JPH01121319A - Epoxy resin composition for sealing semiconductor and resin-sealed type semiconductor device - Google Patents

Epoxy resin composition for sealing semiconductor and resin-sealed type semiconductor device

Info

Publication number
JPH01121319A
JPH01121319A JP27927187A JP27927187A JPH01121319A JP H01121319 A JPH01121319 A JP H01121319A JP 27927187 A JP27927187 A JP 27927187A JP 27927187 A JP27927187 A JP 27927187A JP H01121319 A JPH01121319 A JP H01121319A
Authority
JP
Japan
Prior art keywords
epoxy resin
silicone polymer
amino
resin composition
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27927187A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hozoji
裕之 宝蔵寺
Masaji Ogata
正次 尾形
Masanori Segawa
正則 瀬川
Osamu Horie
修 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP27927187A priority Critical patent/JPH01121319A/en
Publication of JPH01121319A publication Critical patent/JPH01121319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition, having a low linear expansion coeffi cient and elastic modulus and excellent fluidity with hardly any generated thermal stress by blending a reaction product of an amino group-containing polydimethylsiloxane with an anhydrous acid as a modifying agent in an epoxy resin. CONSTITUTION:The aimed composition obtained by blending a reaction product of a polydimethylsiloxane having amino group with an anhydrous acid (e.g. itaconic anhydride) as a modifying agent in an epoxy resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、線膨張係数1弾性率が小さい為1発生する熱
応力が小さく、流動性の優れた半導体封止用エポキシ樹
脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epoxy resin composition for semiconductor encapsulation which has a small coefficient of linear expansion, a small modulus of elasticity, generates little thermal stress, and has excellent fluidity.

〔従来の技術〕[Conventional technology]

半導体封止用エポキシ樹脂組成物の熱応力を小さくする
為には、線膨張係数の小さい充填材を添加して線膨張係
数を小さくする方法と、ゴム成分を添加することによっ
て弾性率を小さくする方法の2通りが知られている。し
かし、線膨張係数を小さくする為に充填材の添加量を増
加してゆくと、弾性率が高くなるという問題が生じ、充
填材の添加量にも限界がある。また、ゴム成分を添加す
ることによって弾性率を小さくすることができるが、成
形時等にゴム成分が成形品表面にしみ出し、金型汚れ等
を生じたり、ゴム成分を添加することによって封止材料
の流動性が低下し、成形性が悪くなったりしていた。
In order to reduce the thermal stress of epoxy resin compositions for semiconductor encapsulation, there are two methods: adding a filler with a small coefficient of linear expansion to reduce the coefficient of linear expansion, and adding a rubber component to reduce the modulus of elasticity. Two methods are known. However, if the amount of filler added is increased in order to reduce the coefficient of linear expansion, a problem arises in that the modulus of elasticity increases, and there is a limit to the amount of filler added. In addition, the elastic modulus can be reduced by adding a rubber component, but the rubber component may seep onto the surface of the molded product during molding, causing mold stains, etc., or the addition of a rubber component may cause sealing. The fluidity of the material decreased, resulting in poor moldability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

エポキシ樹脂組成物は、一般に誘電特性1体積抵抗率等
の電気特性9曲げ強度、衝撃強度等の機械特性に優れて
いるため、現在半導体封止用として広く使用されている
。しかし、エポキシ樹脂は。
Epoxy resin compositions are currently widely used for semiconductor encapsulation because they generally have excellent dielectric properties, electrical properties such as volume resistivity, and mechanical properties such as bending strength and impact strength. But epoxy resin.

一般に堅い樹脂である為、半導体素子の封止に使用した
場合、素子に大きな機械的ストレスを与える。このため
、素子が正常に機能しなかったり、−素子の一部が破壊
されたり一1素子表面に形成されているパッシベーショ
ン膜にクラックが生じたり。
Since it is generally a hard resin, when it is used to seal a semiconductor device, it gives a large mechanical stress to the device. As a result, the element may not function properly, - a part of the element may be destroyed, or - cracks may occur in the passivation film formed on the surface of the element.

