JPH01213969A - Electrolyte for lithium battery - Google Patents

Electrolyte for lithium battery

Info

Publication number
JPH01213969A
JPH01213969A JP63038573A JP3857388A JPH01213969A JP H01213969 A JPH01213969 A JP H01213969A JP 63038573 A JP63038573 A JP 63038573A JP 3857388 A JP3857388 A JP 3857388A JP H01213969 A JPH01213969 A JP H01213969A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
discharge
charging
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63038573A
Other languages
Japanese (ja)
Inventor
Isamu Yoshimatsu
吉松 勇
Toshiro Hirai
敏郎 平井
Junichi Yamaki
準一 山木
Shinichi Tobishima
真一 鳶島
Masayasu Arakawa
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63038573A priority Critical patent/JPH01213969A/en
Publication of JPH01213969A publication Critical patent/JPH01213969A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide high electroconductivity and excellent lithium charging/ discharging characteristic by adding annular saturated hydrocarbons or ones having straight chain alkyl radicals as an additive in a specific concentration range. CONSTITUTION:Lithium salt is dissolved in organic solvent to prepare a solution, and annular saturated hydrocarbons or ones having straight chain alkyl radicals are included in this solution in the concentration range 10<-3>M-10<-1>M, and this is used as an electrolyte for lithium battery. Annular saturated hydrocarbons are adsorbed to the lithium negative electrode easily without hindering dissociation of lithium salt or movability of lithium ions, to provide smooth deduction of lithium ions on the negative electrode associate with charging/discharging and elution from the negative electrode into the electrolyte. This accomplishes large charging/discharging capacity and excellent charging/discharging cycle life.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウム電池用電解液、更に詳細にはリチウ
ム電池に用いる電解液の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolytic solution for lithium batteries, and more particularly to improvements in electrolytic solutions used in lithium batteries.

〔従来の技術〕[Conventional technology]

リチウムは、標準単極電位が一五03W(標準水素電極
基準)と高く、還元力が極めて強く、まfP:、原子量
が&941と小さいため、重量当りの容量密度は186
 Ah/ tと大きい。このため、リチウムを負極活物
質として用いる電池(以下、リチウム電池という)は小
型、高エネルギー密度t−有する電池として研究されて
おり、既に二酸化マンガン、7フ化黒鉛などを正極活物
質として用いる電池が市販されている。しかし、これら
はいずれも−次電池でろ夛通常の実用に供しうる充放電
可能なリチウム二次電池は実現されていないのが現状で
ある。高エネルギー密度という放電特性の利点を生かし
ながら、リチウム電池が充電も可能となれば、従来の電
池系に比較して極めて特性の優れた電池が実現すること
となシ、携否電子機器を始めとする産業界に与える効果
は大きい。
Lithium has a high standard monopolar potential of 1503 W (standard hydrogen electrode), extremely strong reducing power, and a small atomic weight of &941, so its capacity density per weight is 186
Ah/t is large. For this reason, batteries using lithium as a negative electrode active material (hereinafter referred to as lithium batteries) are being researched as small-sized batteries with high energy density t-, and batteries using manganese dioxide, graphite heptafluoride, etc. as positive electrode active materials are already being studied. is commercially available. However, all of these are rechargeable batteries, and at present no rechargeable and dischargeable lithium secondary battery that can be used in ordinary practice has been realized. If lithium batteries can be recharged while taking advantage of the discharge characteristics of high energy density, batteries with extremely superior characteristics compared to conventional battery systems will be realized, and will be used in portable electronic devices and other devices. This will have a large effect on the industrial world.

リチウム電池を二次化する九めには、正極活物質の開発
、電解液の選択、電池構成法の改善など多くの解決すべ
き問題がある。特に、電解液の選択はX要なa題でらる
。常温作動型のリチウム二次電池には、非水電解液を用
いることが実用の見地から望ましいが、電解液の導X軍
は従来の電池系に用いられる水浴液系に比べ1桁も2桁
も低いという欠点があった0このため、電池の放電利用
率向上のためには電解液の導電率向上は不可欠である。
There are many issues to be solved before converting lithium batteries into secondary batteries, including the development of positive electrode active materials, selection of electrolytes, and improvement of battery construction methods. In particular, the choice of electrolyte is a matter of great importance. From a practical point of view, it is desirable to use a non-aqueous electrolyte in a lithium secondary battery that operates at room temperature. Therefore, in order to improve the discharge utilization rate of the battery, it is essential to improve the conductivity of the electrolyte.

