JPH01215088A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH01215088A
JPH01215088A JP63041232A JP4123288A JPH01215088A JP H01215088 A JPH01215088 A JP H01215088A JP 63041232 A JP63041232 A JP 63041232A JP 4123288 A JP4123288 A JP 4123288A JP H01215088 A JPH01215088 A JP H01215088A
Authority
JP
Japan
Prior art keywords
layer
active layer
semiconductor laser
cladding layer
laser diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63041232A
Other languages
Japanese (ja)
Inventor
Kazunori Tsukiki
槻木 和徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63041232A priority Critical patent/JPH01215088A/en
Publication of JPH01215088A publication Critical patent/JPH01215088A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To keep leak current from flowing into a bonding adhesive layer even if a laser diode is bonded on a heat sink or other equipment, by forming insulation areas in the depth to reach at least a clad layer on a semiconductor substrate side through a clad layer and an active layer, on both sides of a laser diode near the active layer. CONSTITUTION:On both sides 11 of a laser diode, insulation regions 16 are formed in the depth to reach the surface of a semiconductor substrate 1 from a second clad layer 4 through an active layer 3 and a first clad layer 2. The insulation areas 16 are formed by conducting selective ion implantation of boron, hydrogen or other material after formation of the clad layer 4 or the adhesive layer 5 in the manufacturing process of the laser diode. Even if the laser diode manufactured by such a method is bonded on a heat sink by solder 15 at a surface 12 near the active layer 3, leak current is not generated by the solder 15 when the solder 15 climbs up since there are the insulation regions 16 on both sides 11 of the laser diodes. Therefore, an operation failure of the semiconductor laser caused by generation of leak current can be avoided and an yield can also be increased.

Description

【発明の詳細な説明】 以下の順序に従って本発明を説明する。[Detailed description of the invention] The present invention will be described in the following order.

A、IIIL業上の利用分野 B0発明の概要 C0従来技術[第3図・] D0発明が解決しようとする問題点[第4図]E0問題
点を解決するための手段 F0作用 G、実施例[第1図、第2図] H0発明の効果 (A、産業上の利用分野) 本発明は半導体レーザ、特にヒートシンク等にボンディ
ングしてもボンディング用接着層をリーク電流が流れる
虞れのない新規なダブルヘテロ構造の半導体レーザに関
する。
A, III Field of industrial application B0 Overview of the invention C0 Prior art [Figure 3] D0 Problem to be solved by the invention [Figure 4] E0 Means for solving the problem F0 Effect G, Examples [Figures 1 and 2] Effects of the H0 invention (A, industrial application field) The present invention is a novel semiconductor laser, especially a novel device that does not cause leakage current to flow through the bonding adhesive layer even when bonded to a heat sink or the like. This invention relates to a double heterostructure semiconductor laser.

(B、発明の概要) 本発明は、ダブルヘテロ構造の半導体レーザにおいて。(B. Summary of the invention) The present invention relates to a double heterostructure semiconductor laser.

ヒートシンク等にボンディングしてもボンディング用接
着層によってリーク電流が流れる虞れが生じないように
するため、 両側面部に、活性層と近い方の表面からクラッド層、活
性層を経て少なくとも半導体基板側のクラッド層に至る
深さの絶縁領域を形成したものである。
In order to prevent the risk of leakage current flowing through the bonding adhesive layer even when bonding to a heat sink, etc., there is a layer on both sides that runs from the surface closest to the active layer, passes through the cladding layer, the active layer, and at least the semiconductor substrate side. An insulating region is formed with a depth that reaches the cladding layer.

(C,従来技術) [第3図] 半導体レーザは光学式ヘッドの光源等に多く用いられ、
また、それ以外の分野にも広く利用される可能性を有し
ており、その性能及び信頼性の向上環のため盛んに研究
が行われている。そして、本願出願人会社からも半導体
レーザに関して例えば実願昭62−120756等によ
って提案が為されている。
(C, Prior Art) [Figure 3] Semiconductor lasers are often used as light sources for optical heads, etc.
Furthermore, it has the potential to be widely used in other fields, and active research is being conducted to improve its performance and reliability. The applicant company has also proposed a semiconductor laser, for example, in Japanese Utility Model Application No. 120756/1983.

