JPH02181488A - Heat sink for semiconductor laser element use - Google Patents

Heat sink for semiconductor laser element use

Info

Publication number
JPH02181488A
JPH02181488A JP105289A JP105289A JPH02181488A JP H02181488 A JPH02181488 A JP H02181488A JP 105289 A JP105289 A JP 105289A JP 105289 A JP105289 A JP 105289A JP H02181488 A JPH02181488 A JP H02181488A
Authority
JP
Japan
Prior art keywords
heat sink
semiconductor laser
layer
sink
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP105289A
Other languages
Japanese (ja)
Inventor
Kunio Matsubara
松原 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP105289A priority Critical patent/JPH02181488A/en
Publication of JPH02181488A publication Critical patent/JPH02181488A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower a heat resistance and to secure the long lifetime or the title heat sink due to a heat dissipation effect by a method wherein the heat sink, which is soldered to a buried semiconductor laser element having a square recessed part in its base, is provided with a protruding part to fit into the recessed part. CONSTITUTION:A heat sink 10a, which is soldered to a buried semiconductor laser element provided with a recessed part having a base of a width of (a1) and height of (b3), is provided with a protruding part. When the relation between the width (a) and the height (b) of this protruding part is assumed to be a<a1 and b>b1, the conditions of b<b2 and b<b3 are satisfied. As the sink 10a is soldered to the element in such a way that the protruding part of the sink 10a comes into contact to the recessed part of the laser element, an active layer 3 of the element keeps a distance or 5 to 6mum from solder layers 11 and 11a to the creeping of a solder to the side surfaces of the element and moreover, as the distance between the sink and the luminous region of the element active layer can be also kept in 2mum or thereabouts, the heat dissipation effect of the sink is good and the long lifetime of the sink can be secured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザ素子に接続されるヒートシンクに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat sink connected to a semiconductor laser element.

〔従来の技術〕[Conventional technology]

GaAa −Aj GaAs系埋め込み型半導体レーザ
素子は第3図に示す構造を有し、従来のダブルへテロ接
合型半導体レーザ素子では得られないすぐれた特性をも
っている。第3図は素子正面からみた模式断面図であり
、基板lの上に第1クラッド層2゜活性層3.第2クラ
ッド層4.コンタクト層5がこの順に形成されているが
、第2クラッド層4に形成されたストライプ状メサ部の
レーザ光進行方向と平行な両側面を電流挟窄層6で埋め
込んである。すなわち、活性層3が二つのクラッド層2
.4にはさまれ、さらに電流挟窄層6によって活性層3
の一部にしか電流が流れない構造になっており、電流挟
窄層6の材料を選択することにより電流挟窄層6が光吸
収層となるので、この半導体レーザ素子は高出力が得ら
れる。このように埋め込み型半導体レーザ素子は高出力
で安定な光源となるため、光情報伝送および光情報処理
用の光源として使用するのが有望とみられている。なお
7.8はそれぞれ上下の電極を表わす。
The GaAa-Aj GaAs-based buried semiconductor laser device has the structure shown in FIG. 3, and has excellent characteristics that cannot be obtained with conventional double heterojunction semiconductor laser devices. FIG. 3 is a schematic cross-sectional view seen from the front of the device, in which a first cladding layer 2° active layer 3. Second cladding layer4. The contact layer 5 is formed in this order, and both side surfaces of the striped mesa portion formed in the second cladding layer 4 parallel to the laser beam traveling direction are filled with a current pinching layer 6. That is, the active layer 3 has two cladding layers 2
.. The active layer 3 is further sandwiched between the active layer 3 and the current pinching layer 6
It has a structure in which current flows only in a part of the semiconductor laser element, and by selecting the material for the current-spanning layer 6, the current-spanning layer 6 becomes a light absorption layer, so this semiconductor laser device can obtain high output. . In this way, embedded semiconductor laser devices provide high-output, stable light sources, and are therefore considered promising for use as light sources for optical information transmission and optical information processing. Note that 7.8 represents the upper and lower electrodes, respectively.

