JPH01215448A - Submerged nozzle for continuous casting - Google Patents

Submerged nozzle for continuous casting

Info

Publication number
JPH01215448A
JPH01215448A JP4272088A JP4272088A JPH01215448A JP H01215448 A JPH01215448 A JP H01215448A JP 4272088 A JP4272088 A JP 4272088A JP 4272088 A JP4272088 A JP 4272088A JP H01215448 A JPH01215448 A JP H01215448A
Authority
JP
Japan
Prior art keywords
nozzle
molten metal
gas
gas outlet
sectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4272088A
Other languages
Japanese (ja)
Other versions
JPH0767603B2 (en
Inventor
Toshio Tejima
手嶋 俊雄
Toru Kitagawa
北川 融
Mikio Suzuki
幹雄 鈴木
Toshio Masaoka
政岡 俊雄
Takashi Mori
孝志 森
Kazuo Okimoto
一生 沖本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63042720A priority Critical patent/JPH0767603B2/en
Priority to US07/199,018 priority patent/US4898226A/en
Priority to EP88108690A priority patent/EP0293830B1/en
Priority to DE8888108690T priority patent/DE3861110D1/en
Publication of JPH01215448A publication Critical patent/JPH01215448A/en
Publication of JPH0767603B2 publication Critical patent/JPH0767603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/58Pouring-nozzles with gas injecting means

Abstract

PURPOSE:To restrain sticking and growth of inclusion to inner wall of a nozzle and to prevent the development of fault caused by oxide inclusion by specifying distance between upper end of molten metal inlet side of discharging hole and upper end of gas flow outlet. CONSTITUTION:The gas flow outlet 12 shifted at 90 deg. from two discharging holes 2 in the submerged nozzle and arranged at the position, where the distance between the upper end of the molten metal inlet side of the discharging hole 2 and the upper end of the gas flow outlet 12 is in the range of 0 to +100mm to height direction, is arranged. By this method, without developing the surface fault of slag inclusion, blow hole, etc., the sticking of alumina to the inner wall of the submerged nozzle is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は浸漬ノズル内壁ぺの介在物の付着・成長を抑
制し、連続鋳造の酸化物系介在物起因の欠陥発生を防止
する浸漬ノズルに関するものである。
Detailed Description of the Invention [Field of Industrial Application] This invention relates to an immersed nozzle that suppresses the adhesion and growth of inclusions on the inner wall of the immersed nozzle and prevents defects caused by oxide inclusions in continuous casting. It is something.

[従来の技術] 連続鋳造での浸漬ノズル内壁への介在物の付着は、時間
の経過とともに増大し、操業時間の制約するだけでなく
、数ミクロンの溶鋼中の脱酸生成物が粗大化し、しばし
ば製品欠陥を誘発させる。
[Prior Art] The adhesion of inclusions to the inner wall of the immersion nozzle during continuous casting increases over time, not only limiting the operating time but also causing the deoxidation products in the molten steel, which are several microns in size, to become coarse. Often leads to product defects.

浸漬ノズル内壁への付着に関しては浸漬ノズル材質大き
く影響し、例えば溶融シリカ質の浸漬ノズルにはほどん
と介在物の付着は認められない、しかし溶融シリカ質の
浸漬ノズルは鋼中のMnなどと反応し、溶損するため操
業のトラブルが発生しやすく鋳片品質にも問題となる。
The material of the immersed nozzle has a great effect on adhesion to the inner wall of the immersed nozzle.For example, fused silica immersed nozzles rarely have inclusions attached, but fused silica immersed nozzles have less inclusions, such as Mn in steel. It reacts and melts, which tends to cause operational troubles and also poses problems to the quality of slabs.