ところで、半導体レーザは一般に第3図に示すようなダ
ブルヘテロ構造を有している。図面において、1は第1
導電型の半導体基板、2は該半導体基板1上に気相成長
により形成された第1のクラッド層で、第1導電型であ
る。3は該クラッド層2上に気相成長により形成された
活性層で、第!導電型か第2導電型である。4は活性層
3上に気相酸、長により形成された第2のクラット層で
、第2導電型である。5は第2のクラッド層4上に形成
された絶縁層で、レーザ光出射端面8からこれの反対側
の端面9に真直ぐに延びる溝を中央部に有している。6
は該絶縁層5上に形成された金属からなる電極膜、7は
該電極膜6のうちの上記絶縁膜5に形成された溝の内側
に入り込んだ電流狭窄部分であり、上記活性層3の該電
流狭窄部分7と対応する部分がレーザー発振の生じる部
分となるのである。
Incidentally, a semiconductor laser generally has a double heterostructure as shown in FIG. In the drawings, 1 is the first
A conductive type semiconductor substrate 2 is a first cladding layer formed on the semiconductor substrate 1 by vapor phase growth, and is of a first conductive type. 3 is an active layer formed on the cladding layer 2 by vapor phase growth; conductivity type or second conductivity type. Reference numeral 4 denotes a second crat layer formed on the active layer 3 by using a vapor phase acid, and is of the second conductivity type. Reference numeral 5 denotes an insulating layer formed on the second cladding layer 4, and has a groove in the center extending straight from the laser beam emitting end face 8 to the opposite end face 9. 6
7 is an electrode film made of metal formed on the insulating layer 5; 7 is a current confinement portion of the electrode film 6 that enters inside the groove formed in the insulating film 5; A portion corresponding to the current confinement portion 7 becomes a portion where laser oscillation occurs.

10はレーザ光出射端面8の表面と、それと反対側の端
面9の表面とに形成された例えばシリコンナイトライド
Si3N4からなる保護膜である。該保iIi膜10に
よる保護は端面8及び9に対してのみ行われており、半
導体レーザの両側面11.11はダイシングされたまま
である。従って、第1のクラッド層2、活性層3、第2
のクラッド層4等はその側面11.11に露出したまま
になっていた。尚、12は半導体レーザの表側の表面、
具体的には活性層4と近い方の表面、13はそれと反対
側の表面である。
Reference numeral 10 denotes a protective film made of, for example, silicon nitride Si3N4, which is formed on the surface of the laser beam emitting end face 8 and the surface of the end face 9 opposite thereto. The protective IIIi film 10 protects only the end faces 8 and 9, and both side faces 11 and 11 of the semiconductor laser remain diced. Therefore, the first cladding layer 2, the active layer 3, the second
The cladding layer 4 and the like remained exposed on its side surfaces 11 and 11. In addition, 12 is the front surface of the semiconductor laser,
Specifically, the surface closest to the active layer 4 is the surface 13, and the surface 13 is the opposite surface.

(D、発明が解決しようとする問題点)[第4図] ところで、第3図に示すような従来の半導体レーザは、
第1のクラッド層2、活性層3、第2のクラッド層4が
その両側面11.11に露出していたので、半導体レー
ザを第4図に示すようにヒートシンク14に例えば半田
!5によってボンディングした場合にその半田15によ
って第2のクラッド層4側と第1のクラッド層2側とが
短絡され半導体レーザが動作しなくなるという不良が多
発していた。というのは、半導体レーザは放熱性を良く
するために一般に第4図に示すように活性層3と近い方
の表面12にてヒートシンク14に半田付けされるが、
そのため活性層4のヒートシンク14からの高さが低く
、半田付けの具合によって半田15が活性層3よりも高
い位置に付き、半田15によって上下両電極間が短絡さ
れるという事故が発生し易かったからである。また、短
絡とまではいかなくてもリーク電流がきわめて大きくそ
のためレーザー発振が生じないというような事故も多く
生じた。
(D. Problem to be solved by the invention) [Figure 4] By the way, the conventional semiconductor laser as shown in Figure 3 is
Since the first cladding layer 2, the active layer 3, and the second cladding layer 4 were exposed on both side surfaces 11 and 11, the semiconductor laser was attached to the heat sink 14 by soldering, for example, as shown in FIG. 5, the solder 15 causes a short circuit between the second cladding layer 4 side and the first cladding layer 2 side, resulting in frequent failures in which the semiconductor laser does not operate. This is because semiconductor lasers are generally soldered to a heat sink 14 at the surface 12 closest to the active layer 3, as shown in FIG. 4, in order to improve heat dissipation.
Therefore, the height of the active layer 4 from the heat sink 14 is low, and depending on the soldering condition, the solder 15 is placed at a higher position than the active layer 3, which easily causes an accident in which the solder 15 causes a short circuit between the upper and lower electrodes. It is. In addition, there have been many accidents in which, although not short circuits, the leakage current is so large that laser oscillation cannot occur.