この半導体レーザ素子は次のようにして製造される。第
4図(al〜+d+はその主な工程順を示したものであ
り、第3図と共通部分は同一符号を用いである。まず厚
さ100μmキャリア濃度3 XIQ”/aJのn−G
aAs基板1上にMOCVD法を用いて厚さ1.5.H
,キャリア濃度5X10”/cdのn−MIlGat−
x^3第1クラッドrfi2、厚さ0.1−、キャリア
濃度3X10I?/−のp −Aj、 Ga、−2As
活性層3゜厚さ1.5−+ キャリア濃度5 X 10
I?/ cdのp−kl、 Ga、−、As第2クラッ
ド層4.厚さ0,5Irm、キャリア濃度lXl0”/
−のp−Ga^3コンタクト層5aを順次成長させる〔
第4図(5)〕0次にこの積層体の上面全面にSiJ膜
を付着させフォトレジストを塗布してパターニングし、
stow膜9をストライブ状に形成してレジストを除去
した後、5lot膜9をマスクとしてコンタクト層5a
、第2クラッド層4のエツチングを行ない、第2クラッ
ド層4の途中まで除去してストライプ状にメサ部を形成
し、さらに再度MOCVD法を用いて厚さ1.7n+ 
キャリア濃度3XIQ”/aJのn−GaAs電流挟窄
層6をメサ部の両側面に選択成長させるが、その際電流
挟窄層6の上面はコンタクト層5aの表面と一致させる
ことなく、コンタクト層5aの厚さの中間に位置するよ
うに成長させる(第4図1et)、引き続き5lot膜
9を残したまま電流挟窄層6上に3pmの厚さのコンタ
クト層5bを成長させる。このコンタクト層5bは、先
に形成されているコンタクト層5aとメサ部側面で接続
し一体となってコンタクト層5となる〔第4図1et)
、結晶成長の終了後、素子を反応槽から取り出し、5L
(h膜9を除去することにより第4図(d)の構造をも
つ埋め込み型半導体レーザ素子が得られる。最後にコン
タクト層5側にAu−Zn合金電極7基板l側にAu 
−Ge合金電極8を/ いずれもスパッタ形成することにより第3図のように構
成される。
This semiconductor laser device is manufactured as follows. Figure 4 (al~+d+ shows the order of the main steps, and the same parts as in Figure 3 are denoted by the same reference numerals. First, the n-G with a thickness of 100 μm and a carrier concentration of 3 XIQ"/aJ)
A thickness of 1.5 mm was formed on an aAs substrate 1 using the MOCVD method. H
, n-MIlGat- with a carrier concentration of 5×10”/cd
x^3 1st clad rfi2, thickness 0.1-, carrier concentration 3X10I? /- p -Aj, Ga, -2As
Active layer 3° thickness 1.5-+ carrier concentration 5 x 10
I? / cd p-kl, Ga, -, As second cladding layer 4. Thickness 0.5 Irm, carrier concentration lXl0”/
- p-Ga^3 contact layer 5a is sequentially grown [
FIG. 4 (5)] Next, a SiJ film is deposited on the entire upper surface of this laminate, a photoresist is applied and patterned,
After forming the stow film 9 in a stripe shape and removing the resist, a contact layer 5a is formed using the 5 lot film 9 as a mask.
Then, the second cladding layer 4 is etched to remove part of the second cladding layer 4 to form a striped mesa portion, and then the MOCVD method is used again to form a mesa portion with a thickness of 1.7n+.
An n-GaAs current-spanning layer 6 with a carrier concentration of 3XIQ''/aJ is selectively grown on both sides of the mesa portion, but at this time, the upper surface of the current-spanning layer 6 is not aligned with the surface of the contact layer 5a. 5a (FIG. 4, 1et). Subsequently, a contact layer 5b with a thickness of 3 pm is grown on the current blocking layer 6 while leaving the 5 lot film 9. This contact layer 5b is connected to the previously formed contact layer 5a at the side surface of the mesa portion and becomes the contact layer 5 as one unit (FIG. 4 1et)
, After the completion of crystal growth, the device was taken out from the reaction tank and 5L
(By removing the h film 9, a buried semiconductor laser device having the structure shown in FIG.
-Ge alloy electrode 8/ Both are constructed as shown in FIG. 3 by sputtering.

