JPS63303666A - Submerged nozzle for continuous casting - Google Patents

Submerged nozzle for continuous casting

Info

Publication number
JPS63303666A
JPS63303666A JP13494187A JP13494187A JPS63303666A JP S63303666 A JPS63303666 A JP S63303666A JP 13494187 A JP13494187 A JP 13494187A JP 13494187 A JP13494187 A JP 13494187A JP S63303666 A JPS63303666 A JP S63303666A
Authority
JP
Japan
Prior art keywords
nozzle
molten metal
gas
immersion nozzle
gas flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13494187A
Other languages
Japanese (ja)
Other versions
JPH0659533B2 (en
Inventor
Toshio Tejima
手嶋 俊雄
Toru Kitagawa
北川 融
Mikio Suzuki
幹雄 鈴木
Toshio Masaoka
政岡 俊雄
Takashi Mori
孝志 森
Kazuo Okimoto
一生 沖本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62134941A priority Critical patent/JPH0659533B2/en
Priority to US07/199,018 priority patent/US4898226A/en
Priority to DE8888108690T priority patent/DE3861110D1/en
Priority to EP88108690A priority patent/EP0293830B1/en
Publication of JPS63303666A publication Critical patent/JPS63303666A/en
Publication of JPH0659533B2 publication Critical patent/JPH0659533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/58Pouring-nozzles with gas injecting means

Abstract

PURPOSE:To prevent sticking of inclusion to a nozzle and to improve quality of a cast slab by arranging two molten metal discharging holes at lower part of submerged nozzle and also arranging gas flowing holes at inner wall of the nozzle turning at the right angle from the discharging holes. CONSTITUTION:Two of mutually faced molten metal discharging holes 2 are arranged at lower part of the submerged nozzle body 1 for continuous casting, and the gas flowing holes 12 are arranged at the inner wall of the nozzle 1 turning at 90 deg. from the discharging holes 2. The molten metal is supplied in the submerged nozzle 1 from a tundish and poured into a mold. Then, argon gas is supplied into the molten metal from gas supplying means 15 through supplying tube connecting part 14. The stagnation of the molten metal near the gas flowing hole 12 is perfectly prevented and the sticking of the inclusion in the nozzle 1 is prevented by only little gas flowing quantity. Further, as the gas flowing quantity can be reduced, and the development of the defect in the cast slab caused by gas blowing is eliminated, and the quality of the cast slab is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は浸漬ノズル内壁への介在物の付着・成長を抑
制し、連続鋳造の鋳片の酸化物系介在物起因の欠陥発生
を防止する浸漬ノズルに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention suppresses the adhesion and growth of inclusions on the inner wall of a submerged nozzle, and prevents the occurrence of defects caused by oxide inclusions in continuously cast slabs. This relates to immersion nozzles.

〔従来の技術〕[Conventional technology]