従って一般のアルミキルト鋼の連続鋳造ではアルミナグ
ラファイトあるいはアルミナグラファイトとジルコニア
質の組み合わせ材質の浸漬ノズルが使用されている。ア
ルミナグラファイト質浸漬ノズルを使用する場合には酸
化物系介在物の付着、焼結、成長が急速に進行するため
、浸漬ノズル内へ不活性ガスとしてはアルゴンガスを吹
き込み洗浄することによって、この進行を抑制している
。更に、最近では浸漬ノズルの材質的検討がなされてい
る。その−例どして、鋳造開始時の熱衝撃の対策として
アルミナグラファイト内に20〜30%の5i02が混
合されているが、鋳造時の強還元性雰囲気のもとでは 5i02(s) + C(s) −=SiO(g) +
CO(g)となり、Siがガス化しこれが鋼中へ酸素供
給源となり、介在物を生成し、介在物の付着、成長を誘
発する可能性があるため、浸漬ノズルの材質をSiO□
からSiCとカーボンに置き換える。又は、ジルコニア
質の浸漬ノズルについては、■熱伝導性が低い、■脱酸
生成物の付着性がしにくい等の理由で、最近はジルコニ
ア質の浸漬ノズルを使用していることが多い。第6図は
従来の2つの吐出孔2の中心を通る浸漬ノズル1の断面
図で、(イ)は2つの吐出孔2の中心を通る浸漬ノズル
1の平面切断図、(ロ)は第6図の(イ)の2つの吐出
孔2の中心を通る浸漬ノズル1の縦断面図(A−A’)
、(ハ)は第6図の(ロ)の2つの吐出孔2の中心を通
る浸漬ノズル1の縦断面図(A−A’)の直角方向の縦
断面図(B−B’)である。
Therefore, in general continuous casting of aluminum quilt steel, an immersion nozzle made of alumina graphite or a combination of alumina graphite and zirconia is used. When using an alumina-graphite immersion nozzle, the attachment, sintering, and growth of oxide inclusions progress rapidly. is suppressed. Furthermore, recently, materials for immersion nozzles have been studied. For example, 20 to 30% 5i02 is mixed into alumina graphite as a countermeasure against thermal shock at the start of casting, but under the strongly reducing atmosphere at the time of casting, 5i02(s) + C (s) −=SiO(g) +
The material of the immersion nozzle is SiO□, which becomes CO(g) and gasifies Si, which becomes an oxygen supply source into the steel, generates inclusions, and may induce the adhesion and growth of inclusions.
Replaced with SiC and carbon. Regarding zirconia immersion nozzles, recently, zirconia immersion nozzles are often used for the following reasons: (1) low thermal conductivity, (2) deoxidation products are difficult to adhere to, etc. FIG. 6 is a cross-sectional view of the conventional submerged nozzle 1 passing through the center of two discharge holes 2, (a) is a plane cutaway view of the submerged nozzle 1 passing through the center of the two discharge holes 2, and (b) is the sixth A vertical cross-sectional view (A-A') of the immersion nozzle 1 passing through the center of the two discharge holes 2 in (A) of the figure.
, (c) is a vertical cross-sectional view (B-B') in a direction perpendicular to the vertical cross-sectional view (A-A') of the submerged nozzle 1 passing through the center of the two discharge holes 2 in (b) of FIG. .

浸漬ノズル1の使用後の溶湯流通路4の内壁側3のアル
ミナ付着厚4は浸漬ノズル1の吐出孔2の上端から40
mmの縦断面図A−A’と直角方向の縦断面図B−B”
で測定した。浸漬ノズル1の材質をアルミナグラファイ
トとジルコニアの使用結果について説明する。第7図は
鋳造時間と浸漬ノズルの使用後の溶湯流通路の内壁側の
アルミナ付着厚の関係を示すグラフ図である。O印とΔ
印は、アルミナグラファイト質ノズルで、・印とム印は
ジルコニアノズルである。○印と・印は浸漬ノズル1の
縦断面図A−A’で、Δ印とム印は浸漬ノズル1の縦断
面図B−B′である。第8図はノズル内の管内流速と浸
漬ノズルの使用後の溶湯流通路の内壁側のアルミナ付着
厚の関係を示すグラフ図である。ここで示した管内流速
とは溶湯通過量(n(/ see )を浸漬ノズル内断
面積(m2)で割った平均流速を示している。第8図に
おいて浸漬ノズル1の縦断面図A−A’では管内流速の
上昇でアルミナ付着厚が減少しているが、縦断面図B−
B’では管内流速とアルミナ付着厚とに明瞭な相関が見
られない、この理由は溶湯通過量が増大し管内流速も当
然増大するはずにもかかわらず、浸漬ノズル1の縦断面
図B−B’の下流域ではその壁近傍に吐出孔による急激
な断面変化に伴う減速域が存在し、多少の溶湯通過量の
増大では流速変化が生じないため溶湯中のアルミナが流
れより排出され減速域に入り、そこで付着成長したため
である。第9図は浸漬ノズルの上部からのアルゴンガス
吹き込み量とアルミナ付着厚との関係を示すグラフ図で
ある。第7図、第8図、第9図から明らかなように、浸
漬ノズル1の吐出孔2の縦段面図A−A’では、浸漬ノ
ズル1の材質のジルコニア化、浸漬ノズル1内の溶湯流
速の増大、浸漬ノズルの上部からのアルゴンガス吹き込
み量の増大によってアルミナ付着厚は軽減されるが、こ
れに対して浸漬ノズル1の吐出孔2の縦段面図B−B’
では、浸漬ノズル1の材質のジルコニア化、浸漬ノズル
1内の溶湯流速の増大、浸漬ノズルの上部からのアルゴ
ンガス吹き込み量の増大させても、アルミナ付着厚はほ
どんと軽減−されないために、製品に予期せぬ欠陥が発
生することが多い。
The alumina adhesion thickness 4 on the inner wall side 3 of the molten metal flow path 4 after use of the immersion nozzle 1 is 40 mm from the upper end of the discharge hole 2 of the immersion nozzle 1.
mm longitudinal cross-sectional view A-A' and perpendicular vertical cross-sectional view B-B''
It was measured with The results of using alumina graphite and zirconia as materials for the immersion nozzle 1 will be explained. FIG. 7 is a graph showing the relationship between casting time and alumina deposition thickness on the inner wall side of the molten metal flow path after using the immersion nozzle. O mark and Δ
The mark is an alumina graphite nozzle, and the * and mu marks are zirconia nozzles. The marks ◯ and * are longitudinal cross-sectional views of the immersion nozzle 1 taken along the line AA', and the marks Δ and the marks ``mu'' are the longitudinal cross-sectional views taken along the line BB' of the immersion nozzle 1. FIG. 8 is a graph showing the relationship between the flow velocity inside the nozzle and the alumina deposition thickness on the inner wall side of the molten metal flow path after using the immersion nozzle. The flow velocity in the pipe shown here is the average flow velocity obtained by dividing the amount of molten metal passing (n (/see)) by the internal cross-sectional area of the immersion nozzle (m2). 'The alumina deposition thickness decreases due to the increase in the flow velocity in the pipe, but the vertical cross-sectional view B-
In B', there is no clear correlation between the flow velocity in the pipe and the alumina deposition thickness.The reason for this is that although the amount of molten metal passing through increases and the flow velocity in the pipe naturally increases, the vertical cross-sectional view of the submerged nozzle 1 B-B In the downstream area of the molten metal, there is a deceleration region near the wall due to a rapid cross-sectional change caused by the discharge hole, and since a slight increase in the amount of molten metal passing through does not cause a change in flow velocity, alumina in the molten metal is discharged from the flow and enters the deceleration region. This is because they entered the soil and grew attached there. FIG. 9 is a graph showing the relationship between the amount of argon gas blown from the top of the immersion nozzle and the alumina deposition thickness. As is clear from FIGS. 7, 8, and 9, in the longitudinal section view A-A' of the discharge hole 2 of the immersion nozzle 1, the material of the immersion nozzle 1 is made of zirconia, and the molten metal inside the immersion nozzle 1 is The alumina deposition thickness is reduced by increasing the flow rate and increasing the amount of argon gas blown from the top of the immersion nozzle.
Then, even if the material of the immersion nozzle 1 is changed to zirconia, the flow rate of the molten metal in the immersion nozzle 1 is increased, and the amount of argon gas blown from the top of the immersion nozzle is increased, the alumina deposition thickness is not reduced much. Unexpected defects often occur in products.

