20 parts by weight in order to obtain good heat resistance, moisture resistance, and mechanical properties. Furthermore, these silicone polymers can be blended simultaneously with other materials, and can also be used after preliminarily reacting with epoxy resins, curing agents, and the like.

エポキシ樹脂とは、現在半導体封止用成形材料として一
般に用いられているクレゾールノボラック型エポキシ樹
脂、フェノールノボラック型エポキシ樹脂、ビスフェノ
ールA型エポキシ樹脂等に、硬化剤としてフェノールノ
ボラックやクレゾールノボラック等のノボラック樹脂、
無水ピロメリツ1〜酸や無水ベンゾフェノン等の酸無水
物等を用い、さらに硬化促進剤、充填材、カップリンク
剤、着色剤、難燃化剤、離型剤等を配合した組成物であ
る。このエポキシ樹脂組成物は、従来の半導体封止用成
形材料と全く同様な方法で作製することができ、さらに
半導体の封止作業も全く同様に行なうことができる。す
なわち、各素材は、70〜100 ’Cに加熱した二軸
ロールや押出機で混練し、トランスファプレスで金型温
度160〜190℃、成形圧力30〜l OOkg−C
Il+−2、硬化時間30秒〜3分で成形することがで
きる。
Epoxy resins include cresol novolac type epoxy resins, phenol novolac type epoxy resins, bisphenol A type epoxy resins, etc., which are currently commonly used as molding materials for semiconductor encapsulation, and novolac resins such as phenol novolacs and cresol novolacs as curing agents. ,
It is a composition using an acid anhydride such as anhydrous pyromellitic acid or anhydrous benzophenone, and further containing a curing accelerator, a filler, a coupling agent, a coloring agent, a flame retardant, a mold release agent, etc. This epoxy resin composition can be produced in exactly the same manner as conventional molding materials for semiconductor encapsulation, and can also be encapsulated in semiconductors in exactly the same manner. That is, each material is kneaded using a twin-screw roll or extruder heated to 70-100'C, and then kneaded using a transfer press at a mold temperature of 160-190°C and a molding pressure of 30-100 kg-C.
Il+-2, it can be molded in a curing time of 30 seconds to 3 minutes.

エポキシ樹脂に変性剤として、分子量が10000以上
のアミン変性シリコーン重合体を添加することによって
、硬化物の線膨張係数と弾性率の両方を同時に小さくし
、半導体装置の各構成材料間の線膨張係数の差を少なく
することができる。ここで、アミン変性シリコーン重合
体は、71ヘリツクスの樹脂と相互作用を及ぼし合って
樹脂の硬化状態が変わることにより線膨張係数が小さく
なると同時に、7トリツクス樹脂中で柔かいゴム状弾性
体として存在する為に、硬化物の弾性率が小さくなる。
By adding an amine-modified silicone polymer with a molecular weight of 10,000 or more to the epoxy resin as a modifier, both the linear expansion coefficient and elastic modulus of the cured product can be simultaneously reduced, and the linear expansion coefficient between each constituent material of the semiconductor device can be reduced. The difference can be reduced. Here, the amine-modified silicone polymer interacts with the 71-helix resin to change the curing state of the resin, resulting in a smaller linear expansion coefficient, and at the same time exists as a soft rubber-like elastic body in the 7-helix resin. Therefore, the elastic modulus of the cured product becomes small.

よって、封止、アフタキュア、あるいはその後の様々な
熱履歴を経ることによって生ずる熱応力を低減させ、耐
温度サイクル性、耐熱性、耐湿性の信頼性を向上させる
ことができる。
Therefore, it is possible to reduce the thermal stress caused by sealing, after-curing, or various subsequent thermal histories, and improve the reliability of temperature cycle resistance, heat resistance, and moisture resistance.

実施例1〜5及び比較例1〜4 変性材として第1−表に示す各種シリコーン重合体を用
い、第2表に示す組成のエポキシ樹脂組成物を約80°
Cに加熱した二軸ロールで約10分間混棟した。
Examples 1 to 5 and Comparative Examples 1 to 4 Using various silicone polymers shown in Table 1 as modification materials, an epoxy resin composition having the composition shown in Table 2 was heated at about 80°
The mixture was mixed for about 10 minutes using a twin-screw roll heated to C.

