JPH01215758A - Production of silicon carbide sintered form - Google Patents

Production of silicon carbide sintered form

Info

Publication number
JPH01215758A
JPH01215758A JP63039605A JP3960588A JPH01215758A JP H01215758 A JPH01215758 A JP H01215758A JP 63039605 A JP63039605 A JP 63039605A JP 3960588 A JP3960588 A JP 3960588A JP H01215758 A JPH01215758 A JP H01215758A
Authority
JP
Japan
Prior art keywords
powder
particle size
average particle
silicon carbide
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63039605A
Other languages
Japanese (ja)
Inventor
Yuichiro Murakami
勇一郎 村上
Hiroichi Yamamoto
博一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63039605A priority Critical patent/JPH01215758A/en
Publication of JPH01215758A publication Critical patent/JPH01215758A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide

Abstract

PURPOSE:To obtain the title dense sintered form improved in heat and wear resistances, by mixing, in a specific solvent, SiC powder, silicon boride powder with a mean size smaller than that of said SiC powder, and a carbonaceous additive and by drying, forming and sintering the resultant mixture. CONSTITUTION:Firstly, a mixture is prepared by mixing (A) SiC containing >=90wt.% of beta-SiC, with an average particle size of <=1mum, (B) 0.2-1.5wt.% on an elemental boron basis, of silicon boride of the formula BnSi (n is 6 or 14-24) with an average particle size smaller than that of the component A, and (C) 1-3wt.% on an elemental carbon basis, of a carbonaceous additive (e.g., phenolic resin) in a solvent soluble for said additive (e.g., acetone). Thence, this mixture is dried and formed to a desired shape, and then heated to 900-1,500 deg.C in a vacuum to remove the gases and impurities produced followed by calcination in a vacuum or inert gas atmosphere at 1,850-2,100 deg.C, thus obtaining the objective sintered form.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱、耐摩耗性部品などに使用される炭化けい
素焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a silicon carbide sintered body used for heat-resistant, wear-resistant parts, etc.

〔従来の技術〕[Conventional technology]

炭化けい素焼結体は耐熱及び耐摩耗性材料として期待さ
れているが、難焼結性物質であるため、焼結助剤として
ほう素、炭素、はう化珪素、アルミナ、イツトリアなど
を添加して焼成する方法が採られていた。
Silicon carbide sintered bodies are expected to be heat-resistant and wear-resistant materials, but because they are difficult to sinter, boron, carbon, silicon ferride, alumina, ittria, etc. are added as sintering aids. The method of firing was used.

また、一般に炭化けい素焼結体用のβ−B10粉末とし
ては粉砕法によって製造された平均粒径0.1〜1μm
 程度のものが用いられており、その焼結助剤としても
同程度の平均粒径のBやa4oが用いられていた。
In addition, β-B10 powder for silicon carbide sintered bodies is generally manufactured by a pulverization method with an average particle size of 0.1 to 1 μm.
B or A4O having a similar average particle size was also used as a sintering aid.

〔発明が解決しようとする課電〕[Electricity charges that the invention attempts to solve]

しかしながら、従来の製造方法によって得られた炭化け
い素焼結体は耐熱又は耐摩耗性を十分満足する緻密性に
欠けるという不具合があった。
However, the silicon carbide sintered body obtained by the conventional manufacturing method has a problem in that it lacks density sufficient to satisfy heat resistance or wear resistance.

本発明はこの技術水準に鑑み、緻密性の優れた炭化けい
素焼結体を製造しうる方法を提供しようとするものであ
る。
In view of this state of the art, the present invention seeks to provide a method for producing a silicon carbide sintered body with excellent density.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は平均粒径1μm以下の810粉末に、それより
平均粒径の小さいほう化けい素粉末と炭素質添加剤を、
該炭素質添加剤を溶解しうる溶媒中で添加混合し、乾燥
、成形後、焼成することを特徴とする炭化けい素焼結体
の製造方法である。
The present invention combines 810 powder with an average particle size of 1 μm or less, silicon boride powder with a smaller average particle size, and a carbonaceous additive.
This method of producing a silicon carbide sintered body is characterized by adding and mixing the carbonaceous additive in a solvent capable of dissolving it, drying, shaping, and firing.