連続鋳造での浸漬ノズル内壁への酸化物系介在物付着は
、時間の経過とともに増大し、操業時間の制約するだけ
でなく、数ミクロンの鋼中の脱酸生成物が粗大化し、し
ばしば製品欠陥を誘発させる。浸漬ノズル内壁への付着
に関しては、浸漬ノズル材質が大きく影響し、たとえば
溶融シリカ質の浸漬ノズルにはほどんと介在物の付着は
認められない、しかし溶融シリカ質浸漬ノズルは鋼中の
Mnなどと反応し、溶損するため操業のトラブルが発生
しやすく、鋳片品質にも問題となる。従うで一般のアル
ミキルド鋼の連続鋳造では、アルミナ−グラフディトあ
るいは、アルミナ−グラファイト十ジルコニア質の組合
せ材質の浸漬ノズルが使用されている。アルミナ−グラ
ファイト質浸漬ノズルを使用する場合には、酸化物系介
在物の付着、焼結、成長が急速に進行するため、浸漬ノ
ズル内へ不活性ガス一般にはアルゴン等を吹き込み機械
的洗浄によって、この進行を抑圧している。更に最近で
は浸漬ノズルの材質的検討がなされている。その−例と
して、鋳造開始時の熱衝撃の対策として、アルミナ−グ
ラファイト内に20から30%のSiO□が混合されて
いるが、鋳造時の強還元性雰囲気のもとではSiOg(
S)  + C(S) →Sio(g) +COC00
(となり、Siがガス化しこれが鋼中への酸素供給源と
なり、介在物を生成し介在物の付着、成長を誘発する可
能性があるため、浸漬ノズルの材質を5i01からSi
Cとカーボンに置き換えらる。又ジルコニア質の浸漬ノ
ズルについては、■熱伝導性が低い、■脱酸生成物の付
着がしにくい 等の理由で、最近はジルコニア質の浸漬
ノズルを使用していることが多い。
The adhesion of oxide inclusions to the inner wall of the immersion nozzle during continuous casting increases over time, which not only limits operation time, but also causes deoxidation products in the steel of several microns to become coarse, often resulting in product defects. induce. Regarding the adhesion to the inner wall of the immersed nozzle, the material of the immersed nozzle has a large effect; for example, fused siliceous immersed nozzles have almost no adhesion of inclusions, but fused silica immersed nozzles have no inclusions, such as Mn in steel. This tends to cause operational troubles as it reacts with the steel and causes melting and damage, which also causes problems with the quality of slabs. Therefore, in general continuous casting of aluminium-killed steel, a submerged nozzle made of alumina-graphite or a combination of alumina-graphite and zirconia is used. When using an alumina-graphite immersion nozzle, the adhesion, sintering, and growth of oxide inclusions progress rapidly. This progress is being suppressed. Furthermore, recently, materials for immersion nozzles have been studied. As an example, 20 to 30% SiO□ is mixed into alumina-graphite as a countermeasure against thermal shock at the start of casting.
S) + C(S) →Sio(g) +COC00
(The material of the immersion nozzle was changed from 5i01 to Si because Si gasifies and becomes an oxygen supply source into the steel, forming inclusions and inducing the adhesion and growth of inclusions.)
Replaced by C and carbon. Regarding zirconia-based immersion nozzles, these days, zirconia-based immersion nozzles are often used for reasons such as (1) low thermal conductivity, and (2) difficulty in adhesion of deoxidized products.

しかしながら、第3図の(イ)は再吐出孔2の中心を通
る浸漬ノズル1の切断面で、(ロ)は再吐出孔2の中心
を通る浸漬ノズルlkl断面4 (A−A’ )と、(
ハ)はこれと直角方向の縦断面5(B−B’)における
介在物の付着状況図である。
However, (A) in FIG. 3 is a cross section of the immersion nozzle 1 passing through the center of the re-discharge hole 2, and (B) is a cross section 4 (A-A') of the immersion nozzle passing through the center of the re-discharge hole 2. ,(
C) is a diagram showing the adhesion of inclusions in the longitudinal section 5 (BB') in the direction perpendicular to this.