あるいは素子上の配線の切断、ズレ等が発生し信頼性を
低下させる原因となっている。また、半導体素子は、集
積度の向上に伴ない素子の大型化。
Alternatively, the wiring on the element may be cut or misaligned, causing a decrease in reliability. In addition, semiconductor devices are becoming larger as the degree of integration increases.

配線の微細化、高密度化、多層化が進んできている。一
方、パッケージ寸法は、小型・薄型化の傾向にあり、封
止樹脂層は益々薄肉化が進んでおり。
Wiring is becoming increasingly finer, denser, and multilayered. On the other hand, package dimensions are becoming smaller and thinner, and the encapsulation resin layer is becoming thinner and thinner.

機械的にストレスにより封止樹脂層に割れが発生し易く
なっている。このような、機械的ストレスが生じる原因
の1つに、半導体素子と封止材料の線膨張係数の違いや
、成形後の収縮率の違いが掲げられる。半導体素子は線
膨張係数や収縮率が非常に小さいが、封止材料は大きな
値を示す0両者の線膨張係数や収縮率の違いが、成形、
アフタキュア、あるいはその後の様々な熱履歴を経るこ
とによって、半導体素子や封止材料、あるいはその他の
構成材料に大きな熱応力を与えることになる。
Cracks tend to occur in the sealing resin layer due to mechanical stress. One of the causes of such mechanical stress is the difference in linear expansion coefficient between the semiconductor element and the sealing material, and the difference in shrinkage rate after molding. Semiconductor elements have very small linear expansion coefficients and contraction rates, but sealing materials have large values.The difference in linear expansion coefficient and contraction rate between the two is due to molding,
Aftercure or subsequent various thermal histories can impart large thermal stress to semiconductor elements, encapsulating materials, or other constituent materials.

そこで、今後半導体素子の寸法がさらに大きくなり、封
止材料の薄肉化が益々進んでいくと、このような熱応力
を低下させることが半導体の信頼性を向上させる上で極
めて重要な課題となっている。
Therefore, as the dimensions of semiconductor elements become larger and the thickness of encapsulating materials becomes increasingly thinner, reducing such thermal stress will become an extremely important issue in improving the reliability of semiconductors. ing.

樹脂封止された半導体素子に加わる熱応力は。What is the thermal stress applied to a resin-sealed semiconductor element?

近似的に次式に従って求めることができる。It can be determined approximately according to the following formula.