しかし、高出力の半導体レーザ素子を動作させるとき、
レーザ発振に伴って素子が発熱するため、素子の光出力
特性が劣化し寿命も短くなる。そこで素子の放熱効果を
高めるために、通常素子の活性層に近い方すなわちコン
タクト層側電極をInはんだなどを用いてヒートシンク
 (放熱体)に接合する。第5図は第3図に示した半導
体レーザ素子をヒートシンクに接合した状態を示した模
式断面図である。第5図のCuなどのヒートシンク10
に形成したInはんだ層11の上に素子の電極7の方を
載せて所定温度に加熱し冷却することによりはんだ付け
が行なわれる。ここでこの半導体レーザ素子の構成を示
す第3図およびその製造工程を示す第4図かられかるよ
うに、素子のp−GaAsコンタクト層5の正面からみ
た両側がやや突出しており、すなわちこのコンタクトI
W5に凹部が形成されるように成長しであるのは、素子
とヒートシンクの接合に際してInはんだ11が素子の
側面に廻り込んで活性層3にまで達し、発光を妨げるこ
とのないよう両側を厚く成長させるのである。
However, when operating a high-power semiconductor laser device,
Since the element generates heat as a result of laser oscillation, the optical output characteristics of the element deteriorate and its lifespan is shortened. Therefore, in order to enhance the heat dissipation effect of the device, the electrode near the active layer of the device, that is, the contact layer side, is usually bonded to a heat sink (heat sink) using In solder or the like. FIG. 5 is a schematic cross-sectional view showing the semiconductor laser element shown in FIG. 3 bonded to a heat sink. Heat sink 10 such as Cu in Fig. 5
Soldering is performed by placing the electrode 7 of the element on the In solder layer 11 formed on the substrate, heating it to a predetermined temperature, and cooling it. As can be seen from FIG. 3 showing the structure of this semiconductor laser device and FIG. 4 showing the manufacturing process thereof, both sides of the p-GaAs contact layer 5 of the device protrude slightly when viewed from the front. I
The reason why the indium solder 11 grows so as to form a recess in W5 is that when the element and heat sink are bonded, the In solder 11 wraps around the sides of the element and reaches the active layer 3, making both sides thick so that it does not interfere with light emission. It makes it grow.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記のようにして半導体レーザ素子をヒ
ートシンクlOに接続するとき、次のような問題が生ず
る。それは素子の発光領域である活性FI3とヒートシ
ンクlOとの距離が5〜6n離れており、コンタクト層
5に形成される凹部による空間が介在するため、放熱効
果が十分でないことである。放熱効果を大きくするには
コンタクト層5の厚さを薄くすればよいが、前に述べた
ようにはんだの廻り込みがあるため、3−より薄くする
ことができず、放熱効果とはんだの廻り込みを防ぐこと
とは相反関係になる。
However, when connecting the semiconductor laser element to the heat sink IO as described above, the following problem occurs. This is because the distance between the active FI 3, which is the light emitting region of the device, and the heat sink IO is 5 to 6 nm apart, and there is a space formed by the recess formed in the contact layer 5, so that the heat dissipation effect is not sufficient. In order to increase the heat dissipation effect, the thickness of the contact layer 5 can be made thinner, but as mentioned earlier, since the solder wraps around, it cannot be made thinner than 3-, which reduces the heat dissipation effect and the solder wrap. This is contradictory to preventing crowding.