この介在物の付着量を吐出孔2の上端より40f1以上
における溶湯流通路6の内壁3で測定した。浸漬ノズル
lがアルミナ−グラファイト質と、ジルコニア質につい
て説明する。第4図は、鋳造時間とアルミナ付着厚の関
係を示す、○印とΔ印は、アルミナ−グラファイト質で
、・印とム印は、ジルコニア質である。○印と・印は浸
漬ノズル1の縦断面4で、Δ印とム印はこれと直角方向
の縦断面5にである。第5図は浸漬ノズル内溶湯の流速
とアルミナ付着厚の関係を示す、第6図は浸漬ノズルの
アルゴン吹き込み量とアルミナ付着厚の関係を示す、第
4図、5図、第6図から明らかなように、浸漬ノズル1
の吐出孔2の縦断面4では、浸漬ノズル1材質のジルコ
ニア化、浸漬ノズルl内溶湯の流速の増大、浸漬ノズル
のアルゴン吹き込み量の増大によってアルミナ付着厚は
軽減されるが、これに対して上記浸漬ノズル1の縦断面
5では、浸漬ノズルのノズル材質のジルコニア化、浸漬
ノズルl内溶湯の流速の増大、浸漬ノズル内のアルゴン
吹き込み量の増大させても、アルミナ付着厚はほどんと
軽減されていないために、製品の予期せぬ欠陥発生に至
ることが多い(以下従来法1という)。
The amount of adhesion of the inclusions was measured on the inner wall 3 of the molten metal flow path 6 at 40 f1 or more from the upper end of the discharge hole 2. The immersion nozzle l will be explained about alumina-graphite and zirconia. FIG. 4 shows the relationship between the casting time and the alumina deposition thickness. The ○ and Δ marks are alumina-graphite, and the * and mu marks are zirconia. The ○ and * marks are the longitudinal section 4 of the immersion nozzle 1, and the Δ and mu marks are the longitudinal section 5 in the direction perpendicular to this. Figure 5 shows the relationship between the flow rate of the molten metal in the immersion nozzle and the alumina deposition thickness. Figure 6 shows the relationship between the argon injection amount of the immersion nozzle and the alumina deposition thickness. This is clear from Figures 4, 5, and 6. Soaking nozzle 1
In the longitudinal section 4 of the discharge hole 2, the alumina deposition thickness is reduced by changing the material of the immersion nozzle 1 to zirconia, increasing the flow rate of the molten metal in the immersion nozzle 1, and increasing the amount of argon blown into the immersion nozzle. In the longitudinal section 5 of the immersion nozzle 1, the alumina deposition thickness is gradually reduced even if the nozzle material of the immersion nozzle is made into zirconia, the flow rate of the molten metal in the immersion nozzle is increased, and the amount of argon blown into the immersion nozzle is increased. This often results in unexpected product defects (hereinafter referred to as conventional method 1).

この対策として、最近では第7図に示すように浸漬ノズ
ル1の炉底11の全面より、スリットノズル12(又は
ポラスプラグ)によってアルゴンガスを吹き込む方法が
取られている。(以下従来法2という) 〔発明が解決しようとする問題点〕 しかしながらこの方法では、再吐出孔2の中心を通る浸
漬ノズル1の縦断面5のアルミナ付着量は減少するが、
このように広範囲の領域より均一にアルゴンガスを吹き
込むには、多量のアルゴンガスが必要とされる。またこ
のように浸漬ノズル1の底部11から吹き込んだにして
も、浸漬ノズルlの上部からアルゴンガスの吹き込みも
必要で(吹き込みをを実施しないと浸漬ノズル上部でア
ルミナ付着が進行する。)、その吹き込み量は各々6か
らIQNL/sinとなり、トータルにすれば12から
2ONL/−inが必要となる。アルゴンガ スの過多
の吹き込みは従来より鋳片のノロカミ、ブローといった
表面欠陥を発生させる。第8図にアルゴンガスの吹き込
み量と、鋳片表面のブロー個数を示すが、アルゴンガス
の吹き込み量に比例してブロー個数が増加している。又
アルゴンガスの吹き込み量が5NL/sin以下の時は
、鋳造時の浸漬ノズル1のアルミナ閉塞というトラブル
を起こしやすい。
As a countermeasure against this problem, a method has recently been adopted in which argon gas is blown into the entire surface of the furnace bottom 11 of the submerged nozzle 1 using a slit nozzle 12 (or a porous plug), as shown in FIG. (Hereinafter referred to as conventional method 2) [Problems to be solved by the invention] However, in this method, although the amount of alumina deposited on the longitudinal section 5 of the immersion nozzle 1 passing through the center of the re-discharge hole 2 is reduced,
In order to uniformly blow argon gas into such a wide area, a large amount of argon gas is required. Even if argon gas is blown from the bottom 11 of the immersed nozzle 1 in this way, it is also necessary to blow argon gas from the top of the immersed nozzle 1 (if argon gas is not blown, alumina deposition will progress at the top of the immersed nozzle). The blowing amount is 6 to IQNL/sin, and a total of 12 to 2 ONL/-in is required. Excessive injection of argon gas has traditionally caused surface defects such as cracks and blows in slabs. FIG. 8 shows the amount of argon gas blown and the number of blows on the slab surface, and the number of blows increases in proportion to the amount of argon gas blown. Further, when the amount of argon gas blown is less than 5 NL/sin, trouble such as alumina clogging of the immersion nozzle 1 during casting is likely to occur.