ct = k ・Er ・(αr−αs)(Tg  T
o)ただし、σ :素子に加わる熱応力 k :定数 Er :封止材料の弾性率 αr :封止材料の線膨張係数 αS 二半導体素子の線膨翠係数 Tg :封止材料のガラス転移温度 To :室温 よって、熱応力を小さくする為には、封止材料のガラス
転移温度(Tz )を下げる方法、封止材料の線膨張係
数(αr)を小さくする方法、封止材料の弾性率(Er
)を小さくする方法が考えられる。しかし、封止材料の
ガラス転移温度を下げる方法は、半導体の耐熱性、耐湿
性が低下し、信頼性を損なう為半導体封止用材料に対し
て適用することはできない、また、封止材料の線膨張係
数・を小さくする方法としては、線膨張係数の小さい特
定の無機質充填材を添加する方法が知られているが、さ
らに線膨張係数を小さくしようとして充填材の添加量を
増加していくと、封止材料の粘度上昇の為に流動性が低
下し、作業性が悪くなるといった問題が生じる。そこで
1球形の充填材を用いることによって封止材料の粘度上
昇を少なくする工夫がされているが、充填材の添加量の
増加によって弾性率が上昇するという問題が生じる。そ
こで、このような充填材の増加による弾性率の上昇を抑
え、熱応力低下の効果をさらに良くする目的で、樹脂に
ブタジェン−アクリロニトリル共重合物やシリコーン重
合体などの可撓性付与剤としてゴム成分を添加して、封
止材料の弾性率を小さくする方法が検討されてきた。し
かし、このような可撓性付与剤を添加した場合成形時に
、成形品表面にゴム成分がしみ出し金型表面に付着した
り、封止材の流動性と低下させるといった問題がある。
ct = k ・Er ・(αr−αs)(Tg T
o) However, σ: Thermal stress k applied to the element: Constant Er: Elastic modulus of the sealing material αr: Linear expansion coefficient αS of the sealing material Linear expansion coefficient Tg of the two-semiconductor element: Glass transition temperature To of the sealing material :In order to reduce thermal stress at room temperature, there are methods to lower the glass transition temperature (Tz) of the sealing material, methods to reduce the linear expansion coefficient (αr) of the sealing material, and methods to reduce the elastic modulus (Er) of the sealing material.
) can be considered. However, the method of lowering the glass transition temperature of the encapsulating material cannot be applied to semiconductor encapsulating materials because it reduces the heat resistance and moisture resistance of the semiconductor and impairs reliability. A known method for reducing the coefficient of linear expansion is to add a specific inorganic filler with a small coefficient of linear expansion, but in an attempt to further reduce the coefficient of linear expansion, the amount of filler added is increased. This causes a problem that the fluidity decreases due to the increase in the viscosity of the sealing material, resulting in poor workability. Therefore, attempts have been made to reduce the increase in viscosity of the sealing material by using a spherical filler, but a problem arises in that the modulus of elasticity increases as the amount of filler added increases. Therefore, in order to suppress the increase in elastic modulus caused by such an increase in filler and further improve the effect of reducing thermal stress, rubber is added to the resin as a flexibility imparting agent such as butadiene-acrylonitrile copolymer or silicone polymer. Methods have been considered to reduce the elastic modulus of the sealing material by adding components. However, when such a flexibility imparting agent is added, there are problems in that during molding, the rubber component oozes out onto the surface of the molded product and adheres to the surface of the mold, and the fluidity of the sealing material is reduced.

今後、半導体素子の集積度の向上に伴ない、さらに熱応
力を小さくしていく上でこれらの問題は。
In the future, as the degree of integration of semiconductor devices increases, these problems will become more important as thermal stress is further reduced.

重要な課題である。This is an important issue.

本発明においては、特に半導体封止用として有用なエポ
キシ樹脂組成物に関し、ガラス転移温度は従来のエポキ
シ樹脂と同等であり、線膨張係数。
In the present invention, regarding an epoxy resin composition particularly useful for semiconductor encapsulation, the glass transition temperature is the same as that of conventional epoxy resins, and the linear expansion coefficient is the same as that of conventional epoxy resins.

弾性率が小さく、従来のエポキシ樹脂硬化物よりも熱応
力が低くなり、かつ成形性に優れた半導体封止用エポキ
シ樹脂組成物を与えることを目的とする。
The object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation that has a small elastic modulus, lowers thermal stress than conventional epoxy resin cured products, and has excellent moldability.

〔間層点を解決するための手段〕[Means for solving interlayer points]

上記目的は、充填材配合量の増量と、さらに可撓性付与
剤(以下可撓化剤と略す)を安定に分散させることで達
成可能であると思われる。そこで本発明者らは、半導体
封止用エポキシ樹脂組成物に各種官能基を有し、分子量
の種々異なる可撓化剤を添加した場合における、硬化物
の諸物性の関係について検討を行なった6 その結果、エポキシ樹脂に各種官能基をもつシリコーン
重合体を添加することによって、封止材の弾性率や流動
性は大きく変化し、特に官能基としてアミノ基を有する
シリコーン重合体と酸無水物との反応型と可撓化剤とし
て添加したものが、成形品の弾性率を低下させ、成形時
の流動性が優れていることを見出した。
It is believed that the above object can be achieved by increasing the amount of filler blended and further stably dispersing a flexibility imparting agent (hereinafter abbreviated as flexibilizing agent). Therefore, the present inventors investigated the relationship between various physical properties of cured products when flexibilizing agents having various functional groups and having various molecular weights were added to epoxy resin compositions for semiconductor encapsulation6. As a result, by adding silicone polymers with various functional groups to epoxy resin, the elastic modulus and fluidity of the encapsulant change significantly, and especially when silicone polymers have amino groups as functional groups and acid anhydrides. It has been found that the reactive type of the compound and the one added as a flexibilizing agent lower the elastic modulus of the molded product and provide excellent fluidity during molding.

