JPH01214077A - Magnetoresistance element - Google Patents

Magnetoresistance element

Info

Publication number
JPH01214077A
JPH01214077A JP63039868A JP3986888A JPH01214077A JP H01214077 A JPH01214077 A JP H01214077A JP 63039868 A JP63039868 A JP 63039868A JP 3986888 A JP3986888 A JP 3986888A JP H01214077 A JPH01214077 A JP H01214077A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive
magnetic
magnetoresistance effect
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63039868A
Other languages
Japanese (ja)
Inventor
Takao Maruyama
丸山 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63039868A priority Critical patent/JPH01214077A/en
Publication of JPH01214077A publication Critical patent/JPH01214077A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To obtain an element in which Barkhausen noise which has seriously harmful influence upon the operation of a magnetic head and a magnetic sensor does not appear by a method wherein the projected length L to the easy-to-magnetize axis direction and the projected length W to the difficult-to-magnetize axis direction of a magnetoresistance effect film whose basic pattern is a parallelogram conform to a specific inequality. CONSTITUTION:The projected length L to the easy-to-magnetize axis direction and the projected length W to the difficult-to-magnetize axis direction of a magnetoresistance effect film whose basic pattern is a parallelogram conform to an inequality 0<W<1.2XL<0.45>. For instance, an Ni-Fe film 4 with a thickness of 0.04 mum is formed by vacuum evaporation on a substrate 3 obtained by oxidizing the surface of an Si chip to form a rectangular magnetoresistance effect film and Au films 5-1 and 5-2 are provided on both the ends of the rectangular film as electrodes. The magnetoresistance effect films with various long side lengths L and short side lengths W are experimentally produced and relations to the number of magnetic domains which are shown in the diagram are obtained. Therefore, if the shape of the magnetoresistance effect film conforms to the inequality 0<W<1.2XL<0.45>, a magnetic wall does not exist so that the Barkhausen noise of the magnetoresistance effect film can be eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、−気ヘッドろるいは磁気センサとして使用さ
れる磁気抵抗効果素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetoresistive element used as a magnetic head or a magnetic sensor.

〔従来の技術〕[Conventional technology]

磁気抵抗効果素子は、強磁性体の抵抗値が磁化の向きと
1流の流れる方向のなす角度により磁化することt−利
用した磁界検出素子で69、高感度を有しているため、
−気ディスク装置、磁気テープ装置用磁気ヘッド、ろる
いは、−気センサとして用いられている。磁気抵抗効果
素子の材料としては、N1−F春薄膜、ろるいはNi−
Co薄換など、厚さ数百ナノメータの強磁性体14幌が
用いられて嘔シ、その形状は、抵抗値を大さくするため
に長方形が多い。
A magnetoresistive element is a magnetic field detection element that utilizes the fact that the resistance value of a ferromagnetic material is magnetized depending on the angle formed by the direction of magnetization and the direction of flow of the first current69, and has high sensitivity.
- It is used as a magnetic disk device, a magnetic head for a magnetic tape device, and a magnetic sensor. Materials for the magnetoresistive element include N1-F spring thin film, Ni-
A ferromagnetic material with a thickness of several hundred nanometers, such as thin Co, is used, and its shape is often rectangular in order to increase the resistance value.

(発明が解決しようとする昧趙〕 磁気抵抗効果素子に用いられる強磁性体薄寝には、膜端
面にチャージが発生して靜dエネルギーが増加するのを
抑制するために、一般にadO磁区が存在する0強磁性
体m膜の磁化過程において、磁区が存在する場合にハ、
磁化の変化は主に磁区の境界をなす磁壁の移動によって
行われる。この出槽の移動は、強磁性体薄膜の欠陥や磁
気特性の不均一によシ、各所でトラップされるので、磁
化変化は不連続に起こることが多い。
(Problems to be Solved by the Invention) In general, adO magnetic domains are included in the thin ferromagnetic material used in magnetoresistive elements in order to suppress the increase in static energy due to the generation of charges on the film end faces. In the magnetization process of the existing zero ferromagnetic material m film, if a magnetic domain exists,
Changes in magnetization are mainly caused by movement of domain walls that form the boundaries of magnetic domains. This movement of the ferromagnetic material is trapped at various locations due to defects in the ferromagnetic thin film or nonuniform magnetic properties, so that magnetization changes often occur discontinuously.