そして、平均粒径1μm 以下でβ−8IC含有童がq
ax以上の810粉末に、これより平均粒径の小さいほ
う化けい素粉末を元素状はう素に換算して0.2〜1.
5重量%と、炭素質添加剤を元素状炭素に換算して1〜
3重量%を、該炭素質添加剤を溶解しうる溶媒中で添加
混合し、乾燥、成形後、真空中で900〜1500Cの
温度に加熱し、続いて真空又は不活性雰囲気中て185
0〜2100Cの温度で焼成することを本発明の好まし
い実施態様とするものである。
And, β-8IC-containing particles with an average particle size of 1 μm or less
In addition to the 810 powder having a particle diameter of 810 or more, the silicon boride powder having an average particle size smaller than this is converted to elemental boron and is 0.2 to 1.
5% by weight, and the carbonaceous additive is converted to elemental carbon from 1 to 5% by weight.
3% by weight is added and mixed in a solvent capable of dissolving the carbonaceous additive, dried, molded, heated to a temperature of 900 to 1500C in a vacuum, and then heated to a temperature of 185C in a vacuum or an inert atmosphere.
A preferred embodiment of the present invention is to perform firing at a temperature of 0 to 2100C.

すなわち本発明は緻密な炭化けい素焼結体を製造するた
め、炭化けい素の焼結助剤としてはう化けい素と炭素質
添加剤を選定した点及び焼結助剤として、の#1う化け
い素粉末の平均粒径が原料炭化けい素粉末のそれより小
さいものを使用し次点が新規なところである。
That is, in order to produce a dense silicon carbide sintered body, the present invention selects silicon hydride and a carbonaceous additive as sintering aids for silicon carbide, and as a sintering aid, #1. The second place is novel because the average particle size of the silicon carbide powder is smaller than that of the raw material silicon carbide powder.

以下、本発明の使用原料、配合条件、焼成条件などにつ
いて詳述する。
Hereinafter, the raw materials used, compounding conditions, firing conditions, etc. of the present invention will be explained in detail.

はう化けい素としては、13nSz (n = 6及び
14〜24)のものが用いられる。こ\においてB2S
3  は化合物であるが、B148LやB 2 a 8
1は固溶体であり、B/81 比が14〜240間で変
化しても同じ結晶構造をもつものである。はう化けい素
としてはこれ以外K B、Si  も存在するが、この
ものは融点が約f400rと低く、炭化けい素焼結体に
悪影響を与えるので使用することはできない。
As the silicon hydride, 13 nSz (n = 6 and 14 to 24) is used. B2S in this place
3 is a compound, but B148L and B 2 a 8
1 is a solid solution and has the same crystal structure even if the B/81 ratio changes between 14 and 240. Other silicon hydrides include K B and Si, but these have a low melting point of about f400r and have an adverse effect on the silicon carbide sintered body, so they cannot be used.

はう化けい素の微粉末を製造する一例としては以下のよ
うな手段がある。
An example of producing fine powder of silicon hydride is as follows.

アルゴンガスを出力5腹程度の高周波誘導コイルで加熱
して熱プラズマを発生させ、このプラズマ中に粒径30
0メツシユ以下のほう化けい素粉末をアルゴンガスをキ
ャリヤーガスとして供給すればほう化けい素粉末は気化
するので、続いて熱プラズマの下部にアルゴンガスヲ冷
却ガスとして吹込めば、気化したほう化けい素は急冷さ
れて0.1μm 以下の超微粉のt’tう化けい素粉末
が得られる。
A thermal plasma is generated by heating argon gas with a high-frequency induction coil with an output of about 50%, and in this plasma there are particles with a particle size of 30 mm.
If silicon boride powder with a density of 0 mesh or less is supplied with argon gas as a carrier gas, the silicon boride powder will be vaporized, so if argon gas is then blown into the lower part of the thermal plasma as a cooling gas, the vaporized silicon boride will be is rapidly cooled to obtain ultrafine silicon uroride powder of 0.1 μm or less.