可撓化剤として、酸無水物と反応させないアミノ変性シ
リコーン重合体を用いた場合には、マトリックスのエポ
キシ樹脂とアミノ基が反応し、成形材料の溶融粘度やゲ
ル化時間が短くなり成形材料の流動性が悪くなってしま
う。また、官能基として水酸基、エポキシ基を有するシ
リコーン重合体を用いた場合には、成形品の弾性率はあ
まり低下せず、成形時に成形品の表面に可撓化剤がしみ
出し、金型汚れが激しく作業性が悪くなることがわかっ
た。さらに、アミノ変性シリコーン重合体の分子量が1
000より小さい場合、酸無水物との反応でゲル化を起
してしまい可撓化剤として用いるのが困難であり、アミ
ノ変性シリコーン重合体の分子量としては1000以上
であることが望ましい。
When an amino-modified silicone polymer that does not react with acid anhydrides is used as a flexibilizing agent, the epoxy resin in the matrix reacts with the amino groups, shortening the melt viscosity and gelation time of the molding material. Liquidity will deteriorate. In addition, when a silicone polymer having hydroxyl or epoxy groups as functional groups is used, the elastic modulus of the molded product does not decrease much, and the flexibilizing agent seeps onto the surface of the molded product during molding, causing mold stains. It was found that the workability deteriorated significantly. Furthermore, the molecular weight of the amino-modified silicone polymer is 1
If the molecular weight is less than 000, gelation occurs due to reaction with an acid anhydride, making it difficult to use as a flexibilizing agent.The molecular weight of the amino-modified silicone polymer is preferably 1000 or more.

また、高分子量の7ミノ変性シリコ一ン重合体を用いた
場合には、弾性率の低下があまり大きくなく、アミノ変
性シリコーン重合体の分子量としては、1000〜50
,000の範囲が特に望ましい。
In addition, when a high molecular weight 7-mino-modified silicone polymer is used, the decrease in elastic modulus is not so large, and the molecular weight of the amino-modified silicone polymer is 1000 to 50.
,000 is particularly desirable.

可撓化剤としてのアミノ変性シリコーン重合体と酸無水
物との反応物の配合量は、エポキシ樹脂100重量部に
対し、2〜40重量部添加することができるが、特に耐
熱性、耐湿性2機械的性質が良好な範囲としては、5〜
20重量部添加するのが好ましい。
The compounding amount of the reaction product of amino-modified silicone polymer and acid anhydride as a flexibilizing agent can be 2 to 40 parts by weight per 100 parts by weight of epoxy resin, but it is especially important for heat resistance and moisture resistance. 2 The range for good mechanical properties is 5 to
It is preferable to add 20 parts by weight.

アミノ変性シリコーン重合体と酸無水物との反応は、直
接アミノ変性シリコーン重合体中に酸無水物を添加して
も良いし、樹脂中に予めアミノ変性シリコーン重合体を
分散させておき、そこに酸無水物を添加して樹脂中で反
応を行なってもよい。
The reaction between the amino-modified silicone polymer and the acid anhydride can be carried out by adding the acid anhydride directly into the amino-modified silicone polymer, or by dispersing the amino-modified silicone polymer in the resin in advance and then adding the acid anhydride to the amino-modified silicone polymer. The reaction may be carried out in the resin by adding an acid anhydride.

また、これらの反応方法は、用いるアミノ変性シリコー
ン重合体と酸無水物の種類により様々に変えることが可
能である。さらに、これらシリコーン重合体は、他の素
材と同時に配合することも可能であり、さらに、エポキ
シ樹脂、硬化剤等と溶融混合又は予備反応させてから用
いることもできる。
Furthermore, these reaction methods can be varied depending on the type of amino-modified silicone polymer and acid anhydride used. Furthermore, these silicone polymers can be blended simultaneously with other materials, and can also be used after being melt-mixed or pre-reacted with epoxy resins, curing agents, etc.