第   1   表 得られた組成物を用いてトランスファ形成し、180°
C/6時間のアフタキュアを行った後、線膨張係数、曲
げ弾性率、ガラス転移温度を測定した。その結果を第1
〜第3図により説明する。
Table 1 Transfer forming using the obtained composition, 180°
C/After curing for 6 hours, the linear expansion coefficient, flexural modulus, and glass transition temperature were measured. The result is the first
This will be explained with reference to FIG.

第1図は樹脂組成物に各種変性剤を10重量部添加した
場合の変性剤の官能基当量と成形品の曲げ弾性率との関
係を示した図であり、○印のプロットは官能基としてア
ミノ基を有する変成剤(第1表のA−D)+Δ印のプロ
ンI−は官能基としてエポキシ基を有する変性剤(第1
表のE及びF)、口印字のプロットは官能基として水酸
基を有する変性剤(第1表のG及びH)を用いた組成物
(成形品)の特性である。なお、このプロットの方法は
、以下に説明する第2図〜第3図についても同様である
。この第1図に示すようにシリコーン重合体を添加する
ことによって、添加しない系よりも小さな値を示すこと
がわかった。第2図は樹脂組成物に各種変成剤を10重
量部添加した場合の変成材の官能基当量と成形品の線膨
張係数との関係を示した図である。この第2図に示すよ
うに添加するシリコーン重合体の分子量が4. OO0
以上になると、線膨張係数はシリコーン重合体を添加し
ない系に比へて小さくなり、分子量10000以上のシ
リコーン重合体は、金ワイヤーの線膨張係数1.4 X
l 0−5/’Cよりも小さな値となることがわかった
Figure 1 shows the relationship between the functional group equivalent of the modifier and the flexural modulus of the molded product when 10 parts by weight of various modifiers are added to the resin composition. A modifying agent having an amino group (A-D in Table 1) + Prone I- marked with Δ is a modifying agent having an epoxy group as a functional group (A-D in Table 1)
E and F in the table and the plots in the original print are the characteristics of the composition (molded article) using a modifier having a hydroxyl group as a functional group (G and H in Table 1). Note that this plotting method is the same for FIGS. 2 and 3 described below. As shown in FIG. 1, it was found that the addition of a silicone polymer resulted in a smaller value than the system without the addition. FIG. 2 is a diagram showing the relationship between the functional group equivalent of the modified material and the linear expansion coefficient of the molded article when 10 parts by weight of various modifying agents are added to the resin composition. As shown in FIG. 2, the molecular weight of the silicone polymer added is 4. OO0
Above that, the linear expansion coefficient becomes smaller than that of a system without silicone polymer, and a silicone polymer with a molecular weight of 10,000 or more has a linear expansion coefficient of 1.4
It was found that the value is smaller than l 0-5/'C.

また、第3図は樹脂組成物に各種変性剤を10重量部添
加した場合の変成剤の官能基当量と成形品のガラス転移
温度との関係を示した図であり、この第3図に示すよう
に、これらのシリコーン重合体を添加しても硬化物のガ
ラス転移温度はほとんど変化しないことがわかる。
In addition, Fig. 3 is a diagram showing the relationship between the functional group equivalent of the modifier and the glass transition temperature of the molded product when 10 parts by weight of various modifiers are added to the resin composition. It can be seen that even when these silicone polymers are added, the glass transition temperature of the cured product hardly changes.

よって、低応力化のの効果の大きい変性剤としては、硬
化物の弾性率と線膨張係数の両方を小さくするものが有
効であり、そのような変性剤として分子量が1. OO
O0以上のアミン変性シリコーン重合体が特に低応力の
効果の大きいことがわかった。
Therefore, as a modifier that is highly effective in reducing stress, it is effective to use a modifier that reduces both the elastic modulus and linear expansion coefficient of the cured product, and such modifiers have a molecular weight of 1. OO
It has been found that amine-modified silicone polymers having a molecular weight of O0 or more are particularly effective in reducing stress.

さらに、これらの樹脂組成物を用いて、表面にアルミニ
ウムのジグザグ配線を有する半導体素子を封止し、−5
5°C/ 30 m i n Hl 50 ’C/30
m1nの冷熱サイクル試験における封止層の耐クラツク
性、リード・金線・アルミニウム配線間の接続信頼様(
抵抗値が50%以上変化した場合を不良と判定)を評価
した。
Furthermore, using these resin compositions, a semiconductor element having aluminum zigzag wiring on the surface was sealed, and -5
5°C/30 min Hl 50'C/30
The crack resistance of the sealing layer and the connection reliability between leads, gold wires, and aluminum wiring in m1n thermal cycle tests (
A case where the resistance value changed by 50% or more was determined to be defective).