このような超微粉のほう化けい素は、平均粒径1μm 
以下でβ−810の含有量が90%以上の炭化けい素粉
末に、元素状はう素に換算して0.2〜1.5重量%添
加混合するのが好ましい。
Such ultra-fine silicon boride powder has an average particle size of 1 μm.
In the following, it is preferable to add and mix 0.2 to 1.5% by weight of elemental boron into silicon carbide powder having a β-810 content of 90% or more.

このほう化けい素を、元素状はう素に換算して0.2重
!にに未満であると焼結体の密度向上の効果は少なく、
1.5重txを超えても密度上昇は飽和するからである
This silicon boride is converted to elemental boron by 0.2 times! If it is less than 2, the effect of improving the density of the sintered body will be small;
This is because the increase in density is saturated even if it exceeds 1.5 weight tx.

炭素質添加剤としては、フェノール樹脂、カーボンブラ
ック、タールピッチなどが使用さ瓢その添加竜は炭化け
い素粉末に、元素状炭素に換算して1〜3重量%が好ま
しい。この量的範囲が好ましいのは、はう化けい素の場
合と同じ理由からである。
As the carbonaceous additive, phenol resin, carbon black, tar pitch, etc. are used, and the amount added is preferably 1 to 3% by weight, calculated as elemental carbon, to the silicon carbide powder. This quantitative range is preferred for the same reasons as for silicon hydride.

炭素質添加剤を溶解する溶媒としてはアセトン、ベンゼ
ン、アルコールなどがあけられる。
Acetone, benzene, alcohol, etc. can be used as a solvent for dissolving the carbonaceous additive.

炭化けい素焼結体は次のようにして製造される。The silicon carbide sintered body is manufactured as follows.

前述した溶媒中に、平均粒径1μm 以下のβ−810
の含有量が90%以上の炭化けい素粉末と、前記した量
的範囲の超微粉はう化けい素粉末と炭素質添加剤を添加
し混合する。得られた混合物を乾燥し、所望の形状に成
形する。
In the above-mentioned solvent, β-810 with an average particle size of 1 μm or less
Silicon carbide powder having a content of 90% or more, ultrafine powder having the quantitative range described above, silicon uroride powder, and a carbonaceous additive are added and mixed. The resulting mixture is dried and shaped into the desired shape.

次に、この成形体を真空中で900〜1500Cの温度
に加熱する。これは減圧下で加熱することを意味し、成
形体中の炭素質添加剤の分解−全促進し、生成したガス
や不純物を除去し、焼結助剤として必要な炭素粒子の生
成を促進させるものである。
Next, this molded body is heated to a temperature of 900 to 1500C in a vacuum. This means heating under reduced pressure to fully accelerate the decomposition of the carbonaceous additive in the compact, remove the gases and impurities formed, and promote the formation of carbon particles needed as sintering aids. It is something.

最後に、真空又はアルゴンなどの不活性ガス雰囲気中で
、1850〜2100Gの温度で焼成し、緻密な炭化け
い素焼結体を得る゛。焼成温度が1850C未満では焼
結反応が遅く焼結体の密度の上昇が行われず、2too
ct−超えると焼結体中で粒成長が生じ、密度は上昇し
ても良質の焼結体とはならず、また製造コストも高くな
るからである。
Finally, it is fired at a temperature of 1850 to 2100 G in vacuum or an inert gas atmosphere such as argon to obtain a dense silicon carbide sintered body. If the firing temperature is less than 1850C, the sintering reaction will be slow and the density of the sintered body will not increase, resulting in 2too
ct-, grain growth will occur in the sintered body, and even if the density increases, the sintered body will not be of good quality, and the manufacturing cost will also increase.