本発明に用いる酸無水物には、無水イタコン酸。The acid anhydride used in the present invention is itaconic anhydride.

無水シトラコン酸、無水マレイン酸等のように、可撓化
剤のアミノ基と反応し、さらにマトリックスの樹脂とも
反応する2種又はそれ以上の官能基を有する酸無水物を
用いることができる。エポキシ樹脂としては、クレゾー
ルノボラック型エポキシ樹脂、フェノールノボラック型
エポキシ樹脂。
An acid anhydride having two or more functional groups that reacts with the amino group of the flexibilizing agent and also reacts with the resin of the matrix, such as citraconic anhydride and maleic anhydride, can be used. Epoxy resins include cresol novolac type epoxy resin and phenol novolac type epoxy resin.

ビスフェノールA型エポキシ樹脂等、現在半導体封止用
成形材料として一般に用いられているものが使われ、さ
らに硬化剤としてフェノールノボラックやクレゾールノ
ボラック等のノボラック樹脂。
Bisphenol A type epoxy resins, which are currently commonly used as molding materials for semiconductor encapsulation, are used, and novolac resins such as phenol novolac and cresol novolac are used as hardening agents.

無水ピロメリット酸や無水ベンゾフェノン等の酸無水物
等を用い、さらに硬化促進剤、充填材、カップリング剤
2着色剤、難燃化剤、離型剤等を配合して、目的の組成
物を得ることができる。
The desired composition is prepared by using acid anhydrides such as pyromellitic anhydride and benzophenone anhydride, and further adding curing accelerators, fillers, coupling agents, coloring agents, flame retardants, mold release agents, etc. Obtainable.

このエポキシ樹脂組成物は、従来の半導体封止用成形材
料と全く同様な方法で作製することができ、さらに半導
体の封止作業も全く同様に行なうことができる。すなわ
ち、各素材は70℃〜100℃に加熱した二軸ロールや
押出機で混練し、トランスファプレスで金型温度160
℃〜190℃。
This epoxy resin composition can be produced in exactly the same manner as conventional molding materials for semiconductor encapsulation, and can also be encapsulated in semiconductors in exactly the same manner. That is, each material is kneaded using twin-screw rolls or an extruder heated to 70°C to 100°C, and then heated to a mold temperature of 160°C using a transfer press.
℃~190℃.

成形圧力30〜100)cgloo)c、硬化時間30
秒〜180秒で成形することができる。
Molding pressure 30-100)cgloo)c, curing time 30
It can be molded in seconds to 180 seconds.

〔作用〕[Effect]

エポキシ樹脂に変形剤として、アミノ変性シリコーン重
合体と酸無水物との反応物を添加することによって、成
形材の流動性を損なうことなく成形品の弾性率を小さく
し、熱応力を低減することができる。ここで酸無水物は
、アミノ変性シリコーン重合体の7ミノ基と反応し、イ
ミドを形成することによってアミノ基の反応性を抑え、
さらに酸無水物の持っているもう1つの官能基がマトリ
ックスと反応することにより、シリコーン重合体がマト
リックス中に安定にゴム粒子として分散できるようにな
った。そのため、成形時に成形品の表面にシリコーン成
分がしみ出したすせずに、成形量の弾性率を小さくする
ことができるので、成形作業性が良好で、様々な熱履歴
によって生ずる熱応力が小さく、耐温度サイクル性、耐
熱性、耐湿性等の信頼性を向上させることが可能となる
By adding a reaction product of an amino-modified silicone polymer and an acid anhydride to an epoxy resin as a deforming agent, the elastic modulus of the molded product can be reduced and thermal stress can be reduced without impairing the fluidity of the molded material. Can be done. Here, the acid anhydride suppresses the reactivity of the amino group by reacting with the 7-mino group of the amino-modified silicone polymer and forming an imide.
Furthermore, another functional group of the acid anhydride reacts with the matrix, allowing the silicone polymer to be stably dispersed in the matrix as rubber particles. Therefore, the elastic modulus of the molded amount can be reduced without the silicone component seeping onto the surface of the molded product during molding, resulting in good molding workability and less thermal stress caused by various thermal histories. It becomes possible to improve reliability such as temperature cycle resistance, heat resistance, and moisture resistance.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