この発明は、係る事情に鑑みてなされたものであってア
ルゴンガスの吹き込み方法によって鋳片のノロカミ、ブ
ローといった表面欠陥数を増大させずに浸漬ノズル1の
縦断面5のアルミナ付着を防止することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to prevent alumina adhesion on the vertical cross section 5 of the immersion nozzle 1 without increasing the number of surface defects such as scorching and blowing of the slab by a method of blowing argon gas. With the goal.

〔問題点を解決するための手段・作用〕この発明は連続
鋳造鋳型内の溶湯に浸漬され、タンディシュ内の溶湯を
鋳型内に注入される。浸漬ノズルは、その下部に2個の
吐出孔が相対向して形成された浸漬ノズル本体と、前記
浸漬ノズル本体の内側内壁の2個の吐出孔から90度ず
れた、かつ吐出孔の溶湯入側の縦寸法と等しい位置に設
けられたガス流出口と、前記ガス流出口に接続されたガ
ス流通路と、前記ガス流通路にガスを供給するガス供給
手段とを具備したことを特徴とする。
[Means and operations for solving the problems] In this invention, the continuous casting method is immersed in molten metal in a mold, and the molten metal in the tundish is poured into the mold. The immersion nozzle includes a immersion nozzle body in which two discharge holes are formed facing each other in the lower part of the immersion nozzle body, and a molten metal inlet of the discharge hole is offset by 90 degrees from the two discharge holes on the inner inner wall of the immersion nozzle body. It is characterized by comprising a gas outlet provided at a position equal to the vertical dimension of the side, a gas flow passage connected to the gas outlet, and a gas supply means for supplying gas to the gas flow passage. .

そして、トータルガス吹き込み量を従来の5からl0N
L/sinから変えずに浸漬ノズル1の縦断面5の下方
にアルミナ付着防止のために必要最少限のガス流出口を
設定し、吐出孔2近傍でのガス吹き込み量を必要最少限
にとどめる。よって、ブロー、ノロカミと云った表面欠
陥を発生させることなく、鋳片品質に重大な影響を及ぼ
す縦断面5のアルミナ付着を防止することができる。
Then, the total gas injection amount was changed from 5N to 10N.
Without changing from L/sin, the minimum necessary gas outlet is set below the longitudinal section 5 of the immersion nozzle 1 to prevent alumina adhesion, and the amount of gas blown near the discharge hole 2 is kept to the minimum necessary. Therefore, it is possible to prevent alumina from adhering to the longitudinal section 5, which seriously affects the quality of the slab, without causing surface defects such as blows and slags.

〔実施例〕〔Example〕

以下添付図を参照してこの発明の実施例について説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図はこの発明の実施例に係わる吐出孔2が丸型で、
底部11がプール型の連続鋳造用浸漬ノズルの断面図で
ある。浸漬ノズル1ば耐火物で作られており、その下部
に2個の相対向する吐出孔2が設置されている。ここに
ガス供給手段15からアルゴンガスをガス供給管接続部
14を通して、ガス流通路13に導き、更にガス流通路
13に接続されているガス流出口12よあアルゴンガス
が流出される。
FIG. 1 shows a discharge hole 2 according to an embodiment of the present invention having a round shape.
FIG. 2 is a sectional view of a continuous casting immersion nozzle with a pool-shaped bottom portion 11. FIG. The immersion nozzle 1 is made of refractory material, and two opposing discharge holes 2 are installed at the bottom thereof. Here, argon gas is introduced from the gas supply means 15 through the gas supply pipe connection part 14 to the gas flow passage 13, and the argon gas is further discharged through the gas outlet 12 connected to the gas flow passage 13.