なお焼結助剤としてB2S3  i用いる場合、液相焼
結が関与しているので、焼成温度は1850〜2000
Cの範囲が好ましく、Bnsl(n=14〜24)を用
いる場合は焼成温度は1900〜2050Cが更に好ま
しい。
When using B2S3i as a sintering aid, liquid phase sintering is involved, so the firing temperature is 1850-2000.
The range of C is preferable, and when Bnsl (n=14 to 24) is used, the firing temperature is more preferably 1900 to 2050C.

更に、焼成は真空中で行うより、アルゴンガスのような
不活性ガス中で行う方が、得られ之焼結体の密度が約3
%も高くなるので、実際操業に当りては150 QCで
アルゴンガスを炉中に導入しt後、1850〜2100
Cで焼成する方法を採用することが好ましい。
Furthermore, it is better to perform the firing in an inert gas such as argon gas than in a vacuum, since the density of the resulting sintered body is approximately 3.
%, so in actual operation, argon gas is introduced into the furnace at 150 QC, and after 1850 to 2100 QC.
It is preferable to employ a method of firing with C.

〔実施例〕〔Example〕

本発明の実施例を以下に示す。 Examples of the present invention are shown below.

初めに本発明に用いられたほう化けい素層微粒子の熱プ
ラズマによる合成方法を示す。熱プラズマはアルゴンガ
ス(流量7 Q A / l1ln )を出力5V!N
の高周波誘導コイルで加熱することにより得られる。粉
末供給装置にアルゴンガスをキャリヤーガスとして5A
/分流し、粒径300メツシユ以下のほう化けい素粉末
を、熱プラズマ中に約19/分の速度で送り込み加熱気
化させる。得られたほう化けい素を含む高温のプラズマ
を、プラズマ下部にアルゴンガスを約50p/分吹き込
むことにより急冷し、はう化けい素層微粒子を得る。
First, a method for synthesizing silicon boride layer fine particles used in the present invention using thermal plasma will be described. Thermal plasma outputs argon gas (flow rate 7 QA/l1ln) at 5V! N
obtained by heating with a high-frequency induction coil. 5A with argon gas as carrier gas in the powder supply device
The silicon boride powder having a particle size of 300 mesh or less is fed into the thermal plasma at a rate of about 19/min and heated and vaporized. The obtained high-temperature plasma containing silicon borobide is rapidly cooled by blowing argon gas into the lower part of the plasma at about 50 p/min to obtain silicon boride layer fine particles.

得られたほう化けい素層微粒子は回収装置で回収する。The obtained silicon boride layer fine particles are recovered by a recovery device.

この実施例で合成された超微粒子は平均粒径0.02 
/inのB、4S工とB24S工  で、比較のため使
用するほう化けい素粉末として、ボールミル粉砕による
平均粒径0.4μmのB6SiとB248iを選んだ。
The ultrafine particles synthesized in this example had an average particle size of 0.02
/in B, 4S process and B24S process, B6Si and B248i with an average particle size of 0.4 μm by ball mill grinding were selected as silicon boride powders to be used for comparison.

次に焼結体の製造方法を示す。Next, a method for manufacturing the sintered body will be described.

用いられ次炭化けい素原料粉末の平均粒径は0.5μm
、焼結助剤であるほう化けい素の平均粒径はボールミル
粉砕によるB6Sz、B24St  微粒子が0.4μ
■、熱プラズマにより合成されたB、481と8248
1超微粒子が約0.02μm である。炭素質添加剤と
してはフェノール樹脂を用い、これを溶かす溶媒として
はアセトンを用いた。
The average particle size of the silicon carbide raw material powder used is 0.5 μm.
The average particle size of silicon boride, which is a sintering aid, is 0.4μ for B6Sz and B24St fine particles obtained by ball mill grinding.
■, B synthesized by thermal plasma, 481 and 8248
1 ultrafine particle is approximately 0.02 μm. Phenol resin was used as the carbonaceous additive, and acetone was used as the solvent to dissolve it.