[実施例1〜6及び比較例1〜8] 変性剤として第1表に示す各種シリコ−ン重合体や反応
物を用い、第2表に示す組成のエポキシ樹脂組成物を、
約80℃に加熱した二軸ロールで約10分間混練した。
[Examples 1 to 6 and Comparative Examples 1 to 8] Using various silicone polymers and reactants shown in Table 1 as modifiers, epoxy resin compositions having the compositions shown in Table 2 were prepared.
The mixture was kneaded for about 10 minutes using twin-screw rolls heated to about 80°C.

得られた組成物を用いてトランスファ成形し、180’
C/6hrのアフタキュアを行った後、スパイラルフロ
ー、曲げ弾性率、ガラス転移温度を測定した。その結果
、得られた硬化物のスパイラルフローは、何の処理も行
なわなかったアミノ変性シリコーン重合体を添加した場
合に短くなり、成形材料の流動性は低下するが、これら
は酸無水物と反応させてやることによって流動性がかな
り改善できることがわかった。
Transfer molding was performed using the obtained composition, and 180'
After curing for 6 hours, spiral flow, flexural modulus, and glass transition temperature were measured. As a result, the spiral flow of the obtained cured product becomes shorter when an untreated amino-modified silicone polymer is added, and the fluidity of the molding material decreases, but these react with acid anhydrides. It was found that the liquidity could be significantly improved by letting the liquid flow.

また、硬化物の弾性率は、未反応のアミノ変性シリコー
ン重合体く酸無水物とシリコーン重合体の反応物、く水
酸基、エポキシ基を有するシリコーン重合体の順で大き
くなってくる。これらの変性剤を加えてもガラス転移温
度はほとんど変化しないことから成分性と、熱応力低減
の2つの点を考慮すれば、酸無水物とアミノ変性シリコ
ーン重合体との反応物が適していることがわかる。
Further, the elastic modulus of the cured product increases in the order of the reaction product of unreacted amino-modified silicone polymer hydroxyanhydride and silicone polymer, silicone polymer having hydroxyl group and epoxy group. Since the glass transition temperature hardly changes even when these modifiers are added, a reaction product of an acid anhydride and an amino-modified silicone polymer is suitable, considering the two points of composition and reduction of thermal stress. I understand that.

さらにこれらの樹脂組成物を用いて、表面にアルミ酸線
を有する半導体素子を封止し、−55℃/30+in 
、150℃/30m1nの冷熱サイクル試験における封
止層の耐クラック性、リード・金線・アルミニウム配線
の接続信頼性を評価した(抵抗値が50%以上変化した
場合を不良と判定)。
Furthermore, using these resin compositions, a semiconductor element having aluminum acid wires on the surface was sealed, and a temperature of -55°C/30+in.
The crack resistance of the sealing layer and the connection reliability of leads, gold wires, and aluminum wiring were evaluated in a thermal cycle test of 150° C./30 m1n (a case where the resistance value changed by 50% or more was determined to be defective).

耐クラツク性試験の結果を第3表に、接続信頼性試験の
結果を第4表に示す、これより、酸無水物とアミノ変性
シリコーン重合体との反応生成物を添加した成形材料で
封止した半導体装置は、冷熱サイクル試験における耐ク
ラツク性や、配線の接続信頼性が極めて良いことがわか
る。
The results of the crack resistance test are shown in Table 3, and the results of the connection reliability test are shown in Table 4. It can be seen that the developed semiconductor device has extremely good crack resistance in thermal cycle tests and wiring connection reliability.