本発明は上述の点に鑑みてなされたものであり、その目
的はコンタクト層に凹部を有する半導体レーザ素子の放
熱効果をあげるとともに、はんだの廻り込みのないヒー
トシンクを提供することにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to improve the heat dissipation effect of a semiconductor laser element having a recessed portion in a contact layer, and to provide a heat sink that does not cause solder to run around.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、底面の輻a、高さblの凹
部を有する埋め込み型半導体レーザ素子にはんだ付けす
るヒートシンクに凸部を設け、この凸部の暢aと高さb
をa < a、、b > btに電極の厚さを加えた高
さ(bt)、  b < b、にはんだの厚さを加えた
〔作用〕 上記の凸部をもつ本発明のヒートシンクはその凸部先端
が半導体レーザ素子の凹部に接するようにしてはんだ付
けを行なうのではんだが素子の側面に廻り込むことに対
しては素子の活性層がはんだ層から従来と同様5〜6−
の距離を保っており、さらにヒートシンクと素子活性層
の発光領域との距離も2−程度とすることができるので
放熱効果が良好となる。
In order to achieve the above object, a convex part is provided on the heat sink to be soldered to the embedded semiconductor laser element, which has a concave part with a convexity a on the bottom surface and a height b1.
The height (bt) is the sum of a < a,, b > bt plus the thickness of the electrode, and b < b, plus the thickness of the solder. Since soldering is carried out with the tip of the convex part in contact with the concave part of the semiconductor laser element, in order to prevent the solder from going around the sides of the element, the active layer of the element is separated from the solder layer by 5-6-
Moreover, since the distance between the heat sink and the light emitting region of the element active layer can be set to about 2 -, the heat dissipation effect is good.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図は本発明のヒートシンクの形状を示した模式的斜
視図である。このヒートシンク10aは第1図のように
凸部を有し、その輻aを5−9高さbを4.5 nに形
成してあり、第1図には凸部先端面と凸部の両側に設け
たInはんだ層11.11aも図示しであるが、凸部先
端のはんだ層11aは、その長手方向の全長に設けるの
ではなく、正面と後面の端面に近い一部をマスクして1
50 nの長さに凸部先端の全幅aに蒸着する。それは
凸部の端面近傍まではんだ層が存在すると、そのはんだ
が半導体レーザ素子との接合のとき活性層3まで廻り込
んでくるおそれがあるからである。
FIG. 1 is a schematic perspective view showing the shape of the heat sink of the present invention. This heat sink 10a has a convex part as shown in Fig. 1, and its radius a is 5-9, and the height b is 4.5 n. Although the In solder layers 11.11a provided on both sides are also shown, the solder layer 11a at the tip of the convex portion is not provided over the entire length in the longitudinal direction, but is masked on a portion near the end faces of the front and rear surfaces. 1
The film is deposited over the entire width a of the tip of the convex portion to a length of 50 nm. This is because if the solder layer is present near the end face of the convex portion, there is a risk that the solder will penetrate into the active layer 3 during bonding with the semiconductor laser element.

第2図はこのヒートシンクに半導体レーザS子を接合し
た状態を示した模式断面図であり、これまで説明した図
と共通部分を同一符号で表わしである。ここで第2図の
ようにするために、第1図のヒートシンク10aの凸部
の幅aと高さbは半導体レーザ素子のコンタクトN5に
形成される凹部の底面の幅a、高さbtに対して定める
必要がある。
FIG. 2 is a schematic cross-sectional view showing a state in which a semiconductor laser S element is bonded to this heat sink, and parts common to the figures described above are indicated by the same reference numerals. Here, in order to make it as shown in FIG. 2, the width a and height b of the convex portion of the heat sink 10a in FIG. It is necessary to determine the

それはヒートシンク10aの凸部の幅aは素子凹部底面
の輻す、より狭く、凸部の高さbは素子凹部の高さにコ
ンタクト層側電極7の厚さを加えたもの(bよ)より高
(、またこれにはんだ層11の厚さを加えたもの(b、
)より薄(すること、すなわちa〈al+  b >b
g、  b <bsの条件を滴定することである。
The width a of the convex portion of the heat sink 10a is narrower than the convergence of the bottom of the element recess, and the height b of the convex portion is the sum of the height of the element recess and the thickness of the contact layer side electrode 7 (b). high (and this plus the thickness of the solder layer 11 (b,
) thinner (to do, i.e. a〈al+ b > b
g, b < bs.

そこで例えばヒートシンク10aの凸部の幅aを5μ、
高さを4.5μ、はんだJt2111の厚さを3−とじ
、ヒートシンク10aの凸部に蒸着するはんだJill
aの厚さによって、ヒートシンク10aの凸部の加工精
度による寸法の誤差を吸収することができる。
Therefore, for example, if the width a of the convex part of the heat sink 10a is 5μ,
The height is 4.5 μ, the thickness of the solder Jt2111 is 3 μ, and the solder Jill is deposited on the convex portion of the heat sink 10a.
The thickness a can absorb dimensional errors due to processing accuracy of the convex portion of the heat sink 10a.