同時に、二次電池に適用するためには、非水電解液中に
おけるリチウムの充放電効率が高いことが要求されるの
は当然である。すなわち、リチウム二次電池に用いる電
解液は、■高い導電率を有すること、■高いリチウム充
放電動at−有すること、の二点を同時に充足する必要
がある。
At the same time, in order to apply it to secondary batteries, it is natural that lithium in the non-aqueous electrolyte is required to have high charging and discharging efficiency. That is, the electrolytic solution used in a lithium secondary battery needs to simultaneously satisfy two requirements: (1) to have high electrical conductivity, and (2) to have high lithium charging/discharging power.

、 +7デウム充放電効率の比較的高い電解液としては
、LiAsF−−2−メチルテトラヒドロフラン系電解
液が提案されている(米国特許第4118559号明細
書参照)。しかしながら、同電mho導電軍は低((t
 5 M (mole/l) LiAsF6で45 x
 10−” B−cm−”、  25℃〕、リチウム電
池に用いた場合、充放電効率が低いという欠点があった
@ マタ、プロピレンカーボネートやエチレンカーボネート
などの極性二重結合を有する溶媒を用い次電解液は、相
対的に高い導電率を示すが(例えばt 5 M LiA
sF・でそれぞれa3X10−38・a11−3M〜1
0−1及び6.2 x 10−” 8−cm−” )、
リチウムの充放電効率は低いという欠点を有する。
, +7 deum A LiAsF--2-methyltetrahydrofuran electrolyte has been proposed as an electrolyte with relatively high charge/discharge efficiency (see US Pat. No. 4,118,559). However, the isoelectric mho conduction force is low ((t
5 M (mole/l) 45 x in LiAsF6
10-"B-cm-", 25℃], when used in lithium batteries, there was a drawback of low charging and discharging efficiency. Although the electrolyte exhibits relatively high conductivity (e.g. t 5 M LiA
sF・a3X10-38・a11-3M~1 respectively
0-1 and 6.2 x 10-"8-cm-"),
Lithium has the disadvantage of low charge/discharge efficiency.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

すなわち、現在まで導電率も高く、かつリチウムの充放
電効率の高いリチウム二次電池用電解液は実現していな
い。
That is, to date, an electrolytic solution for lithium secondary batteries that has high conductivity and high lithium charging/discharging efficiency has not been realized.

本発明は、このような現状にかんがみてなされたもので
あシ、その目的は、導電率が高くかつリチウム充放電特
性の優れたリチウム電池を製造可能とするリチウム電池
用電解液を提供することにある。
The present invention was made in view of the current situation, and its purpose is to provide an electrolytic solution for lithium batteries that makes it possible to manufacture lithium batteries with high conductivity and excellent lithium charging and discharging characteristics. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明によるリチウム電池用tM
液は、リチウム塩を有機溶媒に溶解させ次リチウム電池
用電解液において環状飽和炭化水素又は直鎖アルキル基
を有する環状飽和炭化水素を添加剤として10−” M
 (mole/ 1. ) 〜10−I MOa度範囲
で添加したことを最も主要な特徴とする。
To summarize the present invention, tM for lithium battery according to the present invention
The solution is prepared by dissolving a lithium salt in an organic solvent, and then adding a cyclic saturated hydrocarbon or a cyclic saturated hydrocarbon having a linear alkyl group as an additive to a lithium battery electrolyte.
(mole/1.) The most important feature is that it is added in a range of 10-1 MOa degrees.

本発明によって、従来高導電率と優れたリチウムの充放
電効率とを両立させることが困難でめったリチウム電池
用電解液に対し、高導電率を有し、かつ優れた充放電効
率を有するリチウム電池用電解液を実現するものである
The present invention provides a lithium battery that has high electrical conductivity and excellent charging and discharging efficiency, compared to the conventional lithium battery electrolyte solution that has been difficult to achieve both high electrical conductivity and excellent lithium charging and discharging efficiency. This is to realize an electrolyte solution for use.

