JP2003077107A - Magneto-resistance effect type magnetic head - Google Patents

Magneto-resistance effect type magnetic head

Info

Publication number
JP2003077107A
JP2003077107A JP2001270464A JP2001270464A JP2003077107A JP 2003077107 A JP2003077107 A JP 2003077107A JP 2001270464 A JP2001270464 A JP 2001270464A JP 2001270464 A JP2001270464 A JP 2001270464A JP 2003077107 A JP2003077107 A JP 2003077107A
Authority
JP
Japan
Prior art keywords
layer
magnetization
magnetic
magnetization free
free layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001270464A
Other languages
Japanese (ja)
Inventor
Satoshi Ishii
聡 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001270464A priority Critical patent/JP2003077107A/en
Publication of JP2003077107A publication Critical patent/JP2003077107A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the detection sensitivity of a spin valve type magnetic head. SOLUTION: In a constitution where the spin valve type magnet-resistance effect element of a CPP (Current Perpend: cular to Plane) is arranged to be retreated from an ABS surface 16, and a part or all parts of a magnetization free layer in the spin valve element layer are exposed to the ABS surface 16 to also serve as magnetic flux guide layers, a laminated Fery structure is employed where the magnetization freely layer is divided by a nonmagnetic layer 22, first and second magnetization free layers 21 and 23 are set to be different in film thickness × magnetization amount and, by setting the film thickness × magnetization amount of the first magnetization free layer smaller than the film thickness ×magnetization amount of the second magnetization free layer 23, detection sensitivity is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に、ハードディ
スクドライブ装置などに応用される、所謂スピンバルブ
型の巨大磁気抵抗効果(GMR効果)やトンネル磁気抵
抗効果の磁気ヘッドに係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called spin-valve type giant magnetoresistive effect (GMR effect) or tunnel magnetoresistive effect magnetic head, which is particularly applied to hard disk drive devices and the like.

【0002】[0002]

【従来の技術】磁気抵抗効果素子を感磁部とする磁気ヘ
ッドは、高い記録密度で記録された磁気信号の再生が可
能で、例えば磁気記録媒体からの記録信号磁界を読み取
る変換器として、広く一般に用いられている。従来、通
常一般の磁気抵抗効果素子は、その抵抗が、素子の磁化
方向と素子中を流れるセンス電流の通電方向とのなす角
度の余弦の2乗に比例して変化する異方性磁気抵抗効果
を利用するものである。
2. Description of the Related Art A magnetic head having a magnetoresistive effect element as a magnetic sensitive section is widely used as a converter capable of reproducing a magnetic signal recorded at a high recording density and reading a recording signal magnetic field from a magnetic recording medium. It is commonly used. Conventionally, a general magnetoresistive effect element has an anisotropic magnetoresistive effect in which its resistance changes in proportion to the square of the cosine of the angle formed by the magnetization direction of the element and the conduction direction of a sense current flowing in the element. Is used.

【0003】これに対し、最近では、センス電流の流れ
ている素子の抵抗変化が、非磁性層を介する磁性層間で
の伝導電子のスピン依存性と異層界面でのスピン依存性
散乱により発生するGMR効果、なかんずくスピンバル
ブ型GMRによる磁気抵抗効果を用いた磁気ヘッドが用
いられる方向にある。スピンバルブ型GMRの構成は、
非磁性中間層を介して配置する1対の強磁性層の一方
を、反強磁性層との交換結合による磁化の固定をおこな
い磁化固定層とする、他方の強磁性層を該固定層と直行
する磁化方向を維持するように弱くバイアスし磁気記録
媒体からの漏洩信号磁界で敏感に磁化が回転するように
設定される磁化自由層とする。固定層の磁化と自由層の
磁化の相対角度によって流れる電子の散乱の程度が変化
することで電気抵抗が変化して信号を読み出すことがで
きる。このスピンバルブ効果による磁気抵抗効果を用い
た磁気抵抗効果素子(以下SV型GMR素子という)
は、異方性磁気抵抗効果におけるよりも抵抗変化が大き
く、感度の高い磁気センサ、磁気ヘッドに応用されてい
る。
On the other hand, recently, a resistance change of a device in which a sense current is flowing occurs due to spin dependence of conduction electrons between magnetic layers via a nonmagnetic layer and spin dependence scattering at a different layer interface. There is a trend toward the use of magnetic heads using the GMR effect and, above all, the magnetoresistive effect of the spin valve GMR. The structure of the spin valve type GMR is
One of the pair of ferromagnetic layers arranged via the non-magnetic intermediate layer is used as a fixed magnetization layer by fixing the magnetization by exchange coupling with the antiferromagnetic layer, and the other ferromagnetic layer is perpendicular to the fixed layer. The magnetization free layer is set so that it is biased weakly so that the magnetization direction is maintained and the magnetization is sensitively rotated by the leakage signal magnetic field from the magnetic recording medium. A change in the degree of scattering of the flowing electrons depending on the relative angle between the magnetization of the fixed layer and the magnetization of the free layer changes the electric resistance, and a signal can be read. Magnetoresistive element using the magnetoresistive effect due to this spin valve effect (hereinafter referred to as SV type GMR element)
Is applied to magnetic sensors and magnetic heads that have a larger resistance change than the anisotropic magnetoresistive effect and have high sensitivity.

【0004】ところで、磁気記録媒体における記録密度
が、50Gb/inch2 程度までの記録密度において
は、センス電流を薄膜面内方向とするいわゆるCIP
(Current In−Plane)構成を採ること
ができるが、更に高記録密度化されて、例えば100G
b/inch2 以上が要求されてくると、トラック幅が
0.1μm程度、またはそれ以下が要求され、この場
合、CIP構成では、現在の素子作製におけるパターニ
ング技術として最新のドライプロセスを利用しても、最
終的にABS面の磁気抵抗効果素子高さを機械加工で研
磨する必要があり、また、素子寸法の精度にも限界があ
った。更に、CIP構成での磁気抵抗効果の抵抗変化率
が不足することが課題となっていた。
By the way, when the recording density of the magnetic recording medium is up to about 50 Gb / inch 2, the so-called CIP in which the sense current is in the in-plane direction of the thin film.
Although a (Current In-Plane) configuration can be adopted, the recording density is further increased to, for example, 100 G.
When b / inch2 or more is required, the track width is required to be about 0.1 μm or less. In this case, even if the latest dry process is used as the patterning technique in the current device fabrication, the CIP structure is used. Finally, it was necessary to polish the magnetoresistive effect element height on the ABS surface by machining, and the accuracy of the element size was also limited. Further, there has been a problem that the resistance change rate of the magnetoresistive effect in the CIP structure is insufficient.