第10図は従来の2つの吐出孔2の中心を通る浸漬ノズ
ルで、底部にスリットノズル設置したノズル断面図で、
(イ)は2つの吐出孔の中心を通る浸漬ノズルの平面切
断図、(ロ)は第10図の(イ)の2つの吐出孔の中心
を通る浸漬ノズルの縦断面図(A−A’)、(ハ)は第
10図の(ロ)の2つの吐出孔の中心を通る浸漬ノズル
の縦断面図(A−A’)の直角方向の縦断面図(B −
B’)を示す図である。この対策として、第10図に示
すような浸漬ノズル1の底部11全面よりスリットノズ
ル16によってアルゴンガスを溶湯に吹き込む方法が取
られている。
Figure 10 is a cross-sectional view of a conventional submerged nozzle that passes through the center of two discharge holes 2, with a slit nozzle installed at the bottom.
(A) is a plan cutaway view of the immersed nozzle passing through the center of the two discharge holes, and (B) is a vertical cross-sectional view (A-A') of the immersion nozzle passing through the center of the two discharge holes in (A) of FIG. ), (c) are vertical cross-sectional views (B--) in the direction perpendicular to the vertical cross-sectional view (A-A') of the submerged nozzle passing through the center of the two discharge holes in (b) of FIG.
It is a figure showing B'). As a countermeasure against this problem, a method has been adopted in which argon gas is blown into the molten metal through a slit nozzle 16 from the entire bottom 11 of the immersion nozzle 1 as shown in FIG.