本発明を更に詳しく説明する。The present invention will be explained in more detail.

リチウム電池は、負極活物質がリチウムあるいはリチウ
ムイオンを放電可能にするリチウム合金でろ9、正極活
物質がリチウムイオンと電気化学的に可逆反応を行う物
質でう夛、電解液がリチウム塩を有機溶媒に溶解させた
溶液をもって構成されている。
In lithium batteries, the negative electrode active material is made of lithium or a lithium alloy that allows lithium ions to be discharged9, the positive electrode active material is made of a material that electrochemically undergoes a reversible reaction with lithium ions, and the electrolyte is made of lithium salt in an organic solvent. It consists of a solution dissolved in

本発明によれば、上述のような電解液において優れた特
性を有するものを提供することを主旨とするものである
。すなわち、リチウム塩を有機溶媒に#屏させ九浴液中
に、 10” M〜1 g−I M(08度範囲で環状
飽和炭化水素又は直鎖アルキル基を有する環状飽和炭化
水素を含有させ、これをリチウム′電池用電解液として
用いるものである。
According to the present invention, it is an object of the present invention to provide an electrolytic solution as described above having excellent characteristics. That is, a lithium salt is mixed with an organic solvent, and a cyclic saturated hydrocarbon or a cyclic saturated hydrocarbon having a linear alkyl group is contained in the bath solution at a concentration of 10" M to 1 g-I M (in the range of 0.8 degrees, This is used as an electrolyte for lithium batteries.

リチウム電池に用いる電解液の導11L軍及びリチウム
の充放電動″4t−向上させる九めには、リチウムから
溶媒への電子移動反応性の低い溶媒や溶媒中のリチウム
塩が解離し易く、かつリチウムイオンの移動性が大きい
ことが必要と考えられる。本発明における環状飽和炭化
水素、又は直鎖アルキル基を有する環状飽和炭化水素は
リチウム塩の解離やリチウムイオンの移動性を妨げるこ
となく容易にリチウム負極に吸着し、リチウムの充放電
効率の低下要因となるリチウムと溶媒との灰石を抑制し
、充放電に伴うリチウムイオンの負極上への析出、負極
からの電“解液中への溶出を円滑に行わせしめる目的で
添加するものでらる。
Ninthly, to improve the electrolyte conductivity and lithium charging/discharging power used in lithium batteries, the lithium salt in the solvent or the solvent with low electron transfer reactivity from lithium to the solvent is likely to dissociate, and It is thought that the mobility of lithium ions is required to be high.The cyclic saturated hydrocarbon in the present invention or the cyclic saturated hydrocarbon having a straight-chain alkyl group can easily be used without hindering the dissociation of lithium salt or the mobility of lithium ions. It suppresses the formation of ash between lithium and solvent that is adsorbed on the lithium negative electrode and causes a decrease in lithium charging and discharging efficiency, and prevents lithium ions from depositing on the negative electrode during charging and discharging, and from flowing from the negative electrode into the electrolyte. It is added for the purpose of facilitating elution.

本発明に用いられる環状飽和炭化水素又は直鎖アルキル
基を有する環状飽和炭化水素が該電解液中に添加されて
有効な特9:を示す理由は必ずしも明らかではないが、
1つの考えとして該添加物が負極リチウムと物理的ある
いは化学的吸着結合を行うことによシ充放電サイクルに
使用されるべき負極活物質としてのリチウムと電解液と
の反応によるリチウムの損失を抑制する層を負極/電解
液界面に形成する。ま几この層は充電時のL1+イオン
の負極上への析出状態を良好にし、電気化学的不活性と
なる析出リチウムの発生を抑制する効果も期待される。
Although it is not necessarily clear why the cyclic saturated hydrocarbon or the cyclic saturated hydrocarbon having a straight-chain alkyl group used in the present invention exhibits the effective feature 9 when added to the electrolyte,
One idea is that the additive forms a physical or chemical adsorption bond with the negative electrode lithium, thereby suppressing the loss of lithium due to the reaction between lithium as the negative electrode active material to be used in charge/discharge cycles and the electrolyte. A layer is formed at the negative electrode/electrolyte interface. This layer is expected to improve the state of precipitation of L1+ ions on the negative electrode during charging, and is also expected to have the effect of suppressing the generation of precipitated lithium, which becomes electrochemically inactive.