【0005】これに対してSV型GMR素子において、
その膜面に対して垂直方向に検出電流を通電するCPP
(Current Perpendicular To
the Plane:面垂直通電)構成によるGMR素
子の提案がなされている。CPP型のGMR素子として
は、トンネル電流を利用したTMR素子も検討され、最
近ではスピンバルブ型素子あるいは多層膜型素子につい
ての検討がなされている(例えば特表平11ー5099
56号、特開2000ー228004号、特開2000
ー228004、第24回日本応用磁気学会講演概要集
2000,p.427)。
On the other hand, in the SV type GMR element,
CPP for passing a detection current in a direction perpendicular to the film surface
(Current Peripheral To
There has been proposed a GMR element having a the plane (current flowing in a plane) configuration. As a CPP type GMR element, a TMR element utilizing a tunnel current has been studied, and recently, a spin valve type element or a multilayer film type element has been studied (for example, Japanese Patent Publication No. 11-5099).
56, JP-A-2000-228004, JP-A-2000
228004, Proc. Of the 24th Japan Society for Applied Magnetics 2000, p. 427).

【0006】[0006]

【発明が解決しようとする課題】上述したように、磁気
記録密度の向上に伴い、図1に示すようなCPP通電さ
れ、軟磁性である下層シールド6と上層シールド7に挟
まれた読み取りセンサを持つシールド型磁気センサが狭
ギャップ化に対応するためには、センサ部スピンバルブ
GMR膜あるいはTMR膜をABS面へ露出させた従来
構造では、読み取りセンサ1となるスピンバルブGMR
あるいはTMR素子の薄膜化が高感度化の必須条件とな
る。つまり、スピンバルブ素子膜厚をセンサのギャップ
長以下の膜厚にする必要がある。更に、シールド間のギ
ャップ長が狭くなった場合(例えば200Gbpsiク
ラス:ギャップ長60nm以下となるような場合)には
材料の薄膜化限界のために、素子感磁部が磁気シールド
間中央となるように配置された図2(a)の従来構造で
はその作製が困難となる。
As described above, with the improvement of the magnetic recording density, the reading sensor sandwiched between the soft magnetic lower layer shield 6 and the upper layer shield 7 as shown in FIG. In order for the shield type magnetic sensor to have a narrower gap, the spin valve GMR which becomes the reading sensor 1 in the conventional structure in which the sensor portion spin valve GMR film or TMR film is exposed to the ABS surface.
Alternatively, thinning the TMR element is an essential condition for increasing the sensitivity. That is, it is necessary to make the film thickness of the spin valve element equal to or smaller than the gap length of the sensor. Furthermore, when the gap length between the shields is narrowed (for example, when the gap length is 200 Gbpsi class: gap length is 60 nm or less), the magnetic field sensitive portion should be centered between the magnetic shields due to the limitation of thinning the material. With the conventional structure of FIG.

【0007】磁束ガイドを兼ね備えた磁気センサーにお
いては、ABS面へは磁束ガイド12のみが露出する構
造をとるため、磁気センサーの狭ギャップ化への対応が
容易である。例えば図2(b)のように、読み取りセン
サー部であるスピンバルブGMRあるいはTMR素子部
13はABS面16から磁束ガイド長だけ離れた位置に
設けることが可能な為、ABS面16におけるギャップ
長は、磁束ガイドの膜厚、磁束ガイド12と磁気シール
ド間の絶縁性などで制約されるだけであり、スピンバル
ブGMRあるいはTMR膜厚は自由に設定することが可
能となる。この磁束ガイド12によるGMRあるいはT
MR膜感磁部14(素子感磁部)へ磁束導入するとき、
その磁束侵入長λは磁束ガイド厚および磁気シールドギ
ャップ長、および磁束ガイド層透磁率で決定され、例え
ばギャップ長60nmでは図3に示すように、磁束ガイ
ド厚が厚くなるほど、磁束ガイド12を通じて素子感磁
部へ導入される磁束量は大きくなる。そのため、同じ磁
束ガイド長において素子検出感度を高くする為には、磁
束ガイド厚は厚いことが望ましい。
In the magnetic sensor that also functions as a magnetic flux guide, since only the magnetic flux guide 12 is exposed to the ABS surface, it is easy to deal with the narrowing of the magnetic sensor gap. For example, as shown in FIG. 2B, the spin valve GMR or TMR element portion 13 which is the reading sensor portion can be provided at a position separated from the ABS surface 16 by the magnetic flux guide length. The film thickness of the magnetic flux guide and the insulating property between the magnetic flux guide 12 and the magnetic shield are only limited, and the film thickness of the spin valve GMR or TMR can be freely set. GMR or T by this magnetic flux guide 12
When the magnetic flux is introduced into the MR film magnetic sensing section 14 (element magnetic sensing section),
The magnetic flux penetration length λ is determined by the magnetic flux guide thickness, the magnetic shield gap length, and the magnetic flux guide layer magnetic permeability. For example, when the gap length is 60 nm, as shown in FIG. The amount of magnetic flux introduced into the magnetic part increases. Therefore, in order to increase the element detection sensitivity with the same magnetic flux guide length, it is desirable that the magnetic flux guide thickness be thick.

【0008】一方、センサー出力となる抵抗変化量は,
センサの素子感磁部14の磁化回転量に比例する。磁化
回転量は,磁束ガイド12から流入する磁束量と素子感
磁部14の磁化量の比で決定され、素子感磁部14の磁
化量が小さいほど磁化回転量は大きくなり、結果として
センサー出力を大きく得ることができる。従って、磁束
ガイド厚は厚く,素子感磁部層厚は薄くすることが望ま
しい。しかしながら、磁束ガイド12と素子感磁部14
が連続膜として形成されるような、図4に示す作製プロ
セス順で形成された場合には、積層構造を有するGMR
膜あるいはTMR膜13の素子感磁部14の膜厚は、磁
束ガイド層厚≦素子感磁部層厚となってしまい、その組
み合わせが限られてしまうため、素子検出感度を維持し
たまま、磁束ガイド12の磁束伝達効率を上げることが
不可能となっていた。
On the other hand, the amount of resistance change that is the sensor output is
It is proportional to the amount of magnetization rotation of the element magnetic sensitive section 14 of the sensor. The amount of magnetization rotation is determined by the ratio of the amount of magnetic flux flowing from the magnetic flux guide 12 to the amount of magnetization of the element magnetic sensing unit 14, and the smaller the amount of magnetization of the element magnetic sensing unit 14, the greater the amount of magnetization rotation. Can be greatly increased. Therefore, it is desirable that the magnetic flux guide thickness be thick and the element magnetic sensitive layer thickness be thin. However, the magnetic flux guide 12 and the element magnetic sensitive section 14
4 is formed as a continuous film in the manufacturing process order shown in FIG. 4, a GMR having a laminated structure is formed.
The film thickness or the film thickness of the element magnetic sensitive portion 14 of the TMR film 13 is such that the magnetic flux guide layer thickness ≦ the element magnetic sensitive portion layer thickness, and the combination thereof is limited. Therefore, the magnetic flux is maintained while maintaining the element detection sensitivity. It was impossible to improve the magnetic flux transmission efficiency of the guide 12.

【0009】[0009]

【課題を解決するための手段】本発明は、CPP式のス
ピンバルブ型磁気抵抗効果素子と、スピンバルブ素子層
を挟むように配置する一対の磁気シールド層6,7と、
スピンバルブ素子層を、ABS面16から後退して配置
し、上記スピンバルブ層内の磁化自由層の一部又は全て
が磁束ガイド層12を兼ねるようにABS面16に露出
した構成において、例えば図5のように、磁化自由層2
1、23が非磁性層22で分割され相互に反強磁性的に
結合した積層フェリ構成であり、第一の磁化自由層21
と第二の磁化自由層23の膜厚×磁化量が異なるように
設定し、且つ、第一の磁化自由層21の膜厚×磁化量
が、第二の磁化自由層23の膜厚×磁化量より小さくな
ることを提案するものである。
The present invention is directed to a CPP type spin valve magnetoresistive effect element, and a pair of magnetic shield layers 6 and 7 arranged so as to sandwich the spin valve element layer.
In a configuration in which the spin valve element layer is arranged so as to recede from the ABS surface 16 and part or all of the magnetization free layer in the spin valve layer is exposed to the ABS surface 16 so as to also serve as the magnetic flux guide layer 12, 5, the magnetization free layer 2
The first magnetization free layer 21 has a laminated ferri structure in which reference numerals 1 and 23 are divided by the nonmagnetic layer 22 and are antiferromagnetically coupled to each other.
And the thickness of the second magnetization free layer 23 × the amount of magnetization are different, and the thickness of the first magnetization free layer 21 × the amount of magnetization is the thickness of the second magnetization free layer 23 × the magnetization. It is proposed to be smaller than the quantity.

【0010】また、上記磁化自由層が非磁性層で分割さ
れた積層フェリ構成であり、スピンバルブ素子層内の磁
化固定層19側に対面する第一の磁化自由層21の膜厚
の一部が磁束ガイドを兼ねる層としてABS面に露出
し、あるいは第一の磁化自由層21の膜厚の全てがAB
S面16から後退し、第二の磁化自由層23の膜厚の全
て,あるいは第二の磁化自由層23の膜厚の一部が磁束
ガイドを兼ねる層としてABS面16に露出させてい
る。上記スピンバルブ素子層の構成において、磁化自由
層が基板側に配置されたトップスピンバルブ構造や、磁
化固定層が基板側に配置されたボトムピンバルブ構造を
採用することができる。
Further, the magnetization free layer has a laminated ferri structure divided by non-magnetic layers, and a part of the film thickness of the first magnetization free layer 21 facing the magnetization fixed layer 19 side in the spin valve element layer. Is exposed on the ABS surface as a layer also serving as a magnetic flux guide, or the entire thickness of the first magnetization free layer 21 is AB.
All of the film thickness of the second magnetization free layer 23 or a part of the film thickness of the second magnetization free layer 23 is exposed from the ABS 16 as a layer which also serves as a magnetic flux guide. In the structure of the spin valve element layer, a top spin valve structure in which the magnetization free layer is arranged on the substrate side or a bottom pin valve structure in which the magnetization fixed layer is arranged on the substrate side can be adopted.

【0011】更に、上記磁化固定層は図9に示すよう
に、反強磁性層に隣接する第一の磁化固定層19−1と
非磁性導電層24を挟んで第二の磁化固定層19−2と
でなり相互に反強磁性的に結合した積層フェリ構成とす
ることで、磁化固定層から磁化自由層に作用する静磁界
を低減し、感度が高くなって敏感となった積層フェリ構
造の磁化自由層に対する再生波形の非対称性を制御する
こともできる。
Further, as shown in FIG. 9, the above-mentioned magnetization pinned layer has a second magnetization pinned layer 19- sandwiching a first magnetization pinned layer 19-1 adjacent to the antiferromagnetic layer and a non-magnetic conductive layer 24. By adopting a laminated ferri structure composed of 2 and antiferromagnetically coupled to each other, the static magnetic field acting on the magnetization free layer from the magnetization fixed layer is reduced, and the sensitivity becomes high and the laminated ferri structure becomes sensitive. It is also possible to control the asymmetry of the reproduced waveform with respect to the magnetization free layer.

【0012】[0012]

【発明の実施の形態】本発明の実施例を説明するが、本
件の発明の範囲を限定するものではない。図4に示した
素子パターニング工程において、磁束ガイド層および感
磁部層12、14を、非磁性層22たとえばRu、R
h、Ir(厚さ2〜20Å)などで分離した第一の磁化自
由層21、第ニの磁化自由層23からなる積層フェリ型
磁化自由層を導入して構成されたCPPスピンバルブ型
GMRあるいはTMRを構成する。ここで,第一の磁化
自由層21と第ニの磁化自由層23を構成するそれぞれ
の強磁性層たとえばNiFe、CoFe、Co、NiF
eCoなどは上記非磁性層を介して反強磁性結合状態を
有するよう、非磁性層厚が調整されている。すなわち第
一の磁化自由層21と第ニの磁化自由層23の磁化モー
メントは反平行方向を向いて、互いの磁化Ms×厚さt
の差が実効的な磁気回転に寄与する。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the present invention will be described, but the scope of the present invention is not limited thereto. In the element patterning process shown in FIG. 4, the magnetic flux guide layers and the magnetic sensing layers 12 and 14 are formed of non-magnetic layers 22 such as Ru and R.
A CPP spin-valve type GMR constructed by introducing a laminated ferrimagnetic free layer composed of a first magnetic free layer 21 and a second magnetic free layer 23 separated by h, Ir (thickness 2 to 20Å) or the like, or Configure TMR. Here, the respective ferromagnetic layers forming the first magnetization free layer 21 and the second magnetization free layer 23, such as NiFe, CoFe, Co, and NiF, are used.
The thickness of the nonmagnetic layer is adjusted so that eCo or the like has an antiferromagnetically coupled state via the nonmagnetic layer. That is, the magnetization moments of the first magnetization free layer 21 and the second magnetization free layer 23 are oriented in antiparallel directions, and the mutual magnetization Ms × thickness t.
Difference contributes to effective magnetic rotation.

【0013】この積層フェリ型磁化自由層を有するCP
Pスピンバルブ型GMRあるいはTMRを構成する。つ
まり、GMRの場合は、非磁性中間層20を、例えばC
uのような導電層として例えば厚さ2nmとして成膜し
た。また、TMRの場合は、非磁性中間層20を、例え
ばAl2O3のような絶縁層として例えば厚さ0.8n
mとして成膜した。図4における第一の磁化自由層21
と第二の磁化自由層23の膜厚の設定と、図4(b)の
エッチング工程において、特に感磁部層14のエッチン
グ深さを任意位置に定めることで、実効的な磁束ガイド
層厚と、実効的な感磁部層厚を決定することができる。
つまり図5に示すように、図4(b)のエッチング時に
第一の磁化自由層厚、第ニの磁化自由層厚がそれぞれ、
0<t1'≦t1となる場合、t1'=0となる場合、t
1'=0 及び 0<t2'≦t2となる場合を任意に選
択することが可能である。
CP having this laminated ferrimagnetic free layer
A P spin valve type GMR or TMR is constructed. That is, in the case of GMR, the non-magnetic intermediate layer 20 is, for example, C
A conductive layer such as u was formed to a thickness of 2 nm, for example. In the case of TMR, the non-magnetic intermediate layer 20 is an insulating layer such as Al2O3 and has a thickness of 0.8 n, for example.
The film was formed as m. The first magnetization free layer 21 in FIG.
By setting the film thickness of the second magnetization free layer 23 and setting the etching depth of the magnetic sensitive layer 14 at an arbitrary position in the etching step of FIG. 4B, the effective magnetic flux guide layer thickness Then, the effective magnetic sensing part layer thickness can be determined.
That is, as shown in FIG. 5, the first magnetization free layer thickness and the second magnetization free layer thickness during the etching of FIG.
When 0 <t1 ′ ≦ t1, when t1 ′ = 0, t
The case where 1 ′ = 0 and 0 <t2 ′ ≦ t2 can be arbitrarily selected.

【0014】そのとき,実効的な磁束ガイド層および感
磁部層の層厚×磁化量は、図5(a)(b)(c)に示
すような実効厚へ可変に選ぶことが出来る。図5(a)
では、実効磁束ガイド厚×磁化量=t2×M2−t1’
×M1、実効感磁部層厚×磁化量=t2×M2−t1×
M1となる。図5(b)では、実効磁束ガイド厚×磁化
量=t2×M2、実効感磁部層厚×磁化量=t2×M2
−t1×M1となる。図5(c)では、実効磁束ガイド
厚×磁化量=t2’×M2、実効感磁部層厚×磁化量=
t2×M2−t1×M1となる。本発明の構成は、上記
のt1、t1’、t2、t2’、M1,M2等の設定に
より、実効的に磁束ガイド層厚>素子感磁部層厚の条件
を満たすことが可能となり、所望の磁束ガイド層厚と素
子感磁部厚を有する読み取りセンサが得られる。
At this time, the effective magnetic flux guide layer and the magnetic sensitive layer can be variably selected as follows: (layer thickness × magnetization amount) as shown in FIGS. 5 (a) (b) (c). Figure 5 (a)
Then, effective magnetic flux guide thickness x magnetization amount = t2 x M2-t1 '
X M1, effective magnetic sensing layer thickness x amount of magnetization = t2 x M2-t1 x
It becomes M1. In FIG. 5B, effective magnetic flux guide thickness × magnetization amount = t2 × M2, effective magnetic sensing part layer thickness × magnetization amount = t2 × M2
−t1 × M1. In FIG. 5C, effective magnetic flux guide thickness × magnetization amount = t2 ′ × M2, effective magnetic sensing part layer thickness × magnetization amount =
It becomes t2 * M2-t1 * M1. With the configuration of the present invention, it is possible to effectively satisfy the condition of magnetic flux guide layer thickness> element magnetic sensitive layer thickness by setting the above t1, t1 ′, t2, t2 ′, M1, M2, etc. A reading sensor having the magnetic flux guide layer thickness and the element magnetic sensitive portion thickness can be obtained.

【0015】図6(a)は、本件実施例として読み取り
素子部深さ方向の断面(a)ー1と膜面に平行な断面
(a)−2を示したものである。図6(b)は、比較例
として読み取り素子部深さ方向の断面(b)−1と膜面
に平行な断面(b)−2を示したものである。尚、第一
の磁化自由層21および第ニの磁化自由層23の厚さ
は、図6(a)(b)に示すようにその大小関係によっ
て磁化状態が変化するため、t1×M1<t2×M2と
することが本発明のポイントとなる。つまり、磁束ガイ
ドのパターニングと同様にトラック幅パターニングされ
た素子に素子動作安定化の為の安定化永久磁石膜を設
け、その磁石膜からの磁界に対して、t1×M1<t2
×M2となる場合には第ニの磁化自由層面内の磁化は、
磁束ガイド部12および第二の磁化自由層23が図6
(a)−2のように同一方向を向くため磁区の発生は起
こらないが、t1×M1>t2×M2となる場合には図
6(b)のように第ニの磁化自由層内で、磁束ガイド部
12との境界に180度磁壁を発生し、磁区が存在する
為動作安定化が困難となり適当でないことが分かる。
FIG. 6A shows a cross section (a) -1 in the depth direction of the reading element section and a cross section (a) -2 parallel to the film surface as the present embodiment. FIG. 6B shows a cross section (b) -1 in the depth direction of the reading element portion and a cross section (b) -2 parallel to the film surface as a comparative example. Note that the thicknesses of the first magnetization free layer 21 and the second magnetization free layer 23 are t1 × M1 <t2 because the magnetization state changes depending on the size relationship as shown in FIGS. 6A and 6B. The point of the present invention is to make xM2. That is, similarly to the patterning of the magnetic flux guide, a stabilizing permanent magnet film for stabilizing the element operation is provided on the element having the track width patterning, and t1 × M1 <t2 with respect to the magnetic field from the magnet film.
In the case of × M2, the magnetization in the plane of the second magnetization free layer is
The magnetic flux guide portion 12 and the second magnetization free layer 23 are shown in FIG.
As shown in (a) -2, the magnetic domains do not occur because they are oriented in the same direction, but when t1 × M1> t2 × M2, in the second magnetization free layer, as shown in FIG. 6B, It can be seen that a 180 degree domain wall is generated at the boundary with the magnetic flux guide section 12 and the magnetic domain exists, so that it is difficult to stabilize the operation and it is not suitable.

【0016】図7(a)は、上記説明に用いてきた固定
層上置きのトップタイプスピンバルブ:TSV、図7
(b)は、固定層下置きのボトムタイプスピンバルブ:
BSVの配置例を示す。図7は、(a)(b)ともに第
2の磁化自由層のみを磁束ガイドと兼ねた構成の実施例
として示した。図7(b)のBSV型では、実効的な磁
束ガイド層厚と感磁部層厚の選択はエッチングによって
変更することは不可能であるが、第1自由層t1、M
1、第2自由層t2、M2とした場合、磁束ガイド厚:
t2×M2、感磁部:t2×M2−t1×M1の実効膜
厚の選択により本発明を実施することが可能となる。
FIG. 7A shows a top type spin valve TSV on the fixed layer used in the above description: FIG.
(B) is a bottom type spin valve under the fixed layer:
An example of arrangement of BSVs is shown. FIG. 7 shows both (a) and (b) as an example of a configuration in which only the second magnetization free layer also serves as a magnetic flux guide. In the BSV type of FIG. 7B, the selection of the effective magnetic flux guide layer thickness and the magnetic sensitive layer thickness cannot be changed by etching, but the first free layer t1, M
When the first and second free layers t2 and M2 are used, the magnetic flux guide thickness:
The present invention can be implemented by selecting the effective film thickness of t2 × M2 and the magnetic sensitive portion: t2 × M2-t1 × M1.

【0017】図8(a)(b)には素子安定化の為、素
子トラック幅形成時に安定化永久磁石膜3を設けた場合
の磁気抵抗効果素子深さ方向に直交する断面の一例を示
す。図8(a)は、トップスピンバルブ型の構成を示
し、図8(a)−1は、素子感磁部におけるABS面と
平行な断面構成であり、図8(a)−2は、ABS面の
構成である。 図8(b)は、ボトムスピンバルブ型
の構成を示し、図8(b)−1は、素子感磁部における
ABS面と平行な断面構成であり、図8(b)−2は、
ABS面の構成である。上記構成においては、上下電極
間の電流リークを防ぐ為、絶縁膜と積層された永久磁石
膜によって、素子安定化永久磁石によるバイアス磁界を
両自由層へ印加する構造を有している。安定化永久磁石
膜3の矢印は着磁方向となり、磁化固定層とは直交する
方向に磁化自由層をバイアスする。
FIGS. 8A and 8B show an example of a cross section perpendicular to the depth direction of the magnetoresistive effect element when the stabilizing permanent magnet film 3 is provided at the time of forming the element track width to stabilize the element. . FIG. 8A shows a top spin valve type configuration, FIG. 8A-1 is a cross-sectional configuration parallel to the ABS plane in the element magnetic sensing part, and FIG. 8A-2 is an ABS configuration. It is the structure of the surface. FIG. 8B shows a bottom spin valve type structure, FIG. 8B-1 is a cross-sectional structure parallel to the ABS surface in the element magnetic sensing part, and FIG. 8B-2 is
This is the ABS structure. In the above structure, in order to prevent current leakage between the upper and lower electrodes, a permanent magnetic film laminated with an insulating film applies a bias magnetic field from the element stabilizing permanent magnet to both free layers. The arrow of the stabilizing permanent magnet film 3 is in the magnetization direction, and biases the magnetization free layer in the direction orthogonal to the magnetization fixed layer.

【0018】更に、上記磁化固定層は図9に示すよう
に、反強磁性層に隣接する第一の磁化固定層19−1
(例えばCoFe)と非磁性導電層24(例えばRu)
を挟んで第二の磁化固定層19−2(例えばCoFe)
とでなり、互いの磁化が反平行に強く結合した状態の積
層フェリ構成とすることで、2枚の強磁性膜の磁化量M
s×膜厚tが異なる場合、積層膜全体としての正味のM
s×tは両者のMs×tの差として表すことができる。
この積層フェリの磁化固定層とすることで磁化固定層か
ら磁化自由層に作用する静磁界を低減し、感度が高くな
って敏感となった積層フェリ構造の磁化自由層に対する
再生波形の非対称性を制御することもできる。
Further, as shown in FIG. 9, the magnetization pinned layer is a first magnetization pinned layer 19-1 adjacent to the antiferromagnetic layer.
(Eg CoFe) and non-magnetic conductive layer 24 (eg Ru)
The second magnetization fixed layer 19-2 (for example, CoFe) sandwiching
And the magnetization amount of the two ferromagnetic films is M
When s × film thickness t is different, the net M of the laminated film as a whole
s × t can be expressed as the difference between both Ms × t.
By using the magnetization pinned layer of this laminated ferri, the static magnetic field acting on the magnetization free layer from the magnetization pinned layer is reduced, and the asymmetry of the reproduced waveform with respect to the magnetization free layer of the laminated ferri structure becomes sensitive and becomes sensitive. It can also be controlled.

【0019】[0019]

【発明の効果】前述のように高密度磁気記録に対応し
て、本発明は、磁束ガイド厚<スピンバルブ素子厚で狭
ギャップ化を図り、且つ、磁束ガイド厚>実効磁化自由
層厚とし、更に磁化自由層の実効的な磁化量×膜厚を小
さくすることで、高感度化と高安定化(磁区を発生させ
ない)を実現する。より具体的には、高密度磁気記録に
より記録信号波長や信号トラック幅が狭くなり、記録媒
体からの信号漏洩磁束が微少化するに対し、磁気抵抗効
果素子の感度は、磁束ガイド層から流入する磁束量と磁
化自由層の磁気的実効厚さの比が高い方が有利となり、
また、磁束ガイドの磁束侵入長は、磁束ガイドの透磁率
と磁気シールドのギャップ長に比例するが、図3のよう
に磁束ガイドの膜厚にも関係し、磁束ガイドの膜厚を磁
化自由層の実効的厚さより厚くすることで高感度の条件
を満たすことが可能となった。
As described above, according to the present invention, the magnetic flux guide thickness <the spin valve element thickness to narrow the gap and the magnetic flux guide thickness> the effective magnetization free layer thickness, corresponding to the high density magnetic recording, Further, by reducing the effective magnetization amount × film thickness of the magnetization free layer, high sensitivity and high stability (no magnetic domain is generated) are realized. More specifically, the recording signal wavelength and the signal track width are narrowed by the high-density magnetic recording, and the signal leakage magnetic flux from the recording medium is minimized, while the sensitivity of the magnetoresistive effect element flows from the magnetic flux guide layer. The higher the ratio of the amount of magnetic flux to the magnetic effective thickness of the magnetization free layer, the more advantageous it becomes.
Further, although the magnetic flux penetration length of the magnetic flux guide is proportional to the magnetic permeability of the magnetic flux guide and the gap length of the magnetic shield, it is also related to the film thickness of the magnetic flux guide as shown in FIG. It became possible to satisfy the condition of high sensitivity by making it thicker than the effective thickness of.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明に係わる磁気ヘッドの一部切り
欠き断面とする斜視図である。
FIG. 1 is a partially cutaway perspective view of a magnetic head according to the present invention.

【図2】図2(a)は、ABS面に磁気抵抗効果素子が
露出した従来構造の磁気ヘッドの断面図である。図2
(b)は、本件に係わる磁束ガイド型の磁気ヘッドの断
面図である。
FIG. 2A is a cross-sectional view of a conventional magnetic head in which a magnetoresistive effect element is exposed on an ABS surface. Figure 2
FIG. 3B is a sectional view of a magnetic flux guide type magnetic head according to the present invention.

【図3】図3は、磁束ガイドの磁束侵入長λと磁束ガイ
ド厚さとの関係を示す図である。
FIG. 3 is a diagram showing a relationship between a magnetic flux penetration length λ of a magnetic flux guide and a magnetic flux guide thickness.

【図4】図4(a)〜(e)は、磁束ガイド形成の作製
プロセスを示す断面図である。
FIG. 4A to FIG. 4E are cross-sectional views showing a manufacturing process for forming a magnetic flux guide.

【図5】図5(a)〜(c)は、積層フェリ構造の磁化
自由層の厚さと、磁束ガイド厚さの異なる例を示す断面
図である。
5A to 5C are cross-sectional views showing examples in which the thickness of the magnetization free layer of the laminated ferri structure and the thickness of the magnetic flux guide are different.

【図6】図6(a)(b)は、第一の磁化自由層と、第
二の磁化自由層と、磁束ガイド層の各々の膜厚と磁区の
発生の関係を示す断面図である。
6 (a) and 6 (b) are cross-sectional views showing the relationship between the film thickness of each of the first magnetization free layer, the second magnetization free layer, and the magnetic flux guide layer and the generation of magnetic domains. .

【図7】図7(a)(b)は、本発明におけるトップス
ピンバルブ型とボトムスピンバルブ型の実施例の断面図
である。
7A and 7B are cross-sectional views of a top spin valve type and a bottom spin valve type embodiments of the present invention.

【図8】図8(a)(b)は、本件における安定化永久
磁石の配置例の断面図である。
8A and 8B are cross-sectional views of an arrangement example of a stabilizing permanent magnet in the present case.

【図9】図9は、本件における磁化固定層の積層フェリ
構成を示す断面図である。
FIG. 9 is a cross-sectional view showing a laminated ferri structure of a magnetization fixed layer in the present case.

【符号の説明】[Explanation of symbols]

1・・・読み取りセンサ、2・・・基板、3・・・安定
化永久磁石膜、4・・・絶縁膜、5・・・アルミナ層、
6・・・下層シールド、7・・・中間シールド、8・・
・記録磁気ギャップ、9・・・記録磁気コア、10・・
・薄膜コイル、11・・・電極層、12・・・磁束ガイ
ド層、13・・・スピンバルブ素子、14・・・感磁部
(磁化自由層)、15・・・絶縁層、16・・・ABS
面、17・・・レジスト、18・・・反強磁性層、19
・・・磁化固定層、20・・・非磁性導電中間層あるい
は絶縁中間層、21・・・第一の磁化自由層、22・・
・非磁性導電層(自由層の積層フェリ中間層)、23・
・・第ニの磁化自由層。24・・・非磁性導電層(固定
層の積層フェリ中間層)
1 ... Read sensor, 2 ... Substrate, 3 ... Stabilizing permanent magnet film, 4 ... Insulating film, 5 ... Alumina layer,
6 ... Lower shield, 7 ... Middle shield, 8 ...
.Recording magnetic gap, 9 ... Recording magnetic core, 10 ...
・ Thin film coil, 11 ... Electrode layer, 12 ... Flux guide layer, 13 ... Spin valve element, 14 ... Magnetism sensing portion (magnetization free layer), 15 ... Insulating layer, 16 ...・ ABS
Surface, 17 ... Resist, 18 ... Antiferromagnetic layer, 19
... Magnetization pinned layer, 20 ... Non-magnetic conductive intermediate layer or insulating intermediate layer, 21 ... First magnetization free layer, 22 ...
・ Non-magnetic conductive layer (free layer laminated ferri intermediate layer), 23 ・
..Second magnetization free layer 24 ... Non-magnetic conductive layer (fixed layer laminated ferri intermediate layer)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】検出電流を膜面に垂直に通電する所謂CP
P式(Current Perpendicular
To the Plane)のスピンバルブ型磁気抵抗
効果素子(以降、スピンバルブ素子層)と、該スピンバ
ルブ素子層を挟むように配置する一対の磁気シールド層
と、該スピンバルブ素子層を、媒体対向側である所謂A
BS面(Air Bearing Surface)か
ら後退して配置し、上記スピンバルブ素子層内の磁化自
由層の一部又は全てが磁束ガイド層を兼ねるようにAB
S面に露出した構成において、該磁化自由層が非磁性層
で分割された所謂積層フェリ構成であり、第一の磁化自
由層と第二の磁化自由層の膜厚×磁化量が異なることを
特徴とする磁気抵抗効果磁気ヘッド。
1. A so-called CP for passing a detection current perpendicularly to a film surface.
P-type (Current Perpendicular)
A spin valve type magnetoresistive effect element (hereinafter referred to as a spin valve element layer) of To the Plane), a pair of magnetic shield layers arranged so as to sandwich the spin valve element layer, and the spin valve element layer on the medium facing side. The so-called A
It is arranged so as to recede from the BS plane (Air Bearing Surface), and AB is so arranged that part or all of the magnetization free layer in the spin valve element layer also functions as a magnetic flux guide layer.
In the structure exposed on the S-plane, the magnetization free layer is a so-called laminated ferri structure divided by a non-magnetic layer, and the first magnetization free layer and the second magnetization free layer have different thicknesses × magnetization amounts. Characteristic magnetoresistive effect magnetic head.
【請求項2】上記磁化自由層が非磁性層で分割され相互
に反強磁性的に結合した所謂積層フェリ構成であり、上
記スピンバルブ素子層内の磁化固定層側に対面する第一
の磁化自由層の膜厚×磁化量が、第二の磁化自由層の膜
厚×磁化量より小さいことを特徴とする請求項1に記載
の磁気抵抗効果磁気ヘッド。
2. A so-called laminated ferri structure in which the magnetization free layer is divided into nonmagnetic layers and antiferromagnetically coupled to each other, and has a first magnetization facing the magnetization fixed layer side in the spin valve element layer. 2. The magnetoresistive effect magnetic head according to claim 1, wherein the film thickness of the free layer × the amount of magnetization is smaller than the film thickness of the second magnetization free layer × the amount of magnetization.
【請求項3】上記磁化自由層が非磁性層で分割され相互
に反強磁性的に結合した所謂積層フェリ構成であり、上
記スピンバルブ素子層内の磁化固定層側に対面する第一
の磁化自由層の膜厚の一部が磁束ガイドを兼ねる層とし
てABS面に露出し、あるいは第一の磁化自由層の膜厚
の全てがABS面から後退し、第二の磁化自由層の膜厚
の全て,あるいは第二の磁化自由層の膜厚の一部が磁束
ガイドを兼ねる層としてABS面に露出していることを
特徴とする請求項1または2に記載の磁気抵抗効果磁気
ヘッド。
3. A so-called laminated ferri structure in which the magnetization free layer is divided into nonmagnetic layers and antiferromagnetically coupled to each other, and a first magnetization facing the magnetization fixed layer side in the spin valve element layer. Part of the film thickness of the free layer is exposed on the ABS surface as a layer that also serves as a magnetic flux guide, or the entire film thickness of the first magnetization free layer recedes from the ABS surface, and 3. The magnetoresistive effect magnetic head according to claim 1, wherein all or part of the film thickness of the second magnetization free layer is exposed on the ABS surface as a layer also serving as a magnetic flux guide.
【請求項4】上記スピンバルブ素子層が、非磁性基板側
から主な構成層として磁気シールド層、非磁性電極層、
第二の磁化自由層、非磁性層、第一の磁化自由層、非磁
性中間層、磁化固定層、反強磁性層、非磁性電極層、磁
気シールド層の順に構成する所謂トップタイプスピンバ
ルブ構造であることを特徴とする請求項1、2、または
3に記載の磁気抵抗効果磁気ヘッド。
4. The spin-valve element layer comprises a magnetic shield layer, a non-magnetic electrode layer, as main constituent layers from the non-magnetic substrate side,
A so-called top-type spin valve structure in which a second magnetization free layer, a nonmagnetic layer, a first magnetization free layer, a nonmagnetic intermediate layer, a magnetization fixed layer, an antiferromagnetic layer, a nonmagnetic electrode layer, and a magnetic shield layer are formed in this order. The magnetoresistive effect magnetic head according to claim 1, 2, or 3.
【請求項5】上記スピンバルブ素子層が、非磁性基板側
から主な構成層として磁気シールド層、非磁性電極層、
反強磁性層、磁化固定層、非磁性中間、第一の磁化自由
層、非磁性層、第二の磁化自由層、非磁性電極層、磁気
シールド層の順に構成する所謂ボトムタイプピンバルブ
構造であることを特徴とする請求項1、2、または3に
記載の磁気抵抗効果磁気ヘッド。
5. The spin-valve element layer comprises a magnetic shield layer, a non-magnetic electrode layer, and a main constituent layer from the non-magnetic substrate side.
A so-called bottom type pin valve structure in which an antiferromagnetic layer, a magnetization fixed layer, a non-magnetic intermediate layer, a first magnetization free layer, a non-magnetic layer, a second magnetization free layer, a non-magnetic electrode layer, and a magnetic shield layer are formed in this order. The magnetoresistive effect magnetic head according to claim 1, 2, or 3.
【請求項6】上記磁化固定層は、反強磁性層に隣接する
第一の磁化固定層と非磁性導電層と第二の磁化固定層で
なり相互に反強磁性的に結合した所謂積層フェリ構成で
あることを特徴とする請求項1、2、3、4または5に
記載の磁気抵抗効果磁気ヘッド。
6. The so-called laminated ferrimagnetic layer, wherein the magnetization pinned layer is composed of a first magnetization pinned layer, a nonmagnetic conductive layer and a second magnetization pinned layer which are adjacent to the antiferromagnetic layer and which are antiferromagnetically coupled to each other. The magnetoresistive effect magnetic head according to claim 1, 2, 3, 4, or 5, which has a configuration.
【請求項7】上記非磁性中間層が、導電層であり、所謂
GMR素子であることを特徴とする請求項1、2、3、
4、5または6に記載の磁気抵抗効果磁気ヘッド。
7. The non-magnetic intermediate layer is a conductive layer and is a so-called GMR element.
4. The magnetoresistive effect magnetic head described in 4, 5, or 6.
【請求項8】上記非磁性中間層が、絶縁層であり、所謂
トンネルMR素子であることを特徴とする請求項1、
2、3、4、5または6に記載の磁気抵抗効果磁気ヘッ
ド。
8. The non-magnetic intermediate layer is an insulating layer and is a so-called tunnel MR element.
2. The magnetoresistive effect magnetic head described in 2, 3, 4, 5 or 6.
JP2001270464A 2001-09-06 2001-09-06 Magneto-resistance effect type magnetic head Pending JP2003077107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270464A JP2003077107A (en) 2001-09-06 2001-09-06 Magneto-resistance effect type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270464A JP2003077107A (en) 2001-09-06 2001-09-06 Magneto-resistance effect type magnetic head

Publications (1)

Publication Number Publication Date
JP2003077107A true JP2003077107A (en) 2003-03-14

Family

ID=19096117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270464A Pending JP2003077107A (en) 2001-09-06 2001-09-06 Magneto-resistance effect type magnetic head

Country Status (1)

Country Link
JP (1) JP2003077107A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516604A (en) * 2003-05-13 2007-06-21 フリースケール セミコンダクター インコーポレイテッド Magnetoelectronic information device with composite magnetic free layer
US7369371B2 (en) 2005-08-15 2008-05-06 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having a shape enhanced pinned layer
US7522391B2 (en) 2005-12-14 2009-04-21 Hitachi Global Storage Technologies Netherlands B.V. Current perpendicular to plane magnetoresistive sensor having a shape enhanced pinned layer and an in stack bias structure
US7616411B2 (en) * 2006-03-28 2009-11-10 Hitachi Global Storage Technologies Netherlands B.V. Current perpendicular to plane (CPP) magnetoresistive sensor having a flux guide structure and synthetic free layer
JP2013062002A (en) * 2011-09-12 2013-04-04 Toshiba Corp Spin torque oscillating element reproducing head and magnetic recording and reproducing device
US8514526B2 (en) 2009-10-14 2013-08-20 HGST Netherlands B.V. Magnetoresistive magnetic head having a non-magnetic part on a medium facing surface side of the sensor
JP2022038821A (en) * 2020-08-27 2022-03-10 Tdk株式会社 Magnetic sensor, and position detection device and current sensor using magnetic sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516604A (en) * 2003-05-13 2007-06-21 フリースケール セミコンダクター インコーポレイテッド Magnetoelectronic information device with composite magnetic free layer
US7369371B2 (en) 2005-08-15 2008-05-06 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having a shape enhanced pinned layer
US7522391B2 (en) 2005-12-14 2009-04-21 Hitachi Global Storage Technologies Netherlands B.V. Current perpendicular to plane magnetoresistive sensor having a shape enhanced pinned layer and an in stack bias structure
US7616411B2 (en) * 2006-03-28 2009-11-10 Hitachi Global Storage Technologies Netherlands B.V. Current perpendicular to plane (CPP) magnetoresistive sensor having a flux guide structure and synthetic free layer
US8514526B2 (en) 2009-10-14 2013-08-20 HGST Netherlands B.V. Magnetoresistive magnetic head having a non-magnetic part on a medium facing surface side of the sensor
JP2013062002A (en) * 2011-09-12 2013-04-04 Toshiba Corp Spin torque oscillating element reproducing head and magnetic recording and reproducing device
JP2022038821A (en) * 2020-08-27 2022-03-10 Tdk株式会社 Magnetic sensor, and position detection device and current sensor using magnetic sensor
JP7298569B2 (en) 2020-08-27 2023-06-27 Tdk株式会社 Magnetic sensor, position detector and current sensor using magnetic sensor

Similar Documents

Publication Publication Date Title
Tsang et al. Design, fabrication, and performance of spin-valve read heads for magnetic recording applications
US9001472B2 (en) Shield stabilization configuration with applied bias
JP3575683B2 (en) Multi-element type magnetoresistive element
JP3849460B2 (en) Magnetoresistive effect element, magnetoresistive effect type magnetic sensor, and magnetoresistive effect type magnetic head
US8174799B2 (en) Differential magnetoresistive magnetic head
US20060221509A1 (en) Magnetoresistive sensor based on spin accumulation effect with free layer stabilized by in-stack orthogonal magnetic coupling
JP2002359412A (en) Magnetoresistive effect element, magnetoresistive effect type magnetic sensor, magnetoresistive effect type magnetic head, and magnetic memory
US8891208B2 (en) CPP-type magnetoresistive element including a rear bias structure and lower shields with inclined magnetizations
US6724582B2 (en) Current perpendicular to plane type magnetoresistive device, magnetic head, and magnetic recording/reproducing apparatus
JP2003069109A (en) Magnetoresistive effect magnetic sensor, magnetoresistive effect magnetic head, magnetic reproducing device, and methods of manufacturing the sensor and head
JP2001331913A (en) Magnetic tunnel junction type read-in head, its manufacturing method and magnetic field detecting device
JP2002150512A (en) Magnetoresistive element and magnetoresistive magnetic head
JP2007531179A (en) Stabilized spin valve head and manufacturing method thereof
JP2005109241A (en) Magnetoresistance effect element, manufacturing method thereof, and magnetic head
JP2001250208A (en) Magneto-resistive element
JP2004039869A (en) Magnetic reluctance sensor, magnetic head, and magnetic recording equipment
US7167347B2 (en) Magnetoresistance effect element and magnetic head with nano-contact portion not more than a fermi length placed between dual layers
KR100553489B1 (en) Spin-valve magnetoresistance effect head, composite magnetic head comprising the same, and magnetoresistance recorded medium drive
JP2005109240A (en) Magnetoresistive effect element and magnetic head
JP2005109243A (en) Magnetoresistance effect element and magnetic head
JP2003077107A (en) Magneto-resistance effect type magnetic head
JP2008192269A (en) Magnetic read head and its manufacturing method
JP2003229612A (en) Magnetoresistance effect sensor and magnetic disk device
JP3569259B2 (en) Perpendicular conduction type magnetoresistive element, magnetic head, and magnetic recording / reproducing device
JP2008090877A (en) Magnetic head and magnetic recording device