ヒートシンク10aの凸部を加工するとき、高さbが設
定値より大きいと半導体レーザ素子と接合する際に、コ
ンタクト層側電極7とヒートシンク10aとの接合が十
分にできず、また高さbが設定値より低いとヒートシン
ク10aの凸部の先端で素子凹部との接触が良好になら
ないなどの不都合をはんだ層11aの厚さで補償してい
るのである。そしてヒートシンク10aの凸部先端のは
んだ層11aは半導体レーザ素子の凹部との隙間を埋め
て両者の接触を密にし、素子からの発熱をヒートシンク
10aの方へ逃がすのに役立つ9以上のごとく本発明に
よるヒートシンクを用いた第2図が第5図と異なる所は
、半導体レーザ素子とはんだ付けしたとき、素子の凹部
が単に空間として残ることなく、そこにヒートシンク1
0Mに形成された凸部が入り込んで素子凹部とInはん
だによって密着し、素子活性層3からの放熱効果を大き
くしていることである。
When machining the convex portion of the heat sink 10a, if the height b is larger than the set value, the contact layer side electrode 7 and the heat sink 10a may not be sufficiently bonded when bonding to the semiconductor laser element, and the height b may be larger than the set value. If the thickness is lower than the set value, the thickness of the solder layer 11a compensates for problems such as poor contact between the tips of the convex portions of the heat sink 10a and the concave portions of the element. The solder layer 11a at the tip of the convex portion of the heat sink 10a fills the gap with the concave portion of the semiconductor laser element to make close contact between the two, thereby helping to dissipate heat from the element toward the heat sink 10a. The difference between FIG. 2 and FIG. 5 is that when soldering a semiconductor laser element, the concave part of the element does not simply remain as a space, and the heat sink 1 is placed there.
The convex portion formed at 0M enters and comes into close contact with the element recess through the In solder, thereby increasing the heat dissipation effect from the element active layer 3.

半導体レーザ素子をヒートシンク10aにマウントする
方法は、基本的に従来と同じであって、本発明のヒート
シンク10aを用いるときは、その凸部先端に蒸着した
Inはんだ層11aの上に素子の凹部を合わせるように
すればよいだけである。
The method of mounting the semiconductor laser element on the heat sink 10a is basically the same as the conventional method, and when using the heat sink 10a of the present invention, the recessed part of the element is placed on the In solder layer 11a deposited on the tip of the convex part. All you have to do is match them.

次に以上のようにして本発明のヒートシンク10aにマ
ウントした半導体レーザ素子100個を同一製造ロフト
のものについて熱抵抗を測定し、従来のヒートシンク1
0を用いたもの100個との比較を行なった。その結果
従来のものでは熱抵抗の平均値が58℃/W、分散が2
3℃/Wであったのに対して、本発明のものでは、熱抵
抗の平均値34℃/W、分散16℃/Wであり、熱抵抗
は約40%減少している。
Next, the thermal resistance of 100 semiconductor laser devices mounted on the heat sink 10a of the present invention in the same manufacturing loft as described above was measured.
A comparison was made with 100 samples using 0. As a result, the average value of thermal resistance was 58℃/W with the conventional one, and the variance was 2.
In contrast, in the case of the present invention, the average value of the thermal resistance was 34° C./W and the variance was 16° C./W, which is a decrease of about 40%.

このことは本発明の方が前に述べたように素子の発光領
域とヒートシンクとの間の空間に代わるヒートシンク凸
部が位置して発光領域とヒートシンク間の距離を短か<
シ、このヒートシンク凸部による放熱効果が向上したか
らである。
This may be due to the fact that the distance between the light emitting region and the heat sink is shorter in the present invention because the heat sink convex portion is positioned to replace the space between the light emitting region of the device and the heat sink, as described above.
This is because the heat dissipation effect by the heat sink convex portion has been improved.

また本発明のヒートシンクを用いて組み立てた半導体レ
ーザ素子と従来のヒートシンクを用いたものそれぞれ1
00個について、出力30+iW、 1000時間のエ
ージング試験を行なった。その結果本発明のヒートシン
クを用いたものは1000時間のエージングに対して特
性の劣化した素子は6個であったのに対して、従来のも
のは素子の劣化は21個に達した。これは本発明のヒー
トシンクによる放熱効果の向上が素子の寿命に対して著
しく影響を与えるものであり、その有効性を確認するこ
とができた。その他はんだの素子活性層への廻り込みな
どは全く見られない。
In addition, one semiconductor laser device assembled using the heat sink of the present invention and one assembled using a conventional heat sink were each used.
An aging test was conducted on 00 pieces at an output of 30+iW for 1000 hours. As a result, in the case of the heat sink of the present invention, there were 6 elements whose characteristics deteriorated after 1000 hours of aging, whereas in the conventional case, 21 elements deteriorated. This shows that the improved heat dissipation effect by the heat sink of the present invention has a significant effect on the life of the element, and its effectiveness was confirmed. In addition, no solder penetration into the active layer of the device is observed.