電子顕微鏡による放電後、充電後の負極表面の観察を後
述する実施例1に記載した電池系(ただし、負極は30
mAhLit−用いている)において行った結果では、
該添加剤を加えない系においてはリチウム充放電効率全
向上させる上で有効な径10μm程度の粒子状リチウム
と共に、リチウムの充放電効率低下の要因となる径1〜
2μm、長さ10μm程反の針状リチウムが負極表面上
に存在し、しかも充放電サイクルと共にこの針状リチウ
ムの析出割合が増加してき九。これに対し、該添加剤を
添加し九本発明のis液を用いた電池においては、上記
針状リチウムの存在は認められず、径2〜5μm程度の
粒子状L1が均一に析出した状態であシ、該添加剤の添
加による本発明の!解液の有効性が確かめられた。
Observation of the negative electrode surface after discharging and charging using an electron microscope was performed using the battery system described in Example 1 (however, the negative electrode was
According to the results obtained using mAhLit-
In a system without this additive, particulate lithium with a diameter of about 10 μm is effective in completely improving lithium charge/discharge efficiency, and particulate lithium with a diameter of 1 to 1 μm, which is a factor in reducing lithium charge/discharge efficiency.
Acicular lithium needles with a diameter of 2 μm and a length of about 10 μm exist on the surface of the negative electrode, and the rate of precipitation of these acicular lithium increases with charge/discharge cycles. On the other hand, in a battery using the IS liquid of the present invention with the additive added, the presence of the acicular lithium was not observed, and particulate L1 with a diameter of about 2 to 5 μm was precipitated uniformly. Ashi, of the present invention by adding the additive! The effectiveness of the solution was confirmed.

本発明における環状飽和炭化水素又は直鎖アルキル基を
有する環状飽和炭化水素の添加績腿f110−I M 
〜1 (1−I Mr16カ、*ffカ1o−3M未満
であると添加しない従来のt解液の特性と同じで添加に
よる特性の向上はみられず、−方、濃度が10−IM(
i−越えると添加剤の過多がイオンの移動度や負極の電
気化学反応に悪影響を及ぼし、添加前に比べて特性が低
下するからである。
Addition of cyclic saturated hydrocarbon or cyclic saturated hydrocarbon having a straight chain alkyl group in the present invention f110-IM
~1 (1-I Mr16, *ff) It is the same as the characteristics of the conventional t solution which is not added when it is less than 10-3M, and no improvement in the characteristics is seen by addition.
This is because if the additive exceeds i-, the excessive amount of the additive will have an adverse effect on the mobility of ions and the electrochemical reaction of the negative electrode, and the characteristics will deteriorate compared to before addition.

本発明における直鎖アルキル基は炭素数1〜12個が適
当でるる。炭素数13個以上になると有機溶媒に溶けに
くくなるからでろる。
The straight chain alkyl group in the present invention preferably has 1 to 12 carbon atoms. If the number of carbon atoms is 13 or more, it will be difficult to dissolve in organic solvents.

本発明における電解液を構成するリチウム塩、及び有機
溶媒は基本的に限定されるものではない0例えば、リチ
ウム塩においては、LiCa4、LiAaF番、Li5
t1F@、LiBFn % LiPF5 、LiAtc
t4、LiCF35O,及びLiCFsCO,などの一
種以上を有効に用いることができる。また、有機溶媒と
してはプロピレンカーボネート、エチレンカーボネート
、2−メチルテトラヒドロフラン、テトラヒドロフラン
、ジオキソラン、2−メチルジオキンラン、4−メチル
ジオキソクン、1.2−ジメトキシエタン、r−ブチロ
2クトン、ジメチルスルホキシド、アセトニトリル、ホ
ルムアミド、ジメチルホルムアミド、及びニトロメタン
等の1徨以上の非プロトン性有機浴媒を有効に用いるこ
とができる。
The lithium salt and organic solvent constituting the electrolytic solution in the present invention are not fundamentally limited. For example, lithium salts include LiCa4, LiAaF, Li5
t1F@, LiBFn% LiPF5, LiAtc
One or more of t4, LiCF35O, LiCFsCO, etc. can be effectively used. In addition, organic solvents include propylene carbonate, ethylene carbonate, 2-methyltetrahydrofuran, tetrahydrofuran, dioxolane, 2-methyldioquinrane, 4-methyldioxocune, 1,2-dimethoxyethane, r-butyro2chton, dimethylsulfoxide, One or more aprotic organic bath media such as acetonitrile, formamide, dimethylformamide, and nitromethane can be used effectively.