本発明はこのような問題点を解決すべく為されたもので
あり、ヒートシンク等にボンディングしてもボンディン
グ用接着層によってリーク電流が流れないようにするこ
とを目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to prevent leakage current from flowing through the bonding adhesive layer even when bonding to a heat sink or the like.

(E、問題点を解決するための手段) 本発明半導体レーザは上記問題点を解決するため、両側
面部に、活性層と近い方の表面からクラッド層、活性層
を経て少なくとも半導体基板側のクラッド層に至る深さ
の絶縁領域を形成したことを特徴とする。
(E. Means for Solving the Problems) In order to solve the above-mentioned problems, the semiconductor laser of the present invention has a cladding layer on both sides from the surface near the active layer, and a cladding layer on at least the semiconductor substrate side through the active layer. It is characterized by forming an insulating region with a depth that reaches the depth of the layer.

(F、作用) 本発明半導体レーザに・よれば、両側箒に絶縁領域が形
成され、両側面部には第1のクラッド層、活性層、第2
のクラッド層による接合が露出し得ない。従って、半導
体レーザを活性層と近い方の大面にてボンディングして
もボンディング用接着層によって両極間が短絡される虞
れがないようにしボンディング用接着層によるリーク電
流が流れないようにすることができる。
(F. Effect) According to the semiconductor laser of the present invention, insulating regions are formed on both sides, and the first cladding layer, the active layer, and the second cladding layer are formed on both sides.
cladding layers cannot be exposed. Therefore, even if the semiconductor laser is bonded on the large surface near the active layer, there is no risk of short-circuiting between the two electrodes due to the bonding adhesive layer, and leakage current due to the bonding adhesive layer does not flow. Can be done.

(G、実施例) [第1図、第2図] 以下、本発明半導体レーザを図示実施例に従って詳細に
説明する。
(G. Embodiment) [FIGS. 1 and 2] The semiconductor laser of the present invention will be described in detail below according to the illustrated embodiment.

第1図及び第2図は本発明半導体レーザの一実施例を示
すもので、第1図は斜視図、第2図はボンディング後の
状態を示す断面図である。
1 and 2 show an embodiment of the semiconductor laser of the present invention, with FIG. 1 being a perspective view and FIG. 2 being a sectional view showing the state after bonding.

本実施例は両側面部に絶縁@域が形成されているという
点で第3図及び第4図に示した半導体レーザと相違する
が、それ以外の点では共通しており、共通している点に
ついては既に説明済であるのでその説明は省略し、相違
する点についてのみ詳細に説明する。
This example differs from the semiconductor laser shown in FIGS. 3 and 4 in that insulating @ regions are formed on both side surfaces, but is similar in other respects. Since this has already been explained, the explanation thereof will be omitted, and only the different points will be explained in detail.

16.16は半導体レーザの両側面部11゜11に第2
のクラッド層4の表面から活性層3及び第1のクラッド
層2を経て半導体基板1の表面部に至る深さを有した絶
縁領域で、半導体レーザの製造プロセスにおける第2の
クラッド層4形成後の段階あるいは接着層5形成後の段
階において例えばボロン、水素等を選択的にイオン打込
みするこ゛とによって形成することができる。このよう
な半導体レーザによりば第2図に示すようにヒートシン
ク14に、活性層3と近い方の表面12にて半田15に
よってボンディングしても両側面11.11部に絶縁領
域16.16があるので、半田15の這い上りがあつて
も半田15によるリーク電流が生じない。
16.16 is a second
An insulating region having a depth extending from the surface of the cladding layer 4 through the active layer 3 and the first cladding layer 2 to the surface of the semiconductor substrate 1 after the second cladding layer 4 is formed in the semiconductor laser manufacturing process. It can be formed by selectively implanting ions of boron, hydrogen, etc., in the step 1 or in the step after forming the adhesive layer 5. According to such a semiconductor laser, as shown in FIG. 2, even if the heat sink 14 is bonded with solder 15 on the surface 12 near the active layer 3, there are insulating regions 16, 16 on both side surfaces 11, 11. Therefore, even if the solder 15 creeps up, no leakage current is generated due to the solder 15.