[発明が解決しようとする課題] しかしながらこの方法では、両畦出孔2の中心を通る浸
漬ノズル1の直角方向の縦断面(B−B’)のアルミナ
付着厚は減少するが、このような広範囲の領域より均一
にアルゴンガスを吹き込むには、多量のアルゴンガスが
必要となる。又、このように浸漬ノズル1の上部からの
アルゴンガスの吹き込みも必要で(吹き込みを実施しな
いと浸漬ノズル1の上部でアルミナ付着が進行する)、
その吹き込み量は各々6〜1ONi/winとなり、ト
ータルにすれば12〜20  NJI /winが必要
である。アルゴンガスの吹き込み量が多すぎると鋳片の
ノロカミ、ブローといった表面欠陥を発生させる。第1
1図は浸漬ノズル1の上方タンディツシュ内の溶鋼注入
口にポーラス体を設はアルゴンガスを吹いた事例で、こ
の場合一部はタンディツシュ内へ浮上するアルゴン量も
あるが、2〜5 ton / minでの鋳造を行った
時のアルゴンガスを溶湯に吹き込む量と鋳片表面のブロ
ー数の関係を示すグラフ図である。この図から明らかな
ようにアルゴンガスの吹き込み量に比例してブロー数が
増加している。アルゴンガスの吹き込み量を5tll/
win以下のときは、鋳造時の浸漬ノズル1内にアルミ
ナが付着し、ノズル閉塞を起ここの発明はかかる事情に
鑑みてなされたものであって、アルゴンガスの吹き込み
方法によって鋳片のノロカミ、ブローといった表面欠陥
を増大させることなく浸漬ノズル内にアルミナ付着を防
止することを目的とする。
[Problems to be Solved by the Invention] However, in this method, the alumina deposition thickness on the vertical cross section (B-B') of the submerged nozzle 1 passing through the center of both ridge holes 2 decreases; A large amount of argon gas is required to uniformly blow argon gas into a wide area. In addition, it is also necessary to blow argon gas from the top of the immersion nozzle 1 as described above (if blowing is not carried out, alumina deposition will progress at the top of the immersion nozzle 1),
The blowing amount is 6 to 1 ONi/win for each, and a total of 12 to 20 NJI/win is required. If the amount of argon gas blown is too large, surface defects such as cracks and blows will occur in the slab. 1st
Figure 1 shows an example in which a porous body is installed at the molten steel inlet in the upper tundish of the immersion nozzle 1 and argon gas is blown into the tundish. FIG. 3 is a graph showing the relationship between the amount of argon gas blown into the molten metal and the number of blows on the surface of the slab during casting. As is clear from this figure, the number of blows increases in proportion to the amount of argon gas blown. The amount of argon gas blowing is 5tll/
When the temperature is less than 100%, alumina adheres to the inside of the immersion nozzle 1 during casting, causing the nozzle to become clogged. This invention was made in view of the above circumstances. The purpose is to prevent alumina from adhering inside a submerged nozzle without increasing surface defects.

[課題を解決するための手段及び作用]この発明の連続
鋳造用浸漬ノズルはタンディツシュ内の溶湯を鋳型内に
注入する浸漬ノズルにおいて、浸漬ノズル本体の内壁の
2個の吐出孔から90度ずれ、かつ吐出孔の溶湯入側の
上端とガス流出口の上端との距離が0〜+100mmの
高さ方向の範囲の位置に設けられたガス流出口と、前記
ガス流出口に接続されたガス流通路と、前記ガス流通路
にガスを供給するガス供給手段とを具備したことを特徴
とする。
[Means and effects for solving the problems] The immersion nozzle for continuous casting of the present invention injects the molten metal in the tundish into the mold. and a gas outlet provided at a position in the height direction where the distance between the upper end of the molten metal inlet side of the discharge hole and the upper end of the gas outlet is 0 to +100 mm, and a gas flow passage connected to the gas outlet. and a gas supply means for supplying gas to the gas flow path.

そして、トータルガス吹き込み量を5〜1ONρ/ff
1inから変えずに浸漬ノズルの2個の吐出孔から90
度ずれ、かつ吐出孔の溶湯入側の上端とガス流出口の上
端との距離が0〜+100mmの゛高さ方向の範囲の位
置に設けられたガス流出口を設ける。ここで吐出孔の溶
湯入側の上端とガス流出口の上端との距離を限定した理
由は0mm未満及び100m+a超の場合はアルミナ付
着厚が増加するためである。その結果鋳片のノロカミ、
ブローといった表面欠陥を発生させることなく、浸漬ノ
ズルの内壁へのアルミナ付着を防止できる。
Then, adjust the total gas injection amount to 5 to 1ONρ/ff.
90 mm from the two discharge holes of the immersion nozzle without changing from 1 inch.
The gas outlet is provided at a position in the height direction such that the distance between the upper end of the molten metal inlet side of the discharge hole and the upper end of the gas outlet is 0 to +100 mm. The reason for limiting the distance between the upper end of the molten metal inlet side of the discharge hole and the upper end of the gas outlet is that the alumina deposition thickness increases if it is less than 0 mm or more than 100 m+a. As a result, the shape of the slab,
It is possible to prevent alumina from adhering to the inner wall of the immersion nozzle without causing surface defects such as blows.

[実施例] 以下添付図を参照してこの発明の実施例について説明す
る。
[Embodiments] Examples of the present invention will be described below with reference to the attached drawings.