第1表に示した比にこれらを配合し、ボールミルで混合
した後、乾燥し、プレスで直径60關φ、厚さ511I
lの円板状に成形し、静水圧プレスで” ’ Okl/
rx2の圧力で成形し、真空雰囲気中で5CI分の速度
で1500Cまで加熱ムその後1500t:’で50分
保持しながらアルゴンガスを導入した後、′1fcはそ
のまま真空中で再び加熱し、1850〜2100Cの温
度で焼結させる。焼結時間はいずれの温度でも30分と
一定に保った。得られ念β−810焼結体の密度と原料
配合比1.焼成条件の関係を第1表に示す。
These were blended in the ratio shown in Table 1, mixed in a ball mill, dried, and pressed to a diameter of 60 mm and a thickness of 511 mm.
Form it into a disk shape of 1.5 mm and press it using a hydrostatic press.
Molding was carried out at a pressure of rx2, heated to 1500C at a rate of 5CI in a vacuum atmosphere, then held at 1500t:' for 50 minutes while introducing argon gas. Sinter at a temperature of 2100C. The sintering time was kept constant at 30 minutes at all temperatures. The density of the obtained β-810 sintered body and the raw material blending ratio 1. Table 1 shows the relationship between firing conditions.

次に1炭化けい素焼結体の密度に対するほう素添加量の
影響を第1図に示す。WJ1図では炭素添加は2%、焼
成条件は2000C,30分、アルゴン雰囲気中であり
、用いた炭化けい素粉末は平均粒径0.3μmのβ−8
iO、はう化けい素は粒径0.02μs OB2481
  超微粒子である。
Next, FIG. 1 shows the influence of the amount of boron added on the density of the silicon carbide sintered body. In the WJ1 diagram, the carbon addition was 2%, the firing conditions were 2000C, 30 minutes, in an argon atmosphere, and the silicon carbide powder used was β-8 with an average particle size of 0.3 μm.
iO, silicon hydride has a particle size of 0.02μs OB2481
Ultrafine particles.

第2図には同じく平均粒径0.02μmの82 a 8
1超微粒子を0.5%添加し、アルゴンガス中で200
0C,50分焼成した場合の炭化けい素焼結体の密度に
対する炭素添加量の影響を示す。
Figure 2 also shows 82 a 8 with an average particle size of 0.02 μm.
1. Add 0.5% of ultrafine particles and incubate at 200 °C in argon gas.
The influence of the amount of carbon added on the density of a silicon carbide sintered body when fired at 0C for 50 minutes is shown.

第3図には焼成温度の焼結体密度に対する影響を示す図
であり、炭素添加量2重量%とじ、はう化けい素として
は平均粒径0.02μmの824$1と平均粒径0.4
μmの86Si を焼結助剤として使用している。以上
の第1〜3図に示した結果からほう素添加量0.2〜1
.5重t%炭素添加量1〜3重iXで焼結を促進する効
果があることがわかる。焼成温度に関しては、B6S1
t−用いた場合、1850Cで既に焼結が起こり始めて
いるが、これはB6S1t−ベースとし次液相焼結に起
因すると考えられる。B24S1では液相は現われず、
1900〜2100Cの温度で焼結が促進される効果が
確認された。
Figure 3 is a diagram showing the influence of firing temperature on the density of the sintered body, and the amount of carbon added is 2% by weight. .4
μm 86Si is used as a sintering aid. From the results shown in Figures 1 to 3 above, the amount of boron added is 0.2 to 1.
.. It can be seen that a carbon addition amount of 1 to 3 times iX of 5% by weight is effective in promoting sintering. Regarding the firing temperature, B6S1
When t- was used, sintering already started to occur at 1850C, which is considered to be due to the B6S1t-based and subsequent liquid phase sintering. No liquid phase appears in B24S1,
The effect of promoting sintering at a temperature of 1900 to 2100C was confirmed.