本発明による電解液を用いたリチウム電池に用いる負極
活物質は基本的に限定されるものではなく、従来のリチ
ウム′電池に用いられている負極活物質、すなわちリチ
ウム、あるいはリチウムイオンを放電可能にするリチウ
ム合金を用いることができる。
The negative electrode active material used in the lithium battery using the electrolyte according to the present invention is basically not limited, and the negative electrode active material used in conventional lithium batteries, that is, lithium or lithium ions, can be discharged. A lithium alloy can be used.

また、同様に本発明において用いられる正極活物質も基
本的に限定されず、従来のリチウム二次電池に用いられ
ている正極活物質、すなわちリチウムイオンと電気化学
的に可1反応を行う物質でらることができる・ 〔実施例〕 以下、本発明を実施的により更に具体的に説明するが、
本発F!Aはこれら実施例に限定されるものではない。
Similarly, the positive electrode active material used in the present invention is not fundamentally limited, and may be a positive electrode active material used in conventional lithium secondary batteries, that is, a material that electrochemically reacts with lithium ions. [Example] Hereinafter, the present invention will be explained in more detail in a practical manner.
Original F! A is not limited to these examples.

実施例1 t 5 M LiAsF6− エチレンカーボネート(
EC)/2−メチルテトラヒドロフラン(2MeTHF
 )(体積混合比1/1)中の不純物を100 ppm
以下にコントロールした電解液を作製し、これにあらか
じめモレキュラーシーブズ3A又は4Aを入れ融点以上
の温度で2昼夜置き十分に脱水処理した%種の環状飽和
炭化水素をα01M混合し、以下国連べる作製方法によ
り作製し71チウム電池の電解液に用いた。
Example 1 t5M LiAsF6- ethylene carbonate (
EC)/2-methyltetrahydrofuran (2MeTHF
) (volume mixing ratio 1/1) to 100 ppm of impurities.
An electrolytic solution controlled as below is prepared, and 01M of a cyclic saturated hydrocarbon, which has been thoroughly dehydrated by adding Molecular Sieves 3A or 4A at a temperature above the melting point for two days and nights, is mixed therein. It was prepared by the method and used as an electrolyte for a 71 thium battery.