第1図はこの発明の実施例に係わる浸漬ノズルの断面図
で、(イ)は2つのアルゴンを吹き込むガス流出口を含
む平面断面図、(ロ)は第1図の(イ)の2つの吐出孔
の中心を通る浸漬ノズルの縦断面図(A−A’)、(ハ
〉は第1図の(ロ)の2つの吐出孔の中心を通る浸漬ノ
ズルの縦断面図(A−A’)の直角方向の縦断面図(B
−B’)を示す図である。1は浸漬ノズル、2は吐出孔
、11は浸漬ノズルの底部、12はガス流出口、13は
ガス流通路、14はガス供給管、15はガス供給手段で
ある。
FIG. 1 is a cross-sectional view of a submerged nozzle according to an embodiment of the present invention, (a) is a plan cross-sectional view including two gas outlets for blowing argon, and (b) is a cross-sectional view of the two immersion nozzles in (a) of FIG. A vertical cross-sectional view (A-A') of the submerged nozzle passing through the center of the discharge hole, (C) is a longitudinal cross-sectional view (A-A') of the submerged nozzle passing through the center of the two discharge holes in (B) of FIG. ) vertical cross-sectional view (B
-B'). 1 is a submerged nozzle, 2 is a discharge hole, 11 is a bottom of the submerged nozzle, 12 is a gas outlet, 13 is a gas flow path, 14 is a gas supply pipe, and 15 is a gas supply means.

浸漬ノズル1の吐出孔2は丸型で、浸漬ノズルの底部の
プール型のである。浸漬ノズル1は耐火物で作られてお
り、その下部に2個の相対向する吐出孔2が設置されて
いる。ここにガス供給手段15からアルゴンガスをガス
供給接続管14を通して、ガス流通路13に導き、更に
ガス流通路13に接続されているガス流出口12よりア
ルゴンガスが流出される。
The discharge hole 2 of the submerged nozzle 1 is round and pool-shaped at the bottom of the submerged nozzle. The immersion nozzle 1 is made of refractory material and has two opposing discharge holes 2 installed in its lower part. Here, argon gas from the gas supply means 15 is introduced into the gas flow passage 13 through the gas supply connection pipe 14, and the argon gas is further discharged from the gas outlet 12 connected to the gas flow passage 13.

(実施例1) 図示しないタンディツシュから浸漬ノズル1に溶湯を供
給し、2個の相対向する吐出孔2から鋳型(図示せず)
内に注入される。そしてガス供給手段15からアルゴン
ガスを2Njl/ff1in程度供給するとガス供給接
続管14を通してガス流通路13に導き、更にガス流出
口12に接続されている。浸漬ノズル1の内側内壁の2
個のガス流出口12より気泡状になって溶湯内に吹き込
まれる。
(Example 1) Molten metal is supplied from a tundish (not shown) to an immersion nozzle 1, and a mold (not shown) is supplied from two opposing discharge holes 2.
injected into the body. When argon gas is supplied from the gas supply means 15 at a rate of about 2Njl/ff1in, it is introduced into the gas flow passage 13 through the gas supply connection pipe 14, and further connected to the gas outlet 12. 2 of the inner inner wall of the immersion nozzle 1
The gas is blown into the molten metal from the gas outlet 12 in the form of bubbles.

この時従来のアルゴン吹き込み位置からもタンディツシ
ュ注入口から、浸漬ノズル1の上部かけての内壁へのア
ルミナ付着厚防止するために5〜8fl/minのアル
ゴンを吹き込む。ノズルの溶湯内に吹き込まれるトータ
ルのアルゴン流量は5〜101111I/ minなの
で第8図に示すように鋳片表面のブロー数を増大させる
ことなく、かつガス流出口12付近のアルミナ付着厚も
防止できる。
At this time, 5 to 8 fl/min of argon is blown from the tundish inlet to the conventional argon blowing position in order to prevent alumina from being thickly deposited on the inner wall of the immersion nozzle 1 over the top. Since the total flow rate of argon blown into the molten metal through the nozzle is 5 to 101111 I/min, as shown in Fig. 8, the number of blows on the slab surface does not increase, and the thickness of alumina adhesion near the gas outlet 12 can be prevented. .

ガス流出口12の範囲は30 mmX−100amであ
る。吐出孔の径は80IIlfflΦである。
The range of the gas outlet 12 is 30 mm x - 100 am. The diameter of the discharge hole is 80IIlfflΦ.

ガス流出口12の吹き込み位置についてノズルのガス流
出口12の上端と吐出孔2の上端同一レベルにした。
The blowing position of the gas outlet 12 was set at the same level as the upper end of the gas outlet 12 of the nozzle and the upper end of the discharge hole 2.

この結果アルミナ付着厚は、1/3に減少した。As a result, the alumina deposition thickness was reduced to 1/3.