〔発明の効果〕〔Effect of the invention〕

半導体レーザ素子から生ずる熱を逃がすため、素子をヒ
ートシンクにはんだ付けするとき、はんだが素子の活性
領域まで廻り込んで発光を妨げることがないよう、素子
のコンタクト層の両側を厚(して表面に凹部を設けるこ
とは活性領域とヒートシンク上のはんだ層との距離が遠
くなるという点で有効であるが、その反面素子とヒート
シンクの間に隙間ができるので放熱効果に対してはなお
十分でない、これに対して本発明では実施例で述べたご
とく、ヒートシンクに凸部を設け、この凸部の先端に形
成した一部のはんだ層を素子凹部に合わせ、ヒートシン
ク凸部と素子凹部は密着し、かつヒートシンクと素子コ
ンタクト層側電極の全面とがはんだ接合するように、ヒ
ートシンク凸部の幅と高さの寸法を適切に定めたために
、素子活性領域とヒートシンクの距離は十分像たれて、
はんだの廻り込みが生じないことに加えて、とくに素子
活性領域から発生する熱をヒートシンク凸部から逃がす
ことができ、その結果本発明のヒートシンクを用いては
んだ付けした半導体レーザ素子は従来に比べて熱抵抗が
大幅に低下し、その放熱効果による長寿命を確保するこ
とが可能となる。
To dissipate the heat generated from a semiconductor laser device, when soldering the device to a heat sink, thicken the contact layer on both sides of the device so that the solder does not reach the active region of the device and prevent light emission. Providing a recess is effective in that it increases the distance between the active region and the solder layer on the heat sink, but on the other hand, it creates a gap between the element and the heat sink, which is still not sufficient for heat dissipation. In contrast, in the present invention, as described in the embodiment, a heat sink is provided with a convex portion, and a part of the solder layer formed at the tip of the convex portion is aligned with the element concave portion, so that the heat sink convex portion and the element concave portion are in close contact with each other, and Since the width and height of the heat sink protrusion are appropriately determined so that the heat sink and the entire surface of the element contact layer side electrode are soldered together, the distance between the element active region and the heat sink is sufficiently set.
In addition to the fact that the solder does not run around, the heat generated especially from the active region of the device can be dissipated from the heat sink convex portion, and as a result, the semiconductor laser device soldered using the heat sink of the present invention has a higher performance than the conventional one. Thermal resistance is significantly reduced, and its heat dissipation effect makes it possible to ensure a long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のヒートシンクの形状を示す模式斜視図
、第2図は本発明のヒートシンクに半導体レーザ素子を
はんだ付けした状態を示す模式断面図、第3図はコンタ
クト層に凹部を有する半導体レーザ素子の模式断面図、
第4図(al〜[dlは第3図の半導体レーザ素子の主
な製造工程図、第5図は従来のヒートシンクに半導体レ
ーザ素子をはんだ付けした状態を示す模式断面図である
。 1:基板、2:第1クラッド層、3:活性層、4:第2
クラッド層、5.5a、5b  :コンタクト層、6:
電流挟窄層、7,8:電極、9 : sto*lIl、
10.10a:ヒートシンク、11.Ila :はんだ
層。 11a lコにI′!1 第1図 第2図 ′$3図 第5図 ′$4!!1
FIG. 1 is a schematic perspective view showing the shape of the heat sink of the present invention, FIG. 2 is a schematic cross-sectional view showing a state in which a semiconductor laser element is soldered to the heat sink of the present invention, and FIG. 3 is a semiconductor device having a recessed portion in the contact layer. A schematic cross-sectional view of a laser element,
FIG. 4 (al to [dl are main manufacturing process diagrams of the semiconductor laser device shown in FIG. 3, and FIG. 5 is a schematic cross-sectional view showing a state in which the semiconductor laser device is soldered to a conventional heat sink. 1: Substrate , 2: first cladding layer, 3: active layer, 4: second
Cladding layer, 5.5a, 5b: Contact layer, 6:
Current pinching layer, 7, 8: electrode, 9: sto*lIl,
10.10a: Heat sink, 11. Ila: Solder layer. 11a I'! 1 Figure 1 Figure 2'$3 Figure 5'$4! ! 1