正極活物質には、95m01e%V雪0@ −5mol
e%p、o、の組成よ構成る非晶質材料を用い、これを
70重t%、導電剤としてアセチレンブラックを25重
量う、バインダとしてテフロンを5重it%の混合比で
作製した正極合剤ベレット(16■φ、厚さα5■)t
−正極として用い、負極として金属リチウム(17■φ
、15 mAh )を用い、更にセパレータとして微孔
性ボリプロビレンシートヲ用いてコイン型リチウム電池
を作製した@このリチウム電池を室温中、1  mAの
電流値、2v〜五5vの電圧範囲で充放電試験を行い、
電解液の光放電特性を評価した。結果の一例を第1図に
示す。すなわち第1図はt 5 M LiAaF・−E
 C/ 2Me ’rHF (1/1 )中にシクロオ
クタン(CsHts)t−101M添加した電解液と1
5 mAhリチウムを用いた本発明の電池について1m
Aの電流値、2〜五5vの電圧範囲で充放電試験を行っ
た際のサイクル回数(横軸)と放電容量(mAh 、縦
軸)の関係を示したグラフでろる。該電池系においては
、充放電サイクルの各放電ごとに放電に関与できる負極
側のリチウムはすべて消費され、その容量は、第1図に
明らかなように充放電動iEに応じて徐々に減少してい
くことになる。すなわち、負極の充放電効率をE1第n
回目の放電の容量t−Cnとすると、 Cn = E X CH−t = E  X C1が成
立し、これより tncn=(n−1ンtnE + tnclなる関係が
求まり、第1図のごとく縦軸の放電容量を対数スケール
で表わしたグ2)の直線部の傾きから、負極リチウムの
充放電効率Eを算出することができる。
The positive electrode active material contains 95 m01e% V snow 0 @ -5 mol
A positive electrode was prepared using an amorphous material having a composition of e% p, o, with a mixing ratio of 70% by weight, 25% by weight of acetylene black as a conductive agent, and 5% by weight of Teflon as a binder. Mixture pellet (16 φ, thickness α5) t
-Used as a positive electrode, metal lithium (17 φ
, 15 mAh) and a microporous polypropylene sheet as a separator. This lithium battery was charged at room temperature with a current value of 1 mA and a voltage range of 2 to 55 V. Conduct a discharge test,
The photodischarge characteristics of the electrolyte were evaluated. An example of the results is shown in FIG. That is, FIG. 1 shows t 5 M LiAaF・-E
An electrolytic solution containing cyclooctane (CsHts) t-101M in C/2Me'rHF (1/1) and 1
1 m for the battery of the invention using 5 mAh lithium
This is a graph showing the relationship between the number of cycles (horizontal axis) and the discharge capacity (mAh, vertical axis) when a charge/discharge test was conducted at a current value of A and a voltage range of 2 to 55V. In this battery system, all the lithium on the negative electrode side that can participate in discharging is consumed at each discharge in the charge/discharge cycle, and its capacity gradually decreases according to the charge/discharge electric current iE, as is clear from Figure 1. I'm going to go there. In other words, the charge/discharge efficiency of the negative electrode is
If the capacity of the second discharge is t-Cn, then Cn = E The charging/discharging efficiency E of the negative electrode lithium can be calculated from the slope of the straight line part of the graph 2) which represents the discharge capacity on a logarithmic scale.

各種環状飽和炭化水素を添加した電解液におけるリチウ
ムの充放電効率Eを上記の式により算出し、その結果を
第1表に示した。第1表には比較のため添加剤を含まな
い電′s8!における同様の試験の結果も合せて示して
おいた。
The charging and discharging efficiency E of lithium in the electrolytic solution to which various cyclic saturated hydrocarbons were added was calculated using the above formula, and the results are shown in Table 1. For comparison, Table 1 shows the electricity containing no additives. We have also shown the results of a similar test.

第1表の結果から明らかなように、環状飽和炭化水素を
添加することによシ無添加の場合に比べて高いリチウム
充放電効率ヲ示すことがわかった@ 第1表 谷檀環状飽和炭化水素を含有した電解液におけるリチウ
ム充放電効率 実施例2 実施例1と同様に不純物を100 ppm以下にコア 
) o −ルしたIEc / 2Me THF (1/
1 )電解液に、あらかじめそレキュラーシーブズ3A
又は4人を入れ融点以上の温度で2昼夜置き十分に脱水
処理した各種の直鎖アルキル基を有する環状飽和炭化水
素をαOIM混合し、実施例1で述べた作製方法で作製
したリチウム電池の電解液に用いた。このリチウム電池
t−実施例1と同じ条件で充放電試験を行い、電解液の
充放電特性を評価した。
As is clear from the results in Table 1, the addition of cyclic saturated hydrocarbons showed higher lithium charge/discharge efficiency compared to the case without addition. Example 2 of lithium charging and discharging efficiency in an electrolytic solution containing
) IEc/2Me THF (1/
1) Add regular sieves 3A to the electrolyte in advance.
Alternatively, electrolysis of a lithium battery produced by the production method described in Example 1 by mixing αOIM with cyclic saturated hydrocarbons having various linear alkyl groups, which have been thoroughly dehydrated by placing four people at a temperature above the melting point for two days and nights. Used for liquid. A charging and discharging test was conducted under the same conditions as in Example 1 for this lithium battery, and the charging and discharging characteristics of the electrolytic solution were evaluated.