次ぎに、この実施例の動作について説明する。。Next, the operation of this embodiment will be explained. .

まず図示しないタンディシュから浸漬ノズル1に溶湯を
供給し、2個の相対向する吐出孔2から鋳型(図示せず
)内に注入される。そしてガス供給手段15からアルゴ
ンガスを2 NL/曽in供給すると、ガス供給管接続
部14通して、ガス流通路13に導き、更にガス流通路
13に接続されている、浸漬ノズル本体1の内側内壁の
2個の吐出孔2から90度ずれたガス流出口12より気
泡状になって溶湯内に吹き込まれる。このとき、従来の
アルゴン吹き込み位置(一般には浸漬ノズルlの上方タ
ンディシュ内の上ノズルから吹き込みが多い)からも浸
漬ノズル1内壁上方へのアルミナ付着を防止するため5
から8 NL/winのアルゴンガスを吹き込む、溶湯
内に吹き込まれるアルゴンガスのトータル流量は従来の
5からl0NL/曽inと大差ないので第8図に示すよ
うに鋳片表面のブロー数を増大させることなく、かつ吐
出孔2から90度ずれたガス流出口12へのアルミナ付
着を防止する。第2図は本発明と、従来法1.2とによ
る鋳片の表面ブロー数の関係を示すグラフである。・印
は鋳片表面のプロ個数である0本発明は鋳片の表面欠陥
が、従来法2に比較して1/3に減少している。第2図
の○印は本発明と、従来法L2とによるアルミナ付着厚
の関係を示すグラフである。この図から明らかなように
本発明は、従来法1に比較して1/3に減少している。
First, molten metal is supplied from a tundish (not shown) to an immersion nozzle 1, and is injected into a mold (not shown) through two opposing discharge holes 2. When argon gas is supplied from the gas supply means 15 at a rate of 2 NL/so in, it is guided to the gas flow passage 13 through the gas supply pipe connection 14, and is further connected to the gas flow passage 13 inside the submerged nozzle body 1. The gas is blown into the molten metal in the form of bubbles from the gas outlet 12 which is offset by 90 degrees from the two discharge holes 2 in the inner wall. At this time, in order to prevent alumina from adhering to the upper part of the inner wall of the immersion nozzle 1 from the conventional argon blowing position (generally, argon is blown from the upper nozzle in the upper tundish of the immersion nozzle 1),
The total flow rate of argon gas blown into the molten metal is not much different from the conventional 5 to 10 NL/win, so the number of blows on the surface of the slab is increased as shown in Figure 8. This prevents alumina from adhering to the gas outlet 12 which is 90 degrees away from the discharge hole 2. FIG. 2 is a graph showing the relationship between the number of surface blows of slabs according to the present invention and conventional method 1.2.・The mark indicates the number of defects on the surface of the slab.In the present invention, surface defects on the slab are reduced to 1/3 compared to Conventional Method 2. The circle mark in FIG. 2 is a graph showing the relationship between the alumina deposition thickness according to the present invention and the conventional method L2. As is clear from this figure, the present invention reduces the amount to 1/3 compared to Conventional Method 1.

すなわち、本発明は鋳片表面のプロ個数とアルミナ付着
厚とも減少できる。
That is, the present invention can reduce both the number of particles and the thickness of alumina deposited on the surface of the slab.