耐クラツク性試験の結果を第3表に、接続信頼性試験の
結果を第4表に示す。本第3表、第4表中の数字は不良
率を表わしており、分母は全試験数、分子はそのうちの
不良試験数である。
Table 3 shows the results of the crack resistance test, and Table 4 shows the results of the connection reliability test. The numbers in Tables 3 and 4 represent the defect rate, where the denominator is the total number of tests and the numerator is the number of defective tests.

第  3  表 第  4  表 これにより、弾性率、線膨張係数の小さい樹脂組成物を
用いて封止した半導体装置は、冷熱サイクル試験のよう
な熱衝撃を加えた場合の耐クラツク性や、配線の接続信
頼性が極めて良いことがわかった。
Table 3 Table 4 As a result, semiconductor devices encapsulated using resin compositions with low elastic modulus and linear expansion coefficient have poor crack resistance when subjected to thermal shock such as thermal cycle tests, and poor wiring performance. It was found that the connection reliability was extremely high.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、エポキシ樹脂に分子量1ooo。 According to the present invention, the epoxy resin has a molecular weight of 100.

以上のアミン変成シリコーン重合体を含有することによ
り半導体封止用エポキシ樹脂組成物の線膨張係数と弾性
率の両方が小さくなる。また、この半導体封止用エポキ
シ樹脂組成物により半導体素子を封止した樹脂封止型半
導体装置は、各構成材の線膨張係数の差によって生じる
熱応力が小さくなり前記半導体素子の破壊や配線の切断
、ズレ及び封止層のクラックの発生等が防止でき、前記
樹脂封止型半導体装置の信頼性を向上させることができ
るという優れた効果がある。
By containing the above amine-modified silicone polymer, both the linear expansion coefficient and elastic modulus of the epoxy resin composition for semiconductor encapsulation become small. In addition, a resin-sealed semiconductor device in which a semiconductor element is encapsulated using this epoxy resin composition for semiconductor encapsulation has a reduced thermal stress caused by the difference in linear expansion coefficient of each constituent material, resulting in damage to the semiconductor element and damage to wiring. This has the excellent effect of preventing cutting, misalignment, cracking of the sealing layer, etc., and improving the reliability of the resin-sealed semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の樹脂組成物に各種変性剤の
官能基当量と成形品の曲げ弾性率との関係を示した図、
第2図は同じく変性剤の官能基当量と成形品の線膨張係
数との関係を示した図、第3図は同じく変性剤の官能基
当量と成形品のガラス転移温度との関係を示した図であ
る。 代理人 弁理士 小川勝馬 :自 ゛・−、パ′
FIG. 1 is a diagram showing the relationship between the functional group equivalents of various modifiers and the flexural modulus of a molded article in a resin composition according to an example of the present invention;
Figure 2 shows the relationship between the functional group equivalent of the modifier and the linear expansion coefficient of the molded product, and Figure 3 shows the relationship between the functional group equivalent of the modifier and the glass transition temperature of the molded product. It is a diagram. Agent Patent attorney Katsuma Ogawa: Self, -, Pa'

Claims (1)

【特許請求の範囲】 1、エポキシ樹脂に分子量10000以上のアミン変性
シリコーン重合体を含有することを特徴とする半導体封
止用エポキシ樹脂組成物。 2、前記アミン変性シリコーン重合体の添加量が前記エ
ポキシ樹脂100重量部に対し5〜20重量部であるこ
とを特徴とする特許請求の範囲第1項記載の半導体封止
用エポキシ樹脂組成物。 3、半導体素子をエポキシ樹脂組成物で封止した樹脂封
止型半導体装置において、前記エポキシ樹脂組成物が分
子量10000以上のアミン変性シリコーン重合体を含
有することを特徴とする樹脂封止型半導体装置。
[Scope of Claims] 1. An epoxy resin composition for semiconductor encapsulation, characterized in that the epoxy resin contains an amine-modified silicone polymer having a molecular weight of 10,000 or more. 2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the amount of the amine-modified silicone polymer added is 5 to 20 parts by weight per 100 parts by weight of the epoxy resin. 3. A resin-encapsulated semiconductor device in which a semiconductor element is sealed with an epoxy resin composition, wherein the epoxy resin composition contains an amine-modified silicone polymer having a molecular weight of 10,000 or more. .
JP3939888A 1988-02-24 1988-02-24 Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device Pending JPH01215820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3939888A JPH01215820A (en) 1988-02-24 1988-02-24 Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3939888A JPH01215820A (en) 1988-02-24 1988-02-24 Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH01215820A true JPH01215820A (en) 1989-08-29