(実施例2) 次にガス流出口の吹き込み位置を変更して、アルミナ付
着厚の関係を調査した。吐出孔の溶湯入側の上端とガス
流出口の°上端と間隔を、−30〜+150mmの高さ
方向の範囲で変更した。第2図はこのガス流出口の吹き
込み位置を変更した水準を示した浸漬ノズルの断面図で
ある。〈a)はノズルのガス流出口12の上端と吐出孔
2の上端との間隔が30mm下方に離れているもの、(
b)はノズルのガス流出口12の上端と吐出孔2の上端
同一レベルのもの、(C)はノズルのガス流出口12の
上端と吐出孔2の上端との間隔が30mm上方に離れて
いるもの、(d)はノズルのガス流出口12の上端と吐
出孔2の上端との間隔が100mm上方に離れているも
の、(e)はノズルのガス流出口12の上端と吐出孔2
の上端との間隔が150mm上方に離れているものを示
している。
(Example 2) Next, the relationship between the alumina adhesion thickness was investigated by changing the blowing position of the gas outlet. The distance between the upper end of the molten metal inlet side of the discharge hole and the upper end of the gas outlet was changed in the height direction from -30 to +150 mm. FIG. 2 is a sectional view of the submerged nozzle showing the level at which the blowing position of the gas outlet has been changed. In <a), the distance between the upper end of the gas outlet 12 of the nozzle and the upper end of the discharge hole 2 is 30 mm downward;
In b), the upper end of the nozzle gas outlet 12 and the upper end of the discharge hole 2 are at the same level, and in (C), the upper end of the nozzle gas outlet 12 and the upper end of the discharge hole 2 are separated upward by 30 mm. In (d), the distance between the upper end of the gas outlet 12 of the nozzle and the upper end of the discharge hole 2 is 100 mm upward, and (e) shows the upper end of the nozzle gas outlet 12 and the discharge hole 2.
The distance from the upper end of the figure is 150 mm upward.

第3図は第2図に示すガス流出口の吹き込み位置の違い
とアルミナ付着厚の関係を示すグラフ図である。この図
から明らかなように吐出孔の溶湯入側の上端とガス流出
口の上端と間隔を、−〇〜+100+mの高さ方向の範
囲のときがアルミナ付着厚が少ない。
FIG. 3 is a graph showing the relationship between the difference in the blowing position of the gas outlet shown in FIG. 2 and the alumina deposition thickness. As is clear from this figure, the alumina deposition thickness is small when the distance between the upper end of the molten metal inlet side of the discharge hole and the upper end of the gas outlet is in the range of -0 to +100+ m in the height direction.

この理由は第4図と第5図から説明する。第4図は従来
の浸漬ノズルの断面図で、(a)は浸漬ノズルの平面断
面図で、(b)は第4図の(a)のx−x’縦断面図で
ある。第4図(a)の○印は吐出孔方向(X−X’)の
管内流速で、Δ印は吐出孔から90度ずれた方向(Y−
Y’)の管内流速である。なお管内流速の測定箇所はイ
及びホは浸漬ノズル内壁近傍部、ハは浸漬ノズルの中心
部、口及び二は浸漬ノズル内壁近傍部と浸漬ノズルの中
心部の間である。第4図(b)の直線A−A’は吐出孔
2の上端部で、直線B−B’は吐出孔2の上端から30
mmの位置で、直線c−c’は吐出孔2の上端から15
0mmの位置である。第5図は第4図における測定位置
別の管内流速分布の関係を示すグラフ図である。第5図
の(a)は第4図(b)の直線A−A’部の管内流速分
布で、第5図の(b)は第4図(b)の直線B−B’部
の管内流速分布で、第5図の(c)は第4図(c)の直
線c−c’部の管内流速分布である。この図から明らか
なように、吐出孔方向(x−x’)の管内流速は直線A
−A’ 、直線B−B’ 、直線c−c’部ともあまり
変わらないが、吐出孔から90度ずれた方向(Y−Y’
)の管内流速分布は、第5図の(a)及び(b)に示す
一部に点線で示すように減速域をもつ流動分布状態とな
る。これは吐出孔の上端(内側)から30mm以下で著
しくなる。その上はほぼ第5図の(c)ような流動分布
状態となる。従ってその範囲にガスを吹き込み側壁を洗
浄することがアルミナ付着防止には有効である。
The reason for this will be explained with reference to FIGS. 4 and 5. FIG. 4 is a cross-sectional view of a conventional submerged nozzle, (a) is a plan cross-sectional view of the submerged nozzle, and (b) is a vertical cross-sectional view taken along line xx' in (a) of FIG. In Fig. 4(a), the ○ mark indicates the flow velocity in the pipe in the direction of the discharge hole (X-X'), and the Δ mark indicates the flow velocity in the direction 90 degrees away from the discharge hole (Y-X').
Y') is the in-pipe flow velocity. The measurement points for the flow velocity in the pipe are A and E near the inner wall of the immersed nozzle, C the center of the immersed nozzle, mouth and 2 between the near the inner wall of the immersed nozzle and the center of the immersed nozzle. The straight line A-A' in FIG. 4(b) is the upper end of the discharge hole 2, and the straight line B-B' is 30 mm
At the position of mm, the straight line c-c' is 15 mm from the upper end of the discharge hole 2.
This is the 0mm position. FIG. 5 is a graph showing the relationship between the flow velocity distribution in the pipe according to the measurement position in FIG. 4. Figure 5(a) shows the flow velocity distribution in the pipe along straight line A-A' in Figure 4(b), and Figure 5(b) shows the flow velocity distribution in the pipe along straight line BB' in Figure 4(b). FIG. 5(c) shows the flow velocity distribution in the pipe along the line c-c' in FIG. 4(c). As is clear from this figure, the flow velocity in the pipe in the direction of the discharge hole (x-x') is the straight line A
-A', straight line B-B', and straight line c-c', but in a direction 90 degrees off from the discharge hole (Y-Y'
) The flow velocity distribution in the pipe becomes a flow distribution state with a deceleration region as shown in part by the dotted line in FIGS. 5(a) and 5(b). This becomes noticeable at a distance of 30 mm or less from the upper end (inner side) of the discharge hole. Above that, the flow distribution state is approximately as shown in FIG. 5(c). Therefore, cleaning the side wall by blowing gas into that area is effective in preventing alumina adhesion.