(発明の効果〕 この発明によれば、浸漬ノズル本体の内側内壁の2個の
吐出孔から90度ずれた、かつ吐出孔の溶湯入側の縦寸
法と等しい位置に設けられたガス流出口から、2 NL
/sin以下のアルゴンガスを流すので、その部分の溶
湯のよどみがなくなり、アルミナ付着厚が少なく、鋳片
の表面ブロー数を増大させることもない。
(Effects of the Invention) According to the present invention, the gas outlet is located at a position 90 degrees apart from the two discharge holes on the inner wall of the immersion nozzle body and at a position equal to the vertical dimension of the molten metal inlet side of the discharge hole. ,2NL
Since argon gas of less than /sin is flowed, stagnation of the molten metal in that area is eliminated, the thickness of alumina adhesion is small, and the number of blows on the surface of the slab does not increase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)(ロ)(ハ)はこの発明の実施例に係わる
連続鋳造用浸漬ノズルの断面図、第2図はこの発明の実
施例に係わる本発明と従来法1.2の鋳片表面ブロー数
及びアルミナ付着厚との関係を示すグラフ図、第3図φ
(イ) (ロ) (ハ昏従来法1の浸漬ノズルの断面図
第4図は従来法1による鋳造時間とアルミナ付着量の関
係を示すグ(京 ラフ図、第5図嬶従来法lによるノズル内管内流速とア
ルミナ付着量の関係を示すグラフ図、第6図は従来法に
よるノズル内アルゴン吹き込み量と図、第8図は従来法
2の浸漬ノズルによるアルゴンガス吹き込み量と鋳片欠
陥率の関係を示す図である。
Figures 1 (a), (b), and (c) are cross-sectional views of a continuous casting immersion nozzle according to an embodiment of the present invention, and Figure 2 is a sectional view of a continuous casting immersion nozzle according to an embodiment of the present invention and conventional method 1.2. A graph showing the relationship between the number of blows on one surface and the alumina deposition thickness, Figure 3 φ
(a) (b) (c) A cross-sectional view of the immersion nozzle of conventional method 1. A graph showing the relationship between the flow velocity in the nozzle tube and the amount of alumina deposited. Figure 6 shows the amount of argon blown into the nozzle using the conventional method. Figure 8 shows the amount of argon gas blown into the nozzle and the slab defect rate using the conventional method 2. FIG.

Claims (1)

【特許請求の範囲】[Claims] 鋳型内の溶湯に浸漬され、タンディシュ内の溶湯を鋳型
内に注入する浸漬ノズルにおいて、その下部に2個の吐
出孔が相対向して形成された浸漬ノズル本体と、前記浸
漬ノズル本体の内側内壁で、2個の吐出孔から90度ず
れ、かつ吐出孔の溶湯入側の縦寸法と等しい位置に設け
られたガス流出口と、前記ガス流出口に接続されたガス
流通路と、前記ガス流通路にガスを供給するガス供給手
段とを具備したことを特徴とする連続鋳造用浸漬ノズル
An immersion nozzle that is immersed in molten metal in a mold and injects the molten metal in a tundish into the mold, the immersion nozzle body having two discharge holes facing each other formed in its lower part, and the inner inner wall of the immersion nozzle body. , a gas outlet provided at a position offset by 90 degrees from the two discharge holes and equal to the vertical dimension of the molten metal inlet side of the discharge hole; a gas flow path connected to the gas outlet; and a gas flow path connected to the gas flow outlet. 1. A submerged nozzle for continuous casting, characterized in that it is equipped with a gas supply means for supplying gas to a channel.
JP62134941A 1987-06-01 1987-06-01 Immersion nozzle for continuous casting Expired - Fee Related JPH0659533B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62134941A JPH0659533B2 (en) 1987-06-01 1987-06-01 Immersion nozzle for continuous casting
US07/199,018 US4898226A (en) 1987-06-01 1988-05-26 Immersion nozzle for continuous casting of steel
DE8888108690T DE3861110D1 (en) 1987-06-01 1988-05-31 SUBMERSIBLE SPOUT FOR CONTINUOUS STEEL.
EP88108690A EP0293830B1 (en) 1987-06-01 1988-05-31 Immersion pipe for continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62134941A JPH0659533B2 (en) 1987-06-01 1987-06-01 Immersion nozzle for continuous casting