従って、リーク電流の発生による半導体レーザの動作不
能をなくすことができ、歩留りを向上させることができ
る。
Therefore, it is possible to eliminate the inoperability of the semiconductor laser due to the occurrence of leakage current, and it is possible to improve the yield.

絶縁領域16.16の深さは、絶縁領域16.16の底
1フ、17がボンディング時に半田15が這い上る高さ
よりも梢高くなるように設定すると良い。
The depth of the insulating region 16.16 is preferably set so that the bottom 17 of the insulating region 16.16 is higher than the height at which the solder 15 creeps up during bonding.

尚、レーザ光出射端面8及びそれと反対側の端面9には
第1のクラッド層2、活性層3、第2のクラッド層4が
露出しているが、この端面8.9は絶縁性のある保護膜
(例えばシリコンナイトライド5i3N4)10.10
により保護されているので、端面8.9における半田!
5によるリーク電流発生の虞れはない。
Note that the first cladding layer 2, the active layer 3, and the second cladding layer 4 are exposed on the laser beam emitting end face 8 and the end face 9 on the opposite side thereof. Protective film (e.g. silicon nitride 5i3N4) 10.10
solder on the end face 8.9!
5, there is no risk of leakage current occurring.

(H,発明の効果) 以上に述べたように、本発明半導体レーザは、半導体基
板の表面に第1のクラッド層が形成され、該第1のクラ
ッド層の表面に活性層が形成され、該活性層の表面に第
2のクラッド層が形成されたダブルヘテロ構造の半導体
レーザにおいて、上記半導体基板の表面とレーザ光を出
射するレーザ光出射端面のそれぞれに対して直角の両側
面部に、第2のクラッド層側の表面から活性層を経て少
なくとも第1のクラッド層に至る深さを有する絶縁領域
が形成されてなることを特徴とするものである。
(H, Effects of the Invention) As described above, in the semiconductor laser of the present invention, a first cladding layer is formed on the surface of a semiconductor substrate, an active layer is formed on the surface of the first cladding layer, and an active layer is formed on the surface of the first cladding layer. In a double heterostructure semiconductor laser in which a second cladding layer is formed on the surface of the active layer, a second cladding layer is provided on both side surfaces perpendicular to the surface of the semiconductor substrate and the laser beam emitting end surface that emits the laser beam. An insulating region is formed with a depth extending from the surface of the cladding layer side through the active layer to at least the first cladding layer.

従って、本発明半導体レーザによれば、両側部に絶縁領
域が形成され、両側面には第1のクラッド層、活性層、
第2のクラッド層による接合が露出し得ない。従って、
半導体レーザを活性層と近い方の表面にてボンディング
してもボンディング用接着層によって両極間が短絡され
る虞れがないようにでき、延いてはボンディング用接着
層によるリーク電流が流れないようにすることができる
。依って、ボンディングにより半導体レーザが不良にな
る虞れをなくすことができる。
Therefore, according to the semiconductor laser of the present invention, insulating regions are formed on both sides, and the first cladding layer, the active layer,
The junction by the second cladding layer cannot be exposed. Therefore,
Even if the semiconductor laser is bonded on the surface near the active layer, there is no risk of short-circuiting between the two electrodes due to the bonding adhesive layer, and by extension, leakage current due to the bonding adhesive layer will not flow. can do. Therefore, it is possible to eliminate the possibility that the semiconductor laser will become defective due to bonding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明半導体レーザの一つの実施例
を示すもので、第1図は斜視図、第2図はボンディング
後の状態を示す断面図、第3図は半導体レーザの従来例
を示す斜視図、第4図は発明が解決しようとする問題点
を示す断面図である。 符号の説明 1・・・半導体基板、 2・・・第1のクラッド層、3・・・活性層、4・・・
第2のクラッド層、 8・・・レーザ光出射端面、 9・・・端面、!l・・・側面、 12・・・ボンディングされる表面、 16・・・絶縁領域。 ボンディング後の結社、せ示劃断面図 第2図
1 and 2 show one embodiment of the semiconductor laser of the present invention. FIG. 1 is a perspective view, FIG. 2 is a sectional view showing the state after bonding, and FIG. 3 is a conventional semiconductor laser. FIG. 4 is a perspective view showing an example, and a sectional view showing the problem to be solved by the invention. Explanation of symbols 1... Semiconductor substrate, 2... First cladding layer, 3... Active layer, 4...
Second cladding layer, 8... Laser light emitting end face, 9... End face,! l... Side surface, 12... Surface to be bonded, 16... Insulating region. Figure 2: Cross-sectional view of the bond after bonding