士気抵抗効果素子にこのような不連続な磁化変、化が生
ずると、磁界変化に対する抵抗変化の連続的な応答が得
られなくなシ、磁気ヘッドや磁気センサとしての動作に
不都合を生ずる。このような不連続な磁化変化に伴う雑
音はパルクツ1ウゼンノイズと呼ばれ、このノイズを抑
制することは、磁気抵抗効果系子の安定な動作tm保す
る上で、必須条件となっていた。しかしながら、このバ
ルクハウゼンノイズを抑制する決定的な方法はなかった
。今に、磁気ヘッドのように狭い信号検出部の1@が求
められる場合には、磁気抵抗効果素子の形状を小さくす
ると、いっそうa壁が出現しやすくなり、大きな問題と
なっていた。
When such discontinuous magnetization changes occur in the morale resistance effect element, it becomes impossible to obtain a continuous response of resistance changes to changes in the magnetic field, resulting in inconvenience in operation as a magnetic head or a magnetic sensor. Noise associated with such discontinuous magnetization changes is called pulcium noise, and suppression of this noise has been an essential condition for maintaining stable operation tm of the magnetoresistive effect system. However, there has been no definitive method for suppressing this Barkhausen noise. Nowadays, when 1@ of a narrow signal detection section is required, such as in a magnetic head, if the shape of the magnetoresistive element is made smaller, the a-wall is more likely to appear, which has become a big problem.

本発明の目的は、かかる士気ヘッドや磁気センサの動作
に属人な悪影響を及ぼすバルクハウゼンノイズが出現し
ない磁気抵抗効果系子金提供することvc必る。
An object of the present invention is to provide a magnetoresistive element in which Barkhausen noise, which has an adverse effect on the operation of the morale head and magnetic sensor, does not appear.

〔課題゛を解決するための手段〕 本発明の磁気抵抗効果素子は、平行四辺形を基本パター
ンとして有する(磁気抵抗効果膜の6B化容易軸方向へ
の投影りとS化困難軸方向への投影長Wとが下記の不等
式を満たすというものでちる。
[Means for Solving the Problem] The magnetoresistive element of the present invention has a parallelogram as a basic pattern (projection of the magnetoresistive film in the 6B easy axis direction and in the S difficult axis direction). It is assumed that the projection length W satisfies the following inequality.

0 <W< 1.2 X L”’ し作 用〕 第2図(a)、(b)pよび(e)は、磁気抵抗効果膜
の磁区形状を示す模式図でめり、lは強磁性体薄膜を用
いた磁気抵抗効果膜パターン、2は磁壁でろる。
0 <W< 1.2 A magnetoresistive film pattern using a magnetic thin film, 2 is a domain wall.

図において、強磁性体薄膜の磁化容易軸は横方向にめシ
、a!壁は両端合成き容易軸方向に形成される。容易軸
方向の辺の長さに対する困難軸方向の辺の長さの比が大
きい場合には、第2図(a3に示すように多数の磁壁が
形成されるが、容易軸方向の辺の長さに対する困難軸方
向の辺の長さの比が小さぐなると、磁壁エネルギーを減
少させるため、第2図(b)に示すように磁壁の数が減
少する。さらに容易軸方向の辺の長さに対する困鼎軸方
向の辺の長さの比が小さくなると、容易軸方向の辺方向
両端に発生するチャージによる靜Iエネルギーよりも4
a壁エネルギーのほうが大きくなるので、第2図(c)
に示すように磁壁が消失する。
In the figure, the axis of easy magnetization of the ferromagnetic thin film is oriented horizontally, a! The wall is easily formed in the axial direction with both ends joined together. When the ratio of the length of the side in the hard axis direction to the length of the side in the easy axis direction is large, many domain walls are formed as shown in Figure 2 (a3), but the length of the side in the easy axis direction When the ratio of the length of the side in the direction of the hard axis to the length of the side in the direction of the easy axis decreases, the number of domain walls decreases as shown in Figure 2(b) because the domain wall energy decreases.In addition, the length of the side in the direction of the easy axis When the ratio of the length of the side in the difficult axis direction to
Since the a-wall energy is larger, Fig. 2(c)
The domain wall disappears as shown in .

平行四辺形を基本パターンとして有する纏気抵抗効果膵
の磁化容易軸方向への投影りと磁化困難軸方向への投影
長Wとの闇に 0 <W< 1.2 X L”’ の関係が成立すれば、第1図に示すよりに、この磁気抵
抗効果膜にMi壁は存在しなくなること金発明者は見い
出した。
The parallelogram-based basic pattern is the coiled resistance effect. There is a relationship between the projection length W of the pancreas in the direction of the easy magnetization axis and the projection length W in the direction of the hard magnetization axis. If this holds true, the inventor Kim has found that, as shown in FIG. 1, there will be no Mi wall in this magnetoresistive film.

従って、このような磁気抵抗効果膜で利用した磁気抵抗
効果素子においては、磁壁が存在しないので、磁化変化
は磁壁移動によらず、磁化回転によって行われ、バルク
ハウゼンノイズ金生じず、磁界変化に対して連続的な応
答を得ることができる。
Therefore, in the magnetoresistive element used in such a magnetoresistive film, since there is no domain wall, the change in magnetization is not caused by domain wall movement but by magnetization rotation, and Barkhausen noise does not occur and there is no magnetic field change. Continuous responses can be obtained.

また、この−気抵抗効果素子の信号検出部以外の部分を
電極4m111で覆うと、電極で債われた部分の磁気抵
抗効果素子の抵抗変化は出力に寄与しない、従って、単
出区状態を損なうことなく、士気抵抗効果素子の外形寸
法より小さな信号検出部を有する士気ヘッド、または磁
気センナを実現できる。
In addition, if the part of the magnetoresistive element other than the signal detection part is covered with the electrode 4m111, the resistance change of the magnetoresistive element in the part connected by the electrode will not contribute to the output, thus impairing the single output state. It is possible to realize a morale head or a magnetic sensor having a signal detecting section smaller than the outer dimensions of the morale resistance effect element without having to do so.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第3図は本発明の第1の実施例の主安sを示す平面図で
6る。
FIG. 3 is a plan view showing the main seat s of the first embodiment of the present invention.

この実施例はS1チツプの表面t−酸化した基板3上に
厚さ0.04pm<DNi−F*m4’eX2蒸漬法で
成膜して長方形の磁気抵抗効果膜を形成し、両端にAu
膜5−1.5−2’i設けて電極としたものでるる。
In this example, a rectangular magnetoresistive film is formed by depositing a film with a thickness of 0.04 pm<DNi-F*m4'eX2 evaporation method on the surface t-oxidized substrate 3 of the S1 chip, and Au
A film 5-1, 5-2'i is provided to serve as an electrode.

長辺の長さL(磁化容易軸方向への投影長に等しい)、
短辺の長さW(磁化困難軸方向への投影長に等しい)を
種々変えたもの全試作して出区数との関係を求めたとこ
ろ、第1図のようになった。
Long side length L (equal to the projection length in the easy magnetization axis direction),
When we made all prototypes with various short side lengths W (equal to the projected length in the direction of the hard magnetization axis) and determined the relationship with the number of exposed areas, we found the results shown in Figure 1.

なお、N l −F @膜4の士気特性は、保磁力He
が(I U 00/4 z )A/m 、異方性磁界H
kが(400G/4x)A/m  である。
Note that the morale characteristics of N l −F @membrane 4 are determined by the coercive force He
is (I U 00/4 z ) A/m, anisotropic magnetic field H
k is (400G/4x)A/m.

第1図において、○印は磁壁が消失した素子、X印は磁
壁が存在した素子を示す、O印とX印の境界となる実線
をLとWを用いて表現すると、W= L 2 X Lo
−”       (1)となる。従って、長方形の磁
気抵抗効果膜の磁化困難軸方向の辺の長さWが(1)式
の右辺よシ小さい場合、すなわち、 0<W<L2XL”     (2) の条件を満たすような形状にすれば、磁気抵抗効果系子
のバルクハウゼンノイズをなくすことかでさる。
In Fig. 1, the ○ mark indicates an element where the domain wall has disappeared, and the X mark indicates an element where the domain wall existed.If the solid line that forms the boundary between the O mark and the X mark is expressed using L and W, then W = L 2 X Lo
-" (1). Therefore, if the length W of the side of the rectangular magnetoresistive film in the direction of the hard axis of magnetization is smaller than the right side of equation (1), that is, 0<W<L2XL" (2) If the shape satisfies the following conditions, the Barkhausen noise of the magnetoresistive system can be eliminated.

第4図(a)は第2の実施例の主要部r示す平面図、第
4図(b)は正面図、第4図(c)は第4図(a)のY
−Y’1M8j′r面図でるる。
FIG. 4(a) is a plan view showing the main parts of the second embodiment, FIG. 4(b) is a front view, and FIG. 4(c) is a top view of the main part of the second embodiment.
-Y'1M8j'r surface view.

この実施例は磁気抵抗効果型ヘッド用の磁気抵抗効果素
子である。
This embodiment is a magnetoresistive element for a magnetoresistive head.

本実施例をその製造方法に従って説明する。This example will be explained according to its manufacturing method.

AhOsTiCからなるセラミック基板6上に5i(h
からなる下地層7をスパッタ法により10μm成膜した
後、下シールド層8として、N1−Fepをスパッタ法
により1 %m成成膜た。さらに、下ギャップJfI4
9として、5iOs膜をスパッタ法によりα3 、gm
 Ili、llした後、Co−Zr−Mo非晶質膜/T
id/N1−F@膜の3層構成からなる磁気抵抗効果t
illOa〜10b  を形成しfe、* Co−Z’
−Mo非晶質膜はスパッタ法により0.05μm成膜し
、Ti膜、N1−Fe膜はそれぞれ真空蒸着法を用いて
0.04八m成膜した。磁気抵抗効果系子の磁化容易軸
は第4図(a)の横方向に設定し、容易幅方向への投影
長りは2002m1困#11!軸方回への投影長Wは1
0 )tmとした。g107zmの侶号慣出部(10m
)以外の領域10b、10eは、浮さ0.2 Pmの金
膜5−1.5−2で榎って電悔とした。Au膜は真空蒸
着法で成膜した。磁気抵抗効果膜において、Co−Zr
−Mo非晶質膜はバイアス印加用軟磁性膜、Ti膜はN
 t −F @換とCo−Zr−Mo1換effl気的
に分離する膜、N1−Fe膜は磁気抵抗効果を有する膜
であり、Co−Zr−Mo非晶質膜とN1−F@)[の
膜端面を介した磁気的な結合により、N1−F@膜にバ
イアスが与えられる。すなわち、自己バイアス手段t−
備えている。その後、上ギャップ層11として、S i
 Ox lli kスパッタ法によ、り0.3μm成膜
し、上シールノ112として、Ni−Fe模をスパッタ
法により1μm成膜した。その上に、Al5os保羨/
m13t20)Am成膜し、トランスデユーサを完成さ
せた。完成さnたトランスデユーサを搭載した基板は、
機械加工によシ磁気ディスク用磁気へラドスライダに形
成した。
5i (h
After forming a base layer 7 of 10 μm in thickness by sputtering, N1-Fep was formed as a lower shield layer 8 to a thickness of 1% by sputtering. Furthermore, the lower gap JfI4
9, a 5iOs film was deposited with α3, gm by sputtering.
After Ili, ll, Co-Zr-Mo amorphous film/T
Magnetoresistive effect t consisting of three-layer structure of id/N1-F@ film
illOa~10b to form fe, *Co-Z'
The -Mo amorphous film was formed to a thickness of 0.05 μm by sputtering, and the Ti film and N1-Fe film were each formed to a thickness of 0.048 m by vacuum evaporation. The easy axis of magnetization of the magnetoresistive element is set in the horizontal direction in Fig. 4(a), and the projected length in the easy width direction is 2002 m1! The projection length W to the axial gyrus is 1
0) tm. g107zm's maiden department (10m
The regions 10b and 10e other than ) were covered with a gold film 5-1.5-2 having a float of 0.2 Pm to form a penetrating surface. The Au film was formed by a vacuum evaporation method. In the magnetoresistive film, Co-Zr
-Mo amorphous film is a soft magnetic film for bias application, Ti film is N
The N1-Fe film, which is a film that gaseously separates the t-F@ exchange and the Co-Zr-Mo1 exchange effl, has a magnetoresistive effect, and the Co-Zr-Mo amorphous film and the N1-F@)[ A bias is applied to the N1-F@ film by magnetic coupling via the film end face. That is, the self-biasing means t-
We are prepared. Thereafter, as the upper gap layer 11, S i
A 0.3 μm thick film was formed by Ox llik sputtering, and a 1 μm thick Ni—Fe pattern was formed as the upper seal 112 by sputtering. On top of that, Al5os Hoen/
m13t20) Am film was formed to complete the transducer. The board with the completed transducer is
It was formed into a magnetic disk slider by machining.

この実施例の磁気抵抗効果膜は正方形部分10mと平行
四辺形の部分1tlb、IUeとよりなっているが、磁
化容易軸方向への投影*Lr′12UO,um。
The magnetoresistive film of this embodiment consists of a square part 10m and a parallelogram part 1tlb, IUe, and the projection in the direction of the easy axis of magnetization *Lr'12UO,um.

磁化困難軸方向への投影長Wは10.umで、不等式W
<1.2XL’°4sを満たす、また、磁気抵抗効果膜
の16号検出部(磁気ヘッドの挽み取り嘱)以外の填域
は、電極で覆われて2シ、信号検出に寄与しないので、
トラック+WA 10 、gmの狭トラツク磁気抵抗効
果型ヘッドが実現された。この磁気抵抗効果型ヘッドを
用いて、電昌変換特性の測定を行ったところ、バルクハ
ウゼンノイズがなく、高い信号対雑音比を有する信号が
得られた。
The projected length W in the direction of the hard magnetization axis is 10. In um, the inequality W
<1.2XL'°4s, and the filling area other than No. 16 detection part of the magnetoresistive film (magnetic head grinding part) is covered with electrodes and does not contribute to signal detection. ,
A narrow track magnetoresistive head with tracks + WA 10 and gm has been realized. When electromagnetic conversion characteristics were measured using this magnetoresistive head, a signal with no Barkhausen noise and a high signal-to-noise ratio was obtained.

第5図は第3の実施例を示す平面図である。FIG. 5 is a plan view showing the third embodiment.

この実施例は磁気センザ用の磁気抵抗効果素子である。This embodiment is a magnetoresistive element for a magnetic sensor.

基板3としてはSiチップの表面に5iOstl#や5
isNi膜を被検したものを用い、その上に、N1−F
@8II全8II金法を用いてα04μm成膜し、容易
軸方向の辺の長さ50 prn s困難軸方向の辺の長
さ5Pmの長方形にエツチングすることによシ磁気抵抗
効果F!IIを形成した。磁気抵抗効果膜の磁気異方性
は、容易軸方向の辺方向に設定した。
As the substrate 3, 5iOstl# and 5 are placed on the surface of the Si chip.
An isNi film was used to test, and N1-F
@8II All 8II gold method is used to form a film with a thickness of α04 μm, and the magnetoresistive effect F! II was formed. The magnetic anisotropy of the magnetoresistive film was set in the side direction of the easy axis direction.

磁気抵抗効果膜10の両端には厚さ0.3μmのAu膜
5−1.5−2からなる電極を接続し、その上に厚さ0
.5/1mの保dml:lスパッタ法により成膜した。
Electrodes made of an Au film 5-1.5-2 with a thickness of 0.3 μm are connected to both ends of the magnetoresistive film 10, and an electrode with a thickness of 0.3 μm is connected thereto.
.. The film was formed by a sputtering method with a holding ratio of 5/1 m.

電極は、真空蒸着法で成膜した。なお、接続電極14−
1.14−2.14−3もAu膜である。この磁気セン
サに2いて、磁気抵抗効果膜の容易軸方向の辺りの長さ
は50μm1困難軸方向の辺の長さWは5μ織であり、
不等式W<1.2x L% 4+1 を満たす、この一
気センサを位置検出用センサとして用いたところ、バル
クハウゼンノイズのない良好な位置信号が得られた。
The electrode was formed by a vacuum evaporation method. Note that the connection electrode 14-
1.14-2.14-3 is also an Au film. In this magnetic sensor, the length of the magnetoresistive film in the easy axis direction is 50 μm, and the length W of the side in the hard axis direction is 5 μ weave.
When this sensor satisfying the inequality W<1.2x L% 4+1 was used as a position detection sensor, a good position signal without Barkhausen noise was obtained.

第6図は、第4の実施例の主要部を示す平面図あるが、
基板3、磁気抵抗効果1(4−1〜4−4)および′#
lE極(5−1,5−2,14−l−14−3)の成膜
方法は、第3の実施例と同一である。第3の実施例と異
なる点は、−気抵抗効果膜の形状が折り返しパターンに
なっている点でろり、この折シ返しの長さL′は7.0
μm、+@VVは5μ予である。折9返しの長さL′と
暢Wは、不等式W<1.2XL / (L4 %  2
満たしている。この$気センサに2いては、−気抵抗効
果膜は連続して形成されておシ、容易軸方向の辺りの長
さが70μ外、困難軸方向の辺の長さWが5μへの矩形
パターンに比較して、パターン端部に発生するチャージ
が少ないため、よシ容易に単磁区化が実現された。また
、この磁気抵抗効果素子の折り返し部分は、電極で覆わ
れているため、信号検出は磁気抵抗効果膜が霧出した矩
形の部分のみで行われる。従って、信号検出部分を一方
向に伺えることができた。この磁気センナを位置検出用
センサとして用いたところ、バルクハウゼンノイズのな
い良好な位1直1百号が潜られた。
FIG. 6 is a plan view showing the main parts of the fourth embodiment.
Substrate 3, magnetoresistive effect 1 (4-1 to 4-4) and '#
The method of forming the lE electrodes (5-1, 5-2, 14-1-14-3) is the same as in the third embodiment. The difference from the third embodiment is that the shape of the air resistance effect film is a folded pattern, and the length L' of this folded back is 7.0.
μm, +@VV is 5 μm. The length L' of the fold and the length W are determined by the inequality W<1.2XL/(L4 % 2
Satisfied. In this $ air sensor 2, the - air resistance effect film is formed continuously and has a rectangular shape with a length of about 70μ in the easy axis direction and a side length W of the hard axis direction of 5μ. Compared to the pattern, fewer charges are generated at the edge of the pattern, making it easier to create a single magnetic domain. Further, since the folded portion of the magnetoresistive element is covered with an electrode, signal detection is performed only in the rectangular portion where the magnetoresistive film is atomized. Therefore, the signal detection area could be seen in one direction. When this magnetic sensor was used as a position detection sensor, a good 1st shift 100th dive with no Barkhausen noise was achieved.

尚、以上の実施例では、N i−F e膜を用いた磁気
抵抗効果素子についてのみ説明したが、強a性体パター
ンの磁区構造は主として形状効果により決定されるので
、Ni−Co等、他の強a性体薄膜に対しても本発明が
適用できることは言うまでもない。
In the above embodiment, only the magnetoresistive element using the Ni-Fe film was explained, but since the magnetic domain structure of the ferromagnetic material pattern is mainly determined by the shape effect, Ni-Co, etc. It goes without saying that the present invention can also be applied to other strong-amount thin films.

し発明の効果〕 以上のように本発明による一気抵抗効果素子においては
、バルクハウゼンノイズが抑制された艮好な信号が得ら
れ、ま九、信号検出部の鴨t−磁気抵抗効果膜の外形寸
法に拘わりなく自由に設定できるので、これで用いた磁
気ヘッド、磁気センナ等の性能およびイM頼性を高める
ことができ、また、磁気抵抗効果素子の特性を検査する
ための検査費用を低減することができる。
[Effects of the Invention] As described above, in the single-resistance effect element according to the present invention, an excellent signal with suppressed Barkhausen noise can be obtained. Since it can be set freely regardless of the dimensions, it is possible to improve the performance and reliability of the magnetic head, magnetic sensor, etc. used, and also reduce the cost of testing the characteristics of the magnetoresistive element. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気抵抗効果膜の磁化容易軸方向への投影長り
及び磁化困難軸方向への投影長Wと出区数の関係を示す
特性図、第2図(−〜(e)は強出性体薄膜パターンの
磁化容易軸方向の辺の長さに対する磁化困難軸方向の辺
の長さの比が1より大きい場合、lよシ小さい場合、l
よ)丈に小さい場合の磁区形状を示す楔弐図、第3凶は
第1の実施例の主要部金示す半面図、第4図(−1缶)
は第2の実施例の主要部金示す平面図、正面図、第4図
(e)は第4図(a)のY−Y’巌Wr面図、第5図及
びW、6図は七nぞれ第3の実施例及び第4の実施例の
主要gt−示す平面図でめる。 l・・・・・・強磁性体薄膜パターン、2・・・・・・
磁壁、3・・・・・・基板、4 、4−1〜4−4 =
 Ni−Fe膜、5−1゜5−2・・・・・・Au1i
i、 6・・・・・・セラミック基板、7・・・・・・
下地層、8・・・・・・下シールド層、9・・・・・・
下ギャップ層、10&110b、lOc・・・・・・磁
気抵抗効果膜、11・・・・・・上ギャップ層、12・
・・・・・シールド層、13・・・・・・保護層、14
−1.14−2.14−3・・・・・・接続電極。 代理人 弁理士  内  原    晋0単産区  X
り経区 20SO10θ 2θθ  訪O 礒化容易i由方百への投影長l≠1ノ 橘1図 ¥Z図 峯3回 茅4−1¥]
Figure 1 is a characteristic diagram showing the relationship between the projected length W of the magnetoresistive film in the direction of the easy axis of magnetization, the projection length W in the direction of the hard axis of magnetization, and the number of sections; If the ratio of the length of the side in the direction of the axis of easy magnetization to the length of the side in the direction of the axis of easy magnetization of the magnetic thin film pattern is greater than 1, and if it is smaller than l, then l
Fig. 2 shows the shape of the magnetic domain when the height is small, the third figure is a half-view showing the main parts of the first embodiment, and Fig. 4 (-1 can)
4(e) is a plan view and a front view showing the main parts of the second embodiment, FIG. 4(e) is a Y-Y'Wr plane view of FIG. Figure 3 is a plan view showing the main components of the third embodiment and the fourth embodiment, respectively. l...Ferromagnetic thin film pattern, 2...
Domain wall, 3...Substrate, 4, 4-1 to 4-4 =
Ni-Fe film, 5-1゜5-2...Au1i
i, 6...ceramic substrate, 7...
Base layer, 8...Lower shield layer, 9...
Lower gap layer, 10 & 110b, lOc... Magnetoresistive film, 11... Upper gap layer, 12.
... Shield layer, 13 ... Protective layer, 14
-1.14-2.14-3... Connection electrode. Agent Patent Attorney Susumu Uchihara 0 Single Production Area
rikyokuku 20 SO 10 θ 2 θ θ Visit O Projection length l ≠ 1 no Tachibana 1 figure ¥ Z map 3 times 4-1 ¥]

Claims (3)

【特許請求の範囲】[Claims] (1)平行四辺形を基本パターンとして有する磁気抵抗
効果膜の磁化容易軸方向への投影長Lと磁化困難軸方向
への投影長Wとが下記の不等式を満たすことを特徴とす
る磁気抵抗効果素子。 0<W<1.2×L^0^.^4^5
(1) A magnetoresistive effect characterized in that the projected length L in the direction of the easy axis of magnetization and the projected length W in the direction of the hard axis of magnetization of a magnetoresistive film having a parallelogram basic pattern satisfy the following inequality: element. 0<W<1.2×L^0^. ^4^5
(2)自己バイアス手段を備えている請求項(1)記載
の磁気抵抗効果素子。
(2) The magnetoresistive element according to claim (1), further comprising a self-biasing means.
(3)磁気抵抗効果膜を選択的に被覆して信号検出部を
規定する導電膜を有している請求項(1)又は(2)記
載の磁気抵抗効果素子。
(3) The magnetoresistive element according to claim 1 or 2, further comprising a conductive film that selectively covers the magnetoresistive film and defines a signal detection section.
JP63039868A 1988-02-22 1988-02-22 Magnetoresistance element Pending JPH01214077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039868A JPH01214077A (en) 1988-02-22 1988-02-22 Magnetoresistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039868A JPH01214077A (en) 1988-02-22 1988-02-22 Magnetoresistance element

Publications (1)

Publication Number Publication Date
JPH01214077A true JPH01214077A (en) 1989-08-28

Family

ID=12564951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039868A Pending JPH01214077A (en) 1988-02-22 1988-02-22 Magnetoresistance element

Country Status (1)

Country Link
JP (1) JPH01214077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772250A1 (en) * 1995-11-06 1997-05-07 Motorola, Inc. Ferromagnetic GMR material
JP2006508528A (en) * 2002-11-27 2006-03-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetoresistive sensor element and method for reducing angular error of magnetoresistive sensor element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264772A (en) * 1985-05-17 1986-11-22 Nec Corp Magnetoresistance effect element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264772A (en) * 1985-05-17 1986-11-22 Nec Corp Magnetoresistance effect element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772250A1 (en) * 1995-11-06 1997-05-07 Motorola, Inc. Ferromagnetic GMR material
JP2006508528A (en) * 2002-11-27 2006-03-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetoresistive sensor element and method for reducing angular error of magnetoresistive sensor element

Similar Documents

Publication Publication Date Title
US5708358A (en) Spin valve magnetoresistive transducers having permanent magnets
US5818685A (en) CIP GMR sensor coupled to biasing magnet with spacer therebetween
JPH07326024A (en) Gmr regenerating head
JPH04358310A (en) Magnetic reluctance sensor utilizing spin valve effect
US5818684A (en) Shield type magnetoresistive head arranged for weakening of a galvano-current magnetic field
US5932343A (en) Magnetic resistance effect element and method for manufacture thereof
JPH01214077A (en) Magnetoresistance element
JP3208906B2 (en) Magnetoresistive magnetic head
JPS6331116B2 (en)
JPH03276411A (en) Magneto-resistance effect type head device
JPH076329A (en) Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device
JP2003077107A (en) Magneto-resistance effect type magnetic head
JP3378549B2 (en) Magnetic head
JP2510625B2 (en) Magnetoresistive magnetic head
JPS61253620A (en) Magneto-resistance effect head
JPS6220896Y2 (en)
JP2564262B2 (en) Magnetoresistive head
JPS58189819A (en) Magneto-resistance effect head
JP3624355B2 (en) Magnetoresistive sensor
JPH08249617A (en) Spin valve magnetoresistance effect element
JP3182858B2 (en) Ferromagnetic magnetoresistive element
KR100234173B1 (en) Magnetoresistive device of thin film magnetic head
JPH10222817A (en) Magneto-resistive sensor
JP2003242611A (en) Magneto-resistive effect sensor and thin-film magnetic head having the sensor
JPS5987615A (en) Manufacture of magnetic thin film head