第1表 第  3  表 第  4  表 〔発明の効果〕Table 1 Table 3 Table 4 〔Effect of the invention〕

Claims (1)

【特許請求の範囲】 1、エポキシ樹脂中に変性剤としてアミノ基を有するポ
リジメチルシロキサンと無水酸との反応物を配合したこ
とを特徴とする半導体封止用エポキシ樹脂組成物。 2、アミノ基を有するポリジメチルシロキサンと無水酸
との反応を樹脂中で行なったことを特徴とする特許請求
の範囲第1項記載の半導体封止用エポキシ樹脂組成物。 3、変性剤としてアミノ基を有するポリジメチルシロキ
サンと無水酸との反応物を配合したエポキシ樹脂組成物
で封止されたことを特徴とする樹脂封止型半導体装置。
[Scope of Claims] 1. An epoxy resin composition for semiconductor encapsulation, characterized in that a reactant of polydimethylsiloxane having an amino group and an acid anhydride is blended as a modifier in the epoxy resin. 2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein a reaction between polydimethylsiloxane having an amino group and an acid anhydride is carried out in the resin. 3. A resin-sealed semiconductor device, characterized in that it is encapsulated with an epoxy resin composition containing a reactant of polydimethylsiloxane having an amino group as a modifier and an acid anhydride.
JP27927187A 1987-11-06 1987-11-06 Epoxy resin composition for sealing semiconductor and resin-sealed type semiconductor device Pending JPH01121319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27927187A JPH01121319A (en) 1987-11-06 1987-11-06 Epoxy resin composition for sealing semiconductor and resin-sealed type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27927187A JPH01121319A (en) 1987-11-06 1987-11-06 Epoxy resin composition for sealing semiconductor and resin-sealed type semiconductor device

Publications (1)

Publication Number Publication Date
JPH01121319A true JPH01121319A (en) 1989-05-15

Family

ID=17608840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27927187A Pending JPH01121319A (en) 1987-11-06 1987-11-06 Epoxy resin composition for sealing semiconductor and resin-sealed type semiconductor device

Country Status (1)

Country Link
JP (1) JPH01121319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372017A1 (en) * 1988-02-15 1990-06-13 Lucky Ltd Epoxy resin compositions for sealing semiconductor devices.
JPH02258829A (en) * 1989-03-30 1990-10-19 Toray Ind Inc Epoxy resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372017A1 (en) * 1988-02-15 1990-06-13 Lucky Ltd Epoxy resin compositions for sealing semiconductor devices.
EP0372017A4 (en) * 1988-02-15 1991-10-30 Lucky, Ltd. Epoxy resin compositions for sealing semiconductor devices
JPH02258829A (en) * 1989-03-30 1990-10-19 Toray Ind Inc Epoxy resin composition

Similar Documents

Publication Publication Date Title
EP0384774A2 (en) Semiconductor device encapsulant
US5731370A (en) Semiconductor encapsulating epoxy resin compositions with 2-phenyl-4,5-dihydroxymethylimidazole curing accelerator
JPH0284458A (en) Rubber modified phenol resin, epoxy resin composition and semiconductor device sealed with the composition
JP3292452B2 (en) Epoxy resin composition and semiconductor device
JP2768088B2 (en) Thermosetting resin composition and semiconductor device
JPH05259316A (en) Resin-sealed semiconductor device
JP4772305B2 (en) Sheet-shaped resin composition for compression molding, resin-encapsulated semiconductor device, and method for manufacturing the same
JPH01121319A (en) Epoxy resin composition for sealing semiconductor and resin-sealed type semiconductor device
JPH0564990B2 (en)
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP4872161B2 (en) Epoxy resin composition and semiconductor device using the same
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP2003268071A (en) Epoxy resin composition and semiconductor device using the same
JPH04296046A (en) Resin-sealed semiconductor device
JPS63275624A (en) Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
JPH11106612A (en) Epoxy resin composition and semiconductor device
JP2616265B2 (en) Thermosetting resin composition
JP2635621B2 (en) Resin composition for semiconductor device encapsulation
JP2003252961A (en) Epoxy-based resin composition and semiconductor device using the composition
JPH07188515A (en) Resin composition for semiconductor sealing
JP3226229B2 (en) Resin-sealed semiconductor device
JP2001247653A (en) Epoxy resin composition and semiconductor device
JPH1192631A (en) Epoxy resin composition and semiconductor device
JPH11130937A (en) Epoxy resin composition and semiconductor device
JPH01215820A (en) Epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device