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板上に積層形成された第1クラッド層、活
性層、ストライプ状のメサ部を有する第2クラッド層、
上面に凹部を有するコンタクト層、メサ部両側面に埋め
込んだ電流挟窄層および上下両電極を備えた埋め込み型
半導体レーザ素子のコンタクト層側にはんだ付けする半
導体レーザ素子用ヒートシンクであって、半導体レーザ
素子との接合面に形成した凸部の幅(a)と高さ(b)
がコンタクト層凹部の底面の幅(a_1)、高さ(b_
1)、b_1に電極の厚さを加えた高さ(b_2)、b
_2にはんだ層の厚さを加えた高さ(b_3)に対して
、a<a_1、b>b_2、b<b_3なる関係を有す
ることを特徴とする半導体レーザ素子用ヒートシンク。
1) A first cladding layer, an active layer, and a second cladding layer having a striped mesa portion, which are laminated on a semiconductor substrate.
A heat sink for a semiconductor laser element that is soldered to the contact layer side of an embedded semiconductor laser element, which has a contact layer having a concave portion on the upper surface, a current pinching layer embedded in both sides of a mesa part, and both upper and lower electrodes, Width (a) and height (b) of the convex portion formed on the bonding surface with the element
are the width (a_1) and height (b_1) of the bottom surface of the contact layer recess.
1), height of b_1 plus electrode thickness (b_2), b
A heat sink for a semiconductor laser element, characterized in that a height (b_3) obtained by adding the thickness of a solder layer to_2 has the following relationships: a<a_1, b>b_2, and b<b_3.
JP105289A 1989-01-06 1989-01-06 Heat sink for semiconductor laser element use Pending JPH02181488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP105289A JPH02181488A (en) 1989-01-06 1989-01-06 Heat sink for semiconductor laser element use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP105289A JPH02181488A (en) 1989-01-06 1989-01-06 Heat sink for semiconductor laser element use

Publications (1)

Publication Number Publication Date
JPH02181488A true JPH02181488A (en) 1990-07-16

Family

ID=11490777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP105289A Pending JPH02181488A (en) 1989-01-06 1989-01-06 Heat sink for semiconductor laser element use

Country Status (1)

Country Link
JP (1) JPH02181488A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772247A4 (en) * 1994-07-21 1998-12-23 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and production method thereof
KR100248431B1 (en) * 1996-12-07 2000-03-15 이계철 High power semiconductor laser
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
EP0772247A4 (en) * 1994-07-21 1998-12-23 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and production method thereof
US5895225A (en) * 1994-07-21 1999-04-20 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
EP1473781A2 (en) * 1994-07-21 2004-11-03 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
EP1473781A3 (en) * 1994-07-21 2007-02-21 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
KR100248431B1 (en) * 1996-12-07 2000-03-15 이계철 High power semiconductor laser

Similar Documents

Publication Publication Date Title
JP3348024B2 (en) Semiconductor laser device
JP3685306B2 (en) Two-wavelength semiconductor laser device and manufacturing method thereof
US20080267238A1 (en) Semiconductor laser diode element and method of manufacturing the same
US20120213242A1 (en) Semiconductor laser device
JP4583058B2 (en) Semiconductor laser element
KR20020018137A (en) Semiconductor laser device and manufacturing method thereof
JP2004335530A (en) Ridge waveguide semiconductor laser
JPH02181488A (en) Heat sink for semiconductor laser element use
JP3946337B2 (en) Gallium nitride compound semiconductor laser
GB2306048A (en) Electrodes for semiconductor lasers
JPH03188692A (en) Semiconductor laser
JPH0997946A (en) Semiconductor laser and manufacture thereof
JP2002111137A (en) Semiconductor laser device
KR100277938B1 (en) Compound Semiconductor Laser Diode and Manufacturing Method Thereof
JP3681460B2 (en) Semiconductor laser device, manufacturing method thereof, and semiconductor laser device
RU2153745C1 (en) Semiconductor laser
JPS59114885A (en) Manufacture of semiconductor device
JP2563994B2 (en) Semiconductor laser device and manufacturing method thereof
JP2804533B2 (en) Manufacturing method of semiconductor laser
JP2000261085A (en) Laser diode and its manufacture
JP3422365B2 (en) Ridge stripe type semiconductor laser device
JPS61214591A (en) Semiconductor laser element
JPS6257271A (en) Semiconductor laser device
JPS63289888A (en) Semiconductor laser device
JPS63197395A (en) Semiconductor laser device and its manufacture