〔発明の効果〕〔Effect of the invention〕

本発明により緻密なβ−SiCの焼結体を製造する方法
が得られ、耐熱および耐摩耗性の炭化けい素質焼結体の
製造方法として産業上の利用価値が大きい。特に焼結助
剤として超微粒子を用いることによりコストの大幅な上
昇をもたらすことなく、焼成温度tsac程度低くする
ことができ産業上の利用価値が大きい。
The present invention provides a method for producing a dense β-SiC sintered body, which has great industrial utility as a method for producing a heat-resistant and wear-resistant silicon carbide sintered body. In particular, by using ultrafine particles as a sintering aid, the sintering temperature can be lowered to about tsac without causing a significant increase in cost, which has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はβ−810焼結体の密度に対するほう化けい素
添加の影響、第2図は炭素添加量の影響、第3図は焼成
温度の影響をそれぞれ示す図表である。
FIG. 1 is a chart showing the effect of silicon boride addition on the density of β-810 sintered body, FIG. 2 is a chart showing the effect of carbon addition amount, and FIG. 3 is a chart showing the effect of firing temperature.

Claims (1)

【特許請求の範囲】[Claims] 平均粒径1μm以下のSiC粉末に、それより平均粒径
の小さいほう化けい素粉末と炭素質添加剤を、該炭素質
添加剤を溶解しうる溶媒中で添加混合し、乾燥、成形後
、焼成することを特徴とする炭化けい素焼結体の製造方
法。
SiC powder with an average particle size of 1 μm or less, silicon boride powder with a smaller average particle size and a carbonaceous additive are added and mixed in a solvent that can dissolve the carbonaceous additive, and after drying and molding, A method for producing a silicon carbide sintered body, which comprises firing.
JP63039605A 1988-02-24 1988-02-24 Production of silicon carbide sintered form Pending JPH01215758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039605A JPH01215758A (en) 1988-02-24 1988-02-24 Production of silicon carbide sintered form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039605A JPH01215758A (en) 1988-02-24 1988-02-24 Production of silicon carbide sintered form

Publications (1)

Publication Number Publication Date
JPH01215758A true JPH01215758A (en) 1989-08-29

Family

ID=12557745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039605A Pending JPH01215758A (en) 1988-02-24 1988-02-24 Production of silicon carbide sintered form

Country Status (1)

Country Link
JP (1) JPH01215758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179466A (en) * 2000-12-12 2002-06-26 Tokai Univ Silicon boride-boron carbide-silicon carbide based composite material and its production process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179466A (en) * 2000-12-12 2002-06-26 Tokai Univ Silicon boride-boron carbide-silicon carbide based composite material and its production process

Similar Documents

Publication Publication Date Title
US4124667A (en) Process for producing sintered silicon carbide ceramic body
CN111675541B (en) Preparation method of carbon-containing MAX phase material
US20080227619A1 (en) Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
JPS60221365A (en) Manufacture of high strength silicon carbide sintered body
CA1139791A (en) Sintered silicon carbide-aluminum nitride articles and method of making such articles
JPS61261272A (en) Polycrystal sintered body based on lanthanum hexaboride and manufacture
JPH0228539B2 (en)
JPS60200861A (en) Manufacture of high strength silicon carbide sintered body
JPH01215758A (en) Production of silicon carbide sintered form
JPS632913B2 (en)
JPS6212663A (en) Method of sintering b4c base fine body
JPH0253388B2 (en)
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JP2538340B2 (en) Method for manufacturing ceramics sintered body
JPH1192225A (en) Silicon carbide sintered product and its production
WO1989008086A1 (en) HIGH-STRENGTH, beta-TYPE SILICON CARBIDE SINTER AND PROCESS FOR ITS PRODUCTION
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPH0463028B2 (en)
JP4342143B2 (en) Method for producing Si-SiC material
JPH0333064A (en) Powder composition for producing carbon/silicon carbide composite material, production of carbon/silicon carbide composite material and carbon/silicon carbide composite material
JPS61270259A (en) Manufacture of antiabrasive silicon carbide sintered body
JPS61122165A (en) Manufacture of silicon carbide sintered body
JPS6126566A (en) Method of sintering sic composite body
JPH089503B2 (en) Method for producing β-type silicon carbide sintered body