Publications (2)

Publication Number Publication Date
JPS63303666A true JPS63303666A (en) 1988-12-12
JPH0659533B2 JPH0659533B2 (en) 1994-08-10

Family

ID=15140135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62134941A Expired - Fee Related JPH0659533B2 (en) 1987-06-01 1987-06-01 Immersion nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JPH0659533B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059657A1 (en) * 1997-10-08 2000-10-12 Akechi Ceramics Kabushiki Kaisha Continuous casting nozzle
US6257466B1 (en) 1999-04-09 2001-07-10 Akechi Ceramics Kabushiki Kaisha Continuous casting nozzle
US6533146B1 (en) 1997-10-08 2003-03-18 Akechi Ceramics Kabushiki Kaisha Continuous casting nozzle for molten steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU725529B2 (en) * 1996-10-16 2000-10-12 Akechi Ceramics Kabushiki Kaisha A continuous casting nozzle for casting molten steel
JPH10202349A (en) * 1997-01-21 1998-08-04 Akechi Ceramics Kk Nozzle for continuous casting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589750A (en) * 1981-07-10 1983-01-20 Nippon Steel Corp Immersion nozzle for continuous casting
JPS62203663A (en) * 1986-02-28 1987-09-08 Kurosaki Refract Co Ltd Nozzle for pouring molten metal provided with net-like fine pore for gas blowing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589750A (en) * 1981-07-10 1983-01-20 Nippon Steel Corp Immersion nozzle for continuous casting
JPS62203663A (en) * 1986-02-28 1987-09-08 Kurosaki Refract Co Ltd Nozzle for pouring molten metal provided with net-like fine pore for gas blowing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059657A1 (en) * 1997-10-08 2000-10-12 Akechi Ceramics Kabushiki Kaisha Continuous casting nozzle
US6533146B1 (en) 1997-10-08 2003-03-18 Akechi Ceramics Kabushiki Kaisha Continuous casting nozzle for molten steel
US6257466B1 (en) 1999-04-09 2001-07-10 Akechi Ceramics Kabushiki Kaisha Continuous casting nozzle

Also Published As

Publication number Publication date
JPH0659533B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
EP0685282B1 (en) Submerged nozzle for continuous casting
JPH0857599A (en) Method and device for removing slag in tundish and continuous casting apparatus
JPS63303666A (en) Submerged nozzle for continuous casting
JP4079415B2 (en) Submerged nozzle for continuous casting of thin slabs
US4898226A (en) Immersion nozzle for continuous casting of steel
JPS6289566A (en) Refractories for flow of molten metal
JPS632545A (en) Molten metal pouring nozzle
JPS63303665A (en) Submerged nozzle for continuous casting
JP2001129645A (en) Immersion nozzle for continuous casting and continuous casting method
JP2004009079A (en) Upper nozzle in tundish and continuous casting method
JPH01215448A (en) Submerged nozzle for continuous casting
JPH01122643A (en) Submerged nozzle for continuous casting
JPH0230122Y2 (en)
JPH11104794A (en) Continuous casting of beam blank
JP4421136B2 (en) Continuous casting method
JP3408319B2 (en) Nozzle for casting to prevent drift
JP3039821B2 (en) Immersion nozzle for continuous casting and method of pouring molten steel
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
KR19980076164A (en) Wing type immersion nozzle for preventing mold slag inflow
JPH10180425A (en) Immersion nozzle for continuous casting
KR20020019277A (en) Sealing apparatus for preventing the re-oxidation of the molten steel in the continuous casting molder
KR950007172B1 (en) Ingot steel pouring nozzle and method of flux control
KR19990012672U (en) Immersion nozzle for continuous casting with upward discharge port
JPS62279059A (en) Submerged nozzle
JP5161814B2 (en) Immersion nozzle for continuous casting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees