JPS61253620A - Magneto-resistance effect head - Google Patents

Magneto-resistance effect head

Info

Publication number
JPS61253620A
JPS61253620A JP9621585A JP9621585A JPS61253620A JP S61253620 A JPS61253620 A JP S61253620A JP 9621585 A JP9621585 A JP 9621585A JP 9621585 A JP9621585 A JP 9621585A JP S61253620 A JPS61253620 A JP S61253620A
Authority
JP
Japan
Prior art keywords
film
magnetization
thin film
level
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9621585A
Other languages
Japanese (ja)
Other versions
JP2614203B2 (en
Inventor
Takao Maruyama
丸山 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60096215A priority Critical patent/JP2614203B2/en
Publication of JPS61253620A publication Critical patent/JPS61253620A/en
Application granted granted Critical
Publication of JP2614203B2 publication Critical patent/JP2614203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/399Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures with intrinsic biasing, e.g. provided by equipotential strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a large reproducing output whose magnetization level is uniform and whose direction is small at the time of reproduction, by providing a laminated film laminating successively a magnetic thin film having a magneto- resistance effect, a non-magnetic metallic thin film, and a soft magnetic thin film, and providing a transducer part placing an insulating layer film in one of between each thin film. CONSTITUTION:A soft magnetic thin film 3 is saturated magnetically by a magnetic field generated by a current flowing through a shunt film 2 and a magnetic field generated from a magnetized MR film 1. Accordingly, by the magnetic field generated by a magnetization in both ends of a saturated soft magnetic film 3, a magnetization level of the MR film 1 is high in both the ends, and becomes low in the center. Also, by the magnetic field generated by the current flowing through the shunt film 2, the magnetization level of the MR film 1 is high in the center, and becomes low in both the ends. A magnetization level 6 of the MR film 1, which is obtained as the sum of both of them becomes an optimum level uniformly extending over the whole of the MR film 1. In this way, a reproducing output whose distortion is small can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気ディスク装置あるいは磁気テープ装置用
の波形歪が小さく、発熱が少ない磁気抵抗効果ヘアド(
以下MRへ、ドと略す。)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a magnetoresistive hairdo which has low waveform distortion and generates little heat for use in magnetic disk devices or magnetic tape devices.
Hereinafter, it will be abbreviated as MR. ).

(従来技術とその問題点) MRヘッドは、磁気抵抗効果素子を用いた再生専用ヘッ
ドであり、再生出力電圧がディスク・ヘッド間の相対速
度に依存せず、また、高い再生感度を有しているため、
磁気ディスク装置や磁気テープ装置を高密度化、小型化
するうえで、極めて有利なデバイスである。しかしなが
ら、MRへ。
(Prior art and its problems) The MR head is a read-only head that uses a magnetoresistive element, and its read output voltage does not depend on the relative speed between the disk and the head, and it has high playback sensitivity. Because there are
It is an extremely advantageous device for increasing the density and downsizing of magnetic disk devices and magnetic tape devices. However, to MR.

ドな最大感度で、かつ線形に動作させるためには、信号
検出電流と磁気抵抗効果膜(以下、MR腹と略す。)の
磁化の向きが45°になる様、MR膜の磁化レベルにバ
イアスを与える必要がある。従来のバイアス印加方法は
、甚だ不十分であり、MRへ、ドの実用化を太きくil
!I限してきた。第5図(a)、(blは、代表的なバ
イアス法であるシャントバイアス法の膜構成(b)と、
MR膜の磁化レベル(alを示しており、1はNiFe
5 Ni0oなどのMR膜、2はT iSOrなどのシ
ャント膜、4社シャント膜2を流れる電流か発生する磁
界によるMR膜1の磁化レベルである。グラフの縦軸は
飽和磁化に対する磁化レベルの比の2乗、横軸は、MR
膜1内の位置を示している。第5図においてMR膜1の
磁化レベル4は場所によって不均一であり、MR膜1の
中央付近で最適磁化レベル(0,5) ff得られても
、MR膜lの両端では、磁化レベルは不十分となる。さ
らに、MR膜10幅が10ミクロン程度と細い場合には
、MR膜1の膜厚が500オングストロームの場合、M
R膜1に1&適磁化レベルを与えるためのバイアス磁界
としては数+エルステ。
In order to operate linearly and with maximum sensitivity, the magnetization level of the MR film must be biased so that the signal detection current and the magnetization direction of the magnetoresistive film (hereinafter referred to as MR antinode) are 45 degrees. need to be given. The conventional bias application method is extremely insufficient, and it is difficult to put it into practical use in MR.
! I've been limited. Figures 5(a) and 5(bl) show the membrane structure (b) of the shunt bias method, which is a typical bias method,
The magnetization level of the MR film (al is shown, 1 is NiFe)
5 is an MR film such as NiOo, 2 is a shunt film such as TiSOr, and 2 is the magnetization level of the MR film 1 due to a current flowing through the shunt film 2 or a magnetic field generated. The vertical axis of the graph is the square of the ratio of magnetization level to saturation magnetization, and the horizontal axis is MR
The position within membrane 1 is shown. In FIG. 5, the magnetization level 4 of the MR film 1 is non-uniform depending on the location, and even if the optimum magnetization level (0,5) ff is obtained near the center of the MR film 1, the magnetization level is low at both ends of the MR film 1. It becomes insufficient. Furthermore, when the width of the MR film 10 is as thin as about 10 microns, and when the thickness of the MR film 1 is 500 angstroms, the M
The bias magnetic field for giving the R film 1 an appropriate magnetization level is number + Erste.

ド必要であるが、第5図の構成におりては発熱を許容値
内に収めた場合、得られるバイアス磁界は10・エルス
テッド以下であり、MR展1に十分な磁化レベルを与え
ることができない。第6図(a)、(bl ti、別の
代表的な)・イアス法である永久磁石バイアス法の膜構
成(b)とMRの磁化レベル(a)を示しており、7 
tri CoPt SCo −rFe20.などの永久
磁石膜、8は永久磁石膜7が発生する磁界による進展1
の磁化レベルである。グラフの縦軸は飽和磁化に対する
磁化レベルの比の2乗、横軸は、MR膜1内の位置を示
している。第6図においてもMRレベル8は場所によっ
て不均一であり、永久磁石膜70両端に生ずる磁化によ
り、MR膜lの両端に蝶高い磁化レベルが与えられるか
、中央部では磁化レベ/L’が不十分となる。第5図お
よび第6図に示したような不均一なMR膜1の磁化レベ
ル4および8の状態では、信号磁界に対し、歪の小さい
応答が期待できず、再生時のマージンを減少させる結果
をもたらす。
However, in the configuration shown in Figure 5, if the heat generation is kept within the allowable value, the obtained bias magnetic field is less than 10 oersteds, and it is not possible to provide a sufficient magnetization level to the MR field 1. . Figure 6 (a) shows the film structure (b) of the permanent magnet bias method, which is another typical (bl ti, another representative) Iass method, and the magnetization level of MR (a).
tri CoPt SCo-rFe20. Permanent magnet film 8 is the development due to the magnetic field generated by the permanent magnet film 7 1
is the magnetization level. The vertical axis of the graph represents the square of the ratio of magnetization level to saturation magnetization, and the horizontal axis represents the position within the MR film 1. In FIG. 6, the MR level 8 is also non-uniform depending on the location, and due to the magnetization occurring at both ends of the permanent magnet film 70, either a butterfly high magnetization level is given to both ends of the MR film 1, or the magnetization level /L' is low in the central part. It becomes insufficient. In the states of magnetization levels 4 and 8 of the non-uniform MR film 1 as shown in FIGS. 5 and 6, a low distortion response to the signal magnetic field cannot be expected, resulting in a reduction in the margin during reproduction. bring about.

(、発明の目的) 本発明の目的は、MR[1の磁化レベルが均一で再生時
に歪みの小さい、大きな再生出力が得られる磁気抵抗効
果ヘッドな提供することにある。
(Object of the Invention) An object of the present invention is to provide a magnetoresistive head in which the magnetization level of MR[1 is uniform, distortion is small during reproduction, and a large reproduction output can be obtained.

(発明の構成) 本発明によれば、磁気抵抗効果を有する磁性薄膜、非磁
性金属薄膜、および軟磁性薄膜を順次積層した積層膜を
備えた構成、さらにこの積層膜の各薄膜間の少なくとも
一方に絶縁膜を配置した構成のトランスジューサ部を有
する磁気抵抗効果ヘッドを得ることができる。
(Configuration of the Invention) According to the present invention, a configuration includes a laminated film in which a magnetic thin film having a magnetoresistive effect, a non-magnetic metal thin film, and a soft magnetic thin film are sequentially laminated, and at least one of the thin films of the laminated film is provided. Accordingly, it is possible to obtain a magnetoresistive head having a transducer portion having an insulating film disposed on both sides.

(構成に関する説明) 磁気抵抗効果を有する薄膜としては、NiFe 5Ni
Coなどを用いることができ、非磁性金属薄膜としてけ
CrSMo5 Ta、 ’rts W% Cu5Aus
 AJなどを用いることができる。また、軟磁性薄膜と
しては、NiFe5NiCo、FeAlSi、FeSi
などの結晶質磁性材料や、0oZrNbs Fe0oS
iBなどの非晶質磁性材料を用いることができる。また
、前記積層膜の製法としては、スパッタリング、蒸溜、
めっき、イオンブレーティング、イオンビームスパッタ
リングなどを用いることかできる。
(Explanation regarding the structure) As a thin film having a magnetoresistive effect, NiFe 5Ni
Co, etc. can be used as a non-magnetic metal thin film such as CrSMo5Ta, 'rts W% Cu5Aus.
AJ etc. can be used. In addition, as soft magnetic thin films, NiFe5NiCo, FeAlSi, FeSi
crystalline magnetic materials such as 0oZrNbs Fe0oS
Amorphous magnetic materials such as iB can be used. In addition, methods for manufacturing the laminated film include sputtering, distillation,
Plating, ion blating, ion beam sputtering, etc. can be used.

(作用・原理) 第1図(a)、(b) If 、本発明によるMRへ、
ドの膜構成(b)とMR膜の磁化レベル(a)を示して
おり、3社軟磁性薄膜、5は飽和した軟磁性膜#3から
発生する磁界によるMR膜1の磁化レベル、6はシャン
ト膜2を流れる電流が発生する磁界および、飽和した軟
磁性薄膜3から発生する磁界の和によるMR膜1の磁化
レベルである。グラフの縦軸は飽和磁化に対する磁化レ
ベルの比の2乗、横軸はMR膜1内の位置を示している
。第1図において、軟磁性薄膜3は、シャン)Ig!2
を流れる電流が発生する磁界および磁化したM孔膜1よ
り発する磁界により、磁気的に飽和している。従って、
飽和した軟磁性膜30両端に発生する磁化により発生す
る磁界で、MR膜1の磁化レベルは5のように両端で高
く、中央で低くなる。さらに、シャント膜2を流れる電
流が発生する磁界で、MR膜1の磁化レベルは中央で高
く、両端で低くなる。両者の和として得られるMR膜1
の磁化レベル6は、MR膜1全体にわたって、均一に最
適レベルとなる。よって、このような磁気抵抗効果ヘッ
ドを再生に用いれば、歪みの小さp再生出力を得ること
ができる。第1図の構成において、軟磁性膜3のみ飽和
させるために社、軟磁性膜3の膜厚と飽和磁化の積は、
MRJlilの膜厚と飽和磁化の積より小さくする必要
がある。
(Action/Principle) Fig. 1 (a), (b) If, to MR according to the present invention,
5 shows the magnetization level of the MR film 1 due to the magnetic field generated from the saturated soft magnetic film #3, and 6 shows the magnetization level of the MR film #3. This is the magnetization level of the MR film 1 due to the sum of the magnetic field generated by the current flowing through the shunt film 2 and the magnetic field generated from the saturated soft magnetic thin film 3. The vertical axis of the graph represents the square of the ratio of magnetization level to saturation magnetization, and the horizontal axis represents the position within the MR film 1. In FIG. 1, the soft magnetic thin film 3 has a shank) Ig! 2
It is magnetically saturated due to the magnetic field generated by the current flowing through it and the magnetic field generated by the magnetized M-hole film 1. Therefore,
Due to the magnetic field generated by the magnetization generated at both ends of the saturated soft magnetic film 30, the magnetization level of the MR film 1 is high at both ends and low at the center, as shown in 5. Further, due to the magnetic field generated by the current flowing through the shunt film 2, the magnetization level of the MR film 1 is high at the center and low at both ends. MR film 1 obtained as the sum of both
The magnetization level 6 is uniformly at the optimum level over the entire MR film 1. Therefore, if such a magnetoresistive head is used for reproduction, a p reproduction output with small distortion can be obtained. In the configuration shown in FIG. 1, in order to saturate only the soft magnetic film 3, the product of the thickness of the soft magnetic film 3 and the saturation magnetization is:
It needs to be smaller than the product of the film thickness of MRJlil and the saturation magnetization.

(実施例) 第2図は本発明によるMRヘッドの第1の実施例の断面
図であり、9はアルミナ・チタン・カーバイト基板、1
0 a AJ! Os絶縁層、11HNiFeシールド
である。本実施例におけるMRへ、ドは、アルミナ・チ
タン・カーバイド基板9上に、まず、Altos絶縁層
10をスパッタリングにより成膜し、次に、N1F9下
シールド膜11をスパッタリングにより厚さ1ミクロン
形成し、フォトリソグラフィー技術とイオンミリングを
用いたドライエ、チングにより、長方形に形成した。次
に、シールド間ギヤ、プとがるA1203絶縁層10を
スパッタリングにより厚さ0.5ミクロン成膜した後、
NiFeによるMR$1(o、05ミクロン)、Tiに
よるシャント膜2 (0,1ミクロン)、NiFeによ
る軟磁性膜3(0,03ミクロン)を連続蒸着した。M
R膜1、シャント膜2、軟磁性膜3は、同一のマスクを
用いたフォトリングラフイー技術とイオンミリングを用
いたドライエツチングにより、媒体対向面において、所
定トラック幅となるようパターン化した。その後、上側
のシールド間ギヤ、プとなるAJ、 0. t@緑層1
0をスパッタリングにより厚さ0.35ミクロン成膜し
、さらに、NiFe上シールド膜11をスパッタリング
により厚さ1ミクロン形成した後、フォトリソグラフィ
ー技術とイオンミリングを用いたドライエツチングによ
り、下シールド膜11と同一の形状に形成した。最後に
、保護層としてA40s膜10を厚さ200ミフロンス
バりし、基板を機械加工により浮上スライダに加工した
(Embodiment) FIG. 2 is a sectional view of the first embodiment of the MR head according to the present invention, in which 9 is an alumina titanium carbide substrate, 1
0 a AJ! Os insulating layer, 11HNiFe shield. In the MR in this example, an Altos insulating layer 10 was first formed by sputtering on an alumina titanium carbide substrate 9, and then an N1F9 lower shield film 11 was formed to a thickness of 1 micron by sputtering. It was formed into a rectangular shape by dry etching using photolithography technology and ion milling. Next, after forming an inter-shield gear and a sharp A1203 insulating layer 10 with a thickness of 0.5 microns by sputtering,
MR$1 (0.05 microns) made of NiFe, shunt film 2 made of Ti (0.1 microns), and soft magnetic film 3 (0.03 microns) made of NiFe were successively deposited. M
The R film 1, the shunt film 2, and the soft magnetic film 3 were patterned to have a predetermined track width on the medium facing surface by photophosphorography technology using the same mask and dry etching using ion milling. After that, the gear between the upper shields, AJ, 0. t@green layer 1
0 to a thickness of 0.35 microns by sputtering, and a NiFe upper shield film 11 to a thickness of 1 micron by sputtering, and then a lower shield film 11 and a NiFe upper shield film 11 were formed by dry etching using photolithography and ion milling. They were formed into the same shape. Finally, an A40s film 10 was spun to a thickness of 200 microns as a protective layer, and the substrate was machined into a floating slider.

第3図は本発明によるMRへ、ドの第2の実施例の断面
図である。第3図において、NiFeによるMR膜1(
0,05ミクロン)とTiによるシャント膜2(0,1
ミクロン)の層間に、AltOコ絶縁層10をスパッタ
リングにより、厚さ0.2ミクロン成膜した。NiFe
上・下シールド膜11、NiFeによる軟磁性膜3およ
びシールド間ギヤ、プとなるAJ、0゜絶縁層10の構
成は、第4図に示した実施例と同一である。
FIG. 3 is a sectional view of a second embodiment of the MR device according to the present invention. In FIG. 3, an MR film 1 (
shunt film 2 (0.05 micron) and Ti (0.1 micron)
An AltO insulating layer 10 having a thickness of 0.2 microns was formed by sputtering between the layers. NiFe
The configurations of the upper and lower shield films 11, the soft magnetic film 3 made of NiFe, the inter-shield gear, the AJ serving as the pulley, and the 0° insulating layer 10 are the same as in the embodiment shown in FIG.

第4図は、本発明によるMRへ、ドの第3の実施例の断
面図である。第4図において、NiFeによるMR膜1
(0,05ミクロン)とTiによるシャント膜2 (0
,1ミクロン)の層間およびシャント膜2とNiFeに
よる軟磁性膜30層間に、l、 0.絶縁層10をスパ
ッタリングにより、厚さ0.2ミクロン成膜した。Ni
Fe上・下シールド膜11の構成は、第4図に示した実
施例と同一である。
FIG. 4 is a sectional view of a third embodiment of the MR device according to the present invention. In FIG. 4, an MR film 1 made of NiFe is shown.
(0.05 microns) and Ti shunt film 2 (0
, 1 micron) and between the shunt film 2 and the NiFe soft magnetic film 30. The insulating layer 10 was formed to a thickness of 0.2 microns by sputtering. Ni
The structure of the Fe upper and lower shield films 11 is the same as the embodiment shown in FIG.

第7図(a)、(b)tfi、実施例のM Rヘyドの
再生出力波形(b)と従来の代表的なバイアス法である
シャントバイアスを用いた磁気抵抗効果ヘッドの再生出
力波形(a)である。シャントバイアス法では、シャン
ト膜を流れる電流により発生する磁界によってしかバイ
アスを与えられないため、バイアスレベルが浅く、対称
性の悪い波形しか得られなかった。それに対して本発明
によるMRヘッドでは、シャント族2を流れるwL流に
より発生する磁界と、飽和した軟磁性膜3から発生する
磁界の両方でバイアスを与えることができるため、十分
なバイアスレベルを得ることができ、対称性の良い波形
を得ることができた。
Figure 7 (a), (b) TFI, reproduced output waveform of MR hay in the example (b) and reproduced output waveform of the magnetoresistive head using shunt bias, which is a typical conventional bias method. (a). In the shunt bias method, bias can only be applied by the magnetic field generated by the current flowing through the shunt film, so the bias level is shallow and only waveforms with poor symmetry can be obtained. In contrast, in the MR head according to the present invention, bias can be applied by both the magnetic field generated by the wL flow flowing through the shunt group 2 and the magnetic field generated from the saturated soft magnetic film 3, so that a sufficient bias level can be obtained. We were able to obtain a waveform with good symmetry.

#I8図は、前記第1の実施例に類似した構成のMRへ
、ドで、軟磁性*3が飽和していない場合の再生出力波
形を示す。軟磁性!I3が飽和していないと、その磁化
状線によって、MR膜1のバイアスレベルが変動する。
Figure #I8 shows a reproduced output waveform when the soft magnetism *3 is not saturated in an MR having a configuration similar to that of the first embodiment. Soft magnetic! If I3 is not saturated, the bias level of the MR film 1 will vary depending on its magnetization line.

特に、信号磁界に対して逆相テバイアスレベルが変化す
るため、再生出力は著しく低下した。
In particular, since the reverse-phase Tebias level changes with respect to the signal magnetic field, the reproduction output significantly decreases.

また、第2の実施例に示した本発明によるMlヘッドで
は、MR膜1とシャント膜2が分離されているため、M
R換lの抵抗変化分を直接(g号出力として取り出すこ
とができ、MR膜1とシャント膜2が積層されて1ハる
第2の実施例に比較して、同一センス電流で、2倍の再
生出力を得ることができた。この時、シャント膜2には
、第1の実施例で与えたセンス電流の半分のバイアス電
流が必要であった。
Furthermore, in the Ml head according to the present invention shown in the second embodiment, since the MR film 1 and the shunt film 2 are separated, the Ml
The resistance change of R/L can be taken out directly (as g output), and compared to the second embodiment in which MR film 1 and shunt film 2 are laminated, it is twice as large with the same sense current. At this time, the shunt film 2 required a bias current half the sense current given in the first embodiment.

さらに、第3の実施例に示した本発明によるMRへ、ド
では、シャント膜2と軟磁性膜3が分離されているため
、バイアス電流がシャント膜のみに集中して流れ、第2
の実施例で与えたバイアス電流の半分の電流で、MR膜
1に十分なバイアスレベルを与えることができた。
Furthermore, in the MR according to the present invention shown in the third embodiment, since the shunt film 2 and the soft magnetic film 3 are separated, the bias current flows concentrated only in the shunt film, and the second
A sufficient bias level could be applied to the MR film 1 with a current that was half of the bias current applied in the example.

(発明の効果) このように、本発明によるMRへ、ドな用いることによ
り、歪の小さい、大きな再生出力を取り出すことができ
、磁気記録装置を、小型化、高記録密度化する上で、き
わめて有効である。
(Effects of the Invention) As described above, by using the MR according to the present invention, it is possible to obtain a large reproduction output with low distortion, and to miniaturize the magnetic recording device and increase the recording density. Extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は、本発明のMRへ、ドのバイア
スレベルを示すグラフとその構成例を示す図、第2図〜
第4図は本発明のMRヘッドの実施例を示す断面図、第
5図(a)、(b)は、従来例のシャントバイアスのバ
イアスレベルを示すグラフとその構成を示す図、第6図
(a)、(b、lは、従来例の永久磁石バイアスのバイ
アスレベルを示すグラフとその構成を示す図、第7図(
a)、(b)は、本発明のMRへ、ドと従来のMRへ、
ドの再生出力波形囚、第8図は、バイアスが不適切な場
合の再生出力波形(8)であり、l・・・Ml(膜、2
・・・シャント膜、3・・・軟磁性層、4〜6・・・バ
イアスレベル、7・・・永久磁石層、8・・・バイアス
レベル、9・・・基板、10・・・絶縁層、11・・・
シールドである。 第1Z 2 : シャ〉ト月巣
1(a) and 1(b) are graphs showing the bias level of the MR of the present invention and an example of its configuration, and FIGS.
FIG. 4 is a cross-sectional view showing an embodiment of the MR head of the present invention, FIGS. 5(a) and (b) are graphs showing the bias level of the shunt bias of the conventional example, and a diagram showing its configuration. FIG. (a), (b, l are graphs showing the bias level of the conventional permanent magnet bias and its configuration, and Fig. 7 (
a), (b) to the MR of the present invention, to the conventional MR,
Figure 8 shows the reproduced output waveform (8) when the bias is inappropriate.
... Shunt film, 3... Soft magnetic layer, 4-6... Bias level, 7... Permanent magnet layer, 8... Bias level, 9... Substrate, 10... Insulating layer , 11...
It is a shield. 1st Z 2: Sha〉Tsukisu

Claims (2)

【特許請求の範囲】[Claims] (1)磁気抵抗効果を有する磁性薄膜、非磁性金属薄膜
および軟磁性薄膜が順次積層されたトランスジューサ部
を備えたことを特徴とする磁気抵抗効果ヘッド。
(1) A magnetoresistive head comprising a transducer section in which a magnetic thin film having a magnetoresistive effect, a nonmagnetic metal thin film, and a soft magnetic thin film are sequentially laminated.
(2)磁気抵抗効果を有する磁性薄膜、非磁性金属薄膜
および軟磁性薄膜が順次積層された構成で各薄膜間の少
なくとも一方に絶縁膜を有しているトランスジューサ部
を備えたことを特徴とする磁気抵抗効果ヘッド。
(2) A transducer section having a structure in which a magnetic thin film having a magnetoresistive effect, a non-magnetic metal thin film, and a soft magnetic thin film are sequentially laminated, and an insulating film is provided between at least one of the thin films. Magnetoresistive head.
JP60096215A 1985-05-07 1985-05-07 Magnetoresistance head Expired - Lifetime JP2614203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60096215A JP2614203B2 (en) 1985-05-07 1985-05-07 Magnetoresistance head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096215A JP2614203B2 (en) 1985-05-07 1985-05-07 Magnetoresistance head

Publications (2)

Publication Number Publication Date
JPS61253620A true JPS61253620A (en) 1986-11-11
JP2614203B2 JP2614203B2 (en) 1997-05-28

Family

ID=14159015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096215A Expired - Lifetime JP2614203B2 (en) 1985-05-07 1985-05-07 Magnetoresistance head

Country Status (1)

Country Link
JP (1) JP2614203B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364374A (en) * 1986-09-04 1988-03-22 Sony Corp Magnetoresistance effect type magnetic sensitive element
JPS6476415A (en) * 1987-09-17 1989-03-22 Nec Corp Magneto-resistance effect type head
US6317300B1 (en) 1998-07-13 2001-11-13 Tdk Corporation Magnetoresistive device having magnetoresistive film and magnetic bias film with side-end faces with different angles of inclination and having insulating film made of electrically insulating material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529413A (en) * 1975-07-11 1977-01-25 Matsushita Electric Ind Co Ltd Magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529413A (en) * 1975-07-11 1977-01-25 Matsushita Electric Ind Co Ltd Magnetic head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364374A (en) * 1986-09-04 1988-03-22 Sony Corp Magnetoresistance effect type magnetic sensitive element
JPS6476415A (en) * 1987-09-17 1989-03-22 Nec Corp Magneto-resistance effect type head
US6317300B1 (en) 1998-07-13 2001-11-13 Tdk Corporation Magnetoresistive device having magnetoresistive film and magnetic bias film with side-end faces with different angles of inclination and having insulating film made of electrically insulating material

Also Published As

Publication number Publication date
JP2614203B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
US6023395A (en) Magnetic tunnel junction magnetoresistive sensor with in-stack biasing
US5729410A (en) Magnetic tunnel junction device with longitudinal biasing
US6172858B1 (en) Thin film head
US6061211A (en) Magnetic sensor including a spin valve magnetoresistance effect film
JPH07296340A (en) Magnetoresistance effect device and thin film magnetic head utilizing the device
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
JPS61253620A (en) Magneto-resistance effect head
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
JP3378549B2 (en) Magnetic head
JPH11175925A (en) Magnetic reluctance effect type element and magnetic recording and reproducing device
EP0694911B1 (en) Magnetic resistance type magnetic head for recording/reproducing
JP2510625B2 (en) Magnetoresistive magnetic head
JP2833586B2 (en) Magnetoresistive element and method of manufacturing the same
JP3120012B2 (en) Magnetic sensor, magnetic recording / reproducing head and magnetic recording / reproducing apparatus using the same
JP3260735B2 (en) Magnetoresistance effect element, magnetoresistance effect head, magnetic recording reproducing device and production of magnetoresistance effect head
JPS61134913A (en) Magnetoresistance type thin film head
JPH0256713A (en) Magneto-resistance effect type reproducing head
JP3764361B2 (en) Method for manufacturing magnetoresistive element
JP3394108B2 (en) Magnetic storage device and multilayer magnetic layer magnetic recording medium
JPS63129511A (en) Magnetoresistance effect type thin film magnetic head
JPH10334443A (en) Vertical magnetic recording medium and recording and reproducing device
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPH0354713A (en) Magneto-resistance effect head
JPS63237204A (en) Magneto-resistance effect head
JPH0737230A (en) Magnetic head and magnetic storage device formed by using the same