Family

ID=12551887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3939888A Pending JPH01215820A (en) 1988-02-24 1988-02-24 Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH01215820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241870A (en) * 2010-05-10 2011-11-16 日东电工株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136816A (en) * 1980-03-31 1981-10-26 Shin Etsu Chem Co Ltd Epoxy resin composition
JPS6013841A (en) * 1983-07-04 1985-01-24 Toray Silicone Co Ltd Epoxy resin composition for molding
JPS61133225A (en) * 1984-12-03 1986-06-20 Matsushita Electric Works Ltd Epoxy resin molding material for semiconductor sealing
JPS61133223A (en) * 1984-12-03 1986-06-20 Matsushita Electric Works Ltd Epoxy resin molding material for semiconductor sealing
JPS61133224A (en) * 1984-12-03 1986-06-20 Matsushita Electric Works Ltd Epoxy resin molding material for semiconductor sealing
JPS6262811A (en) * 1985-09-11 1987-03-19 Nippon Zeon Co Ltd Epoxy resin composition for sealing semiconductor
JPS6263453A (en) * 1985-09-13 1987-03-20 Nitto Electric Ind Co Ltd Semiconductor device
JPS63275624A (en) * 1987-05-08 1988-11-14 Hitachi Ltd Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136816A (en) * 1980-03-31 1981-10-26 Shin Etsu Chem Co Ltd Epoxy resin composition
JPS6013841A (en) * 1983-07-04 1985-01-24 Toray Silicone Co Ltd Epoxy resin composition for molding
JPS61133225A (en) * 1984-12-03 1986-06-20 Matsushita Electric Works Ltd Epoxy resin molding material for semiconductor sealing
JPS61133223A (en) * 1984-12-03 1986-06-20 Matsushita Electric Works Ltd Epoxy resin molding material for semiconductor sealing
JPS61133224A (en) * 1984-12-03 1986-06-20 Matsushita Electric Works Ltd Epoxy resin molding material for semiconductor sealing
JPS6262811A (en) * 1985-09-11 1987-03-19 Nippon Zeon Co Ltd Epoxy resin composition for sealing semiconductor
JPS6263453A (en) * 1985-09-13 1987-03-20 Nitto Electric Ind Co Ltd Semiconductor device
JPS63275624A (en) * 1987-05-08 1988-11-14 Hitachi Ltd Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241870A (en) * 2010-05-10 2011-11-16 日东电工株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
CN102241870B (en) * 2010-05-10 2014-10-08 日东电工株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Similar Documents

Publication Publication Date Title
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP3292452B2 (en) Epoxy resin composition and semiconductor device
JP2768088B2 (en) Thermosetting resin composition and semiconductor device
JP4772305B2 (en) Sheet-shaped resin composition for compression molding, resin-encapsulated semiconductor device, and method for manufacturing the same
JPH01215820A (en) Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
JP3214266B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPS63275624A (en) Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP2002241581A (en) Epoxy resin composition and semiconductor device
JPH01121319A (en) Epoxy resin composition for sealing semiconductor and resin-sealed type semiconductor device
JP2635621B2 (en) Resin composition for semiconductor device encapsulation
JPS6381120A (en) Epoxy resin composition
JPH0310664B2 (en)
JP2616265B2 (en) Thermosetting resin composition
JP2862777B2 (en) Epoxy resin composition
KR100504604B1 (en) Epoxy molding compound for sealing of semiconductor device
JP3359445B2 (en) Resin composition
JPH11106612A (en) Epoxy resin composition and semiconductor device
JP3226229B2 (en) Resin-sealed semiconductor device
JPS6377922A (en) Epoxy resin composition for sealing semiconductor
JP2003246845A (en) Liquid epoxy resin composition for sealing semiconductor, and semiconductor device
JPH1192631A (en) Epoxy resin composition and semiconductor device
JP4380237B2 (en) Thermosetting resin composition epoxy resin composition and semiconductor device
JP2001146511A (en) Epoxy resin composition and semiconductor device