即ち吐出孔の溶湯入側の上端とガス流出口の上端と間隔
を、−〇〜+100mmの高さ方向の範囲のときがアル
ミナ付着厚が少ない。
That is, when the distance between the upper end of the molten metal inlet side of the discharge hole and the upper end of the gas outlet is in the range of -0 to +100 mm in the height direction, the alumina deposition thickness is small.

この結果アルミナ付着厚は、1/3〜115に減少した
As a result, the alumina deposition thickness was reduced to 1/3 to 115 times.

[発明の効果] この発明によれば、浸漬ノズル本体の内壁の2個の吐出
孔から90度ずれ、かつ吐出孔の溶湯入側の上端とガス
流出口の上端との距離が、0〜+100mmの高さ方向
の範囲の位置に設けられたガス流出口からアルゴンを流
すのでその部分のよどみがなくなり、アルミナ付着厚が
少なくなる。
[Effects of the Invention] According to the present invention, the two discharge holes in the inner wall of the immersion nozzle body are offset by 90 degrees, and the distance between the upper end of the molten metal inlet side of the discharge hole and the upper end of the gas outlet is 0 to +100 mm. Since argon is flowed from the gas outlet provided at a position in the height direction, stagnation in that area is eliminated and the alumina deposition thickness is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係わる浸漬ノズルの断面図
、第2図はこのガス流出口の吹き込み位置を変更した水
準を示した浸漬ノズルの断面図、第3図は第2図に示す
ガス流出口の吹き込み位置の違いとアルミナ付着厚の関
係を示すグラフ図、第4図は従来の浸漬ノズルの断面図
、第5図は第4図における測定位置別の管内流−速分布
の関係を示すグラフ図、第6図は従来の2つの吐出孔の
中心を通る浸漬ノズルの断面図、第7図は鋳造時間と浸
漬ノズルの使用後の溶湯流通路の内壁側のアルミナ付着
厚の関係を示すグラフ図、第8図はノズル内の管内流速
と浸漬ノズルの使用後の溶湯流通路の内壁側のアルミナ
付着厚の関係を示すグラフ図、第9図は浸漬ノズルの上
部からのアルゴンガス吹き込み量とアルミナ付着厚との
関係を示すグラフ図、第10図は従来の2つの吐出孔の
中心を通る浸漬ノズルで、底部にスリットノズル設置し
たノズルの断面図、電11図は浸漬ノズルの上方タンデ
ィツシュ内の溶鋼注入口からアルゴンガスを溶湯に吹き
込む量と鋳片表面のブロー数の関係を示すグラフ図であ
る。 1・・・浸漬ノズル、2・・・吐出孔、11・・・浸漬
ノズルの底部、12・・・ガス流出口、13・・・ガス
流通路、14・・・ガス供給接続管、15・・・ガス供
給手段。
Fig. 1 is a sectional view of a submerged nozzle according to an embodiment of the present invention, Fig. 2 is a sectional view of the submerged nozzle showing a changed level of the blowing position of the gas outlet, and Fig. 3 is shown in Fig. 2. A graph showing the relationship between the blowing position of the gas outlet and the alumina deposition thickness, Figure 4 is a cross-sectional view of a conventional immersion nozzle, and Figure 5 is the relationship between the flow-velocity distribution in the pipe according to the measurement position in Figure 4. Fig. 6 is a cross-sectional view of a conventional immersion nozzle passing through the center of two discharge holes, and Fig. 7 shows the relationship between casting time and alumina deposition thickness on the inner wall side of the molten metal flow path after using the immersion nozzle. Figure 8 is a graph showing the relationship between the flow velocity inside the nozzle and the alumina deposition thickness on the inner wall side of the molten metal flow path after using the immersion nozzle. A graph showing the relationship between blowing amount and alumina deposition thickness. Figure 10 is a cross-sectional view of a conventional immersion nozzle that passes through the center of two discharge holes, and a slit nozzle is installed at the bottom. Figure 11 is a cross-sectional view of a nozzle with a slit nozzle installed at the bottom. FIG. 2 is a graph diagram showing the relationship between the amount of argon gas blown into the molten metal from the molten steel inlet in the upper tundish and the number of blows on the surface of the slab. DESCRIPTION OF SYMBOLS 1... Immersed nozzle, 2... Discharge hole, 11... Bottom of immersed nozzle, 12... Gas outlet, 13... Gas flow path, 14... Gas supply connection pipe, 15... ...Gas supply means.