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板の表面に第1のクラッド層が形成され
、該第1のクラッド層の表面に活性層が形成され、該活
性層の表面に第2のクラッド層が形成されたダブルヘテ
ロ構造の半導体レーザにおいて、上記半導体基板の表面
とレーザ光を出射するレーザ光出射端面のそれぞれに対
して直角の両側面部に、第2のクラッド層側の表面から
活性層を経て少なくとも第1のクラッド層に至る深さを
有する絶縁領域が形成されてなることを特徴とする半導
体レーザ
(1) A double heterostructure in which a first cladding layer is formed on the surface of a semiconductor substrate, an active layer is formed on the surface of the first cladding layer, and a second cladding layer is formed on the surface of the active layer. In the semiconductor laser, at least a first cladding layer is formed on both side surfaces perpendicular to each of the surface of the semiconductor substrate and the laser beam emitting end face that emits the laser beam, from the surface on the second cladding layer side through the active layer. A semiconductor laser characterized by forming an insulating region having a depth of
JP63041232A 1988-02-24 1988-02-24 Semiconductor laser Pending JPH01215088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63041232A JPH01215088A (en) 1988-02-24 1988-02-24 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041232A JPH01215088A (en) 1988-02-24 1988-02-24 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01215088A true JPH01215088A (en) 1989-08-29

Family

ID=12602664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041232A Pending JPH01215088A (en) 1988-02-24 1988-02-24 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01215088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687857A1 (en) * 1992-02-04 1993-08-27 Mitsubishi Electric Corp Semiconductor laser and method of manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687857A1 (en) * 1992-02-04 1993-08-27 Mitsubishi Electric Corp Semiconductor laser and method of manufacture

Similar Documents

Publication Publication Date Title
US6474531B2 (en) Semiconductor light-emitting device and method of manufacturing the same and mounting plate
JP5465514B2 (en) Optical semiconductor device
US9966730B2 (en) Surface-emitting laser apparatus and manufacturing method thereof
US4161701A (en) Semiconductor laser
KR960026250A (en) Semiconductor device and manufacturing method
JP2002344061A (en) Semiconductor laser
US5198686A (en) Double hetero-type semiconductor laser device
KR930004127B1 (en) Light emitting device
US20050190806A1 (en) Semiconductor laser and manufacturing method therefor
JP2004104073A (en) Semiconductor laser element and manufacturing method thereof, and semiconductor laser device
US6323530B1 (en) Optical semiconductor device
JPH01215088A (en) Semiconductor laser
JPH01138776A (en) Submount for semiconductor laser device
JPH06163981A (en) Emiconductor device
JPS61234588A (en) Submount for optical semiconductor element
JPH10242583A (en) Manufacture of semiconductor laser element and semiconductor laser device
JP2005142224A (en) Packaging method of semiconductor laser element
JPS61168982A (en) Semiconductor photoamplifying element
JPS59114885A (en) Manufacture of semiconductor device
JPH0666512B2 (en) Method for manufacturing semiconductor laser
JPS61115366A (en) Semiconductor laser device
JPS61214591A (en) Semiconductor laser element
JPH02181488A (en) Heat sink for semiconductor laser element use
JPH04266073A (en) Semiconductor light-emitting device
JP2001284735A (en) Semiconductor light emitting device and its manufacturing method