Claims (1)

【特許請求の範囲】[Claims] タンデイッシュ内の溶湯を鋳型内に注入する浸漬ノズル
において、浸漬ノズル本体の内壁の2個の吐出孔から9
0度ずれ、かつ吐出孔の溶湯入側の上端とガス流出口の
上端との距離が0〜+100mmの高さ方向の範囲の位
置に設けられたガス流出口と、前記ガス流出口に接続さ
れたガス流通路と、前記ガス流通路にガスを供給するガ
ス供給手段とを具備したことを特徴とする連続鋳造用浸
漬ノズル。
In the immersion nozzle that injects the molten metal in the tundish into the mold, 9
A gas outlet is connected to the gas outlet, which is offset by 0 degrees, and is provided at a position in the height direction where the distance between the upper end of the molten metal inlet side of the discharge hole and the upper end of the gas outlet is 0 to +100 mm. 1. A submerged nozzle for continuous casting, comprising: a gas flow passage; and a gas supply means for supplying gas to the gas flow passage.
JP63042720A 1987-06-01 1988-02-25 Immersion nozzle for continuous casting Expired - Lifetime JPH0767603B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63042720A JPH0767603B2 (en) 1988-02-25 1988-02-25 Immersion nozzle for continuous casting
US07/199,018 US4898226A (en) 1987-06-01 1988-05-26 Immersion nozzle for continuous casting of steel
EP88108690A EP0293830B1 (en) 1987-06-01 1988-05-31 Immersion pipe for continuous casting of steel
DE8888108690T DE3861110D1 (en) 1987-06-01 1988-05-31 SUBMERSIBLE SPOUT FOR CONTINUOUS STEEL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042720A JPH0767603B2 (en) 1988-02-25 1988-02-25 Immersion nozzle for continuous casting

Publications (2)

Publication Number Publication Date
JPH01215448A true JPH01215448A (en) 1989-08-29
JPH0767603B2 JPH0767603B2 (en) 1995-07-26

Family

ID=12643905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042720A Expired - Lifetime JPH0767603B2 (en) 1987-06-01 1988-02-25 Immersion nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JPH0767603B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947053A (en) * 1982-09-10 1984-03-16 Akechi Ceramic Kk Nozzle for continuous casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947053A (en) * 1982-09-10 1984-03-16 Akechi Ceramic Kk Nozzle for continuous casting

Also Published As

Publication number Publication date
JPH0767603B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
KR100992207B1 (en) Casting nozzle
JP4079415B2 (en) Submerged nozzle for continuous casting of thin slabs
US4898226A (en) Immersion nozzle for continuous casting of steel
JPS63303666A (en) Submerged nozzle for continuous casting
JPS6289566A (en) Refractories for flow of molten metal
JPH01215448A (en) Submerged nozzle for continuous casting
JPH1110301A (en) Stopper device for controlling high accurate flow rate and continuous casting method using it and device therefor
JPS5924902B2 (en) Continuous casting nozzle
JP4815821B2 (en) Continuous casting method of aluminum killed steel
JP2017064778A (en) Upper nozzle for continuous casting
JP3460185B2 (en) Immersion nozzle for casting
JPH1147897A (en) Immersion nozzle for continuously casting thin and wide cast slab
JP2004344900A (en) Dipping nozzle and continuous casting method using the same
JPS632539A (en) Molten metal vessel having molten metal flowing-out hole
US20060169728A1 (en) Submerged entry nozzle with dynamic stabilization
JPH0230122Y2 (en)
JP2001129645A (en) Immersion nozzle for continuous casting and continuous casting method
JP2000237852A (en) Immersion nozzle
JPS63303665A (en) Submerged nozzle for continuous casting
JPH04238658A (en) Immersion nozzle for continuous casting
JP2010069515A (en) Continuous casting method for steel
JP2000084647A (en) Method for blowing gas into upper nozzle in tundish
JPS62292255A (en) Nozzle for pouring molten metal
JPS62279059A (en) Submerged nozzle
JPH0133258Y2 (en)