結果の1例を第2図に示す◇すなわち第2図はt 5 
M LiA8F@−B C/ 2Me THF (1/
1 )中にn−ドデシルシクロヘキサン(CH,(C迅
)oc@Hu E を101M添加し九電屏液と15m
Ahリチウムを用いた本発明の電池について1mAの電
流値、2〜五SVO@圧範囲で充放電試験を行った際の
サイクル回数(横軸ンと放電容量(mAh、縦軸)の関
係を示したグラフである。
An example of the result is shown in Fig. 2◇In other words, Fig. 2 shows t 5
M LiA8F@-B C/ 2Me THF (1/
1) Added 101M of n-dodecylcyclohexane (CH, (C)oc@HuE) and mixed it with Kyuden folding liquid for 15M.
The graph shows the relationship between the number of cycles (horizontal axis and discharge capacity (mAh, vertical axis)) when a charge/discharge test was conducted on the battery of the present invention using Ah lithium at a current value of 1 mA and a range of 2 to 5 SVO @ pressure. This is a graph.

第2図のごとく縦軸の放電容量を対数スケールで表わし
たグラフの直線部の傾きから、実施例1と同様にして負
極リチウムの充放電効率Eを算出した◇ 実施例1と同様に各種直鎖アルキル基を有する環状飽和
炭化水素を添加した電解液におけるリチウムの充放電効
率Eを前記の式によシ算出し、その結果を第2表に示し
友。第2表には比較の念め添加剤を含まない電解液にお
ける同様の試験の結果も合せて示しておい友。
The charging and discharging efficiency E of the negative electrode lithium was calculated in the same manner as in Example 1 from the slope of the straight line part of the graph in which the discharge capacity on the vertical axis is expressed on a logarithmic scale as shown in FIG. The lithium charge/discharge efficiency E in the electrolytic solution containing a cyclic saturated hydrocarbon having a chain alkyl group was calculated using the above formula, and the results are shown in Table 2. Table 2 also shows the results of a similar test using an electrolyte without additives for comparison.

第2表の結果から明らかなように直鎖アルキル基を有す
る環状飽和炭化水素を添加することによシ無添加の場合
に比べて高いリチウム充放電効率を示すことがわかった
As is clear from the results in Table 2, it was found that by adding a cyclic saturated hydrocarbon having a linear alkyl group, higher lithium charge/discharge efficiency was exhibited than in the case without addition.

第2表 各種直鎖アルキル基を有する環状飽和炭化水素を含有し
た電解液におけるリチウム充放電効率実施例3 t 5 M LiAsF6− EC/2MeTHF(1
/1)電解液の不純物をコントロールした電解液を作製
し、これにあらかじめモレキュクーシーブズ5At−入
れ80℃の恒温槽中に2昼夜放置して脱水したシクロオ
クタン(CsHs・)′t−α01M添加し、これをリ
チウム電池用電解液として用いた□作裂後一定期間アル
ゴンドライボックス中室温で放置した該1!解液を用い
、これと実施例1と同様にして作製し几正極、負極を用
いてコイン型リチウム電池を実施N1と同様にして作製
した。更rc実施M1と同様の条件で充放電試験を行い
、リテクム充放電効*を評価した。
Table 2 Lithium charge/discharge efficiency example 3 in electrolytes containing cyclic saturated hydrocarbons having various linear alkyl groups t 5 M LiAsF6- EC/2MeTHF (1
/1) An electrolytic solution with controlled impurities was prepared, and cyclooctane (CsHs.)'t-α01M was dehydrated by adding Molecu Thieves 5At- in advance and leaving it in a constant temperature bath at 80°C for two days and nights. This was added and used as an electrolyte for lithium batteries. □After being left at room temperature in an argon dry box for a certain period of time after cleavage, 1! Using the solution solution, a coin type lithium battery was produced in the same manner as in Example 1, and a positive electrode and a negative electrode were produced in the same manner as in Example N1. Further, a charge/discharge test was conducted under the same conditions as in RC implementation M1, and the RITECUM charge/discharge effect* was evaluated.

結果を第3表に示す。第3表よシ明らかなエラに、該添
加剤は経時的分解劣化をきたさず安定した充放電効率を
維持することがわかつ九。
The results are shown in Table 3. It is clear from Table 3 that the additive does not decompose and deteriorate over time and maintains stable charge/discharge efficiency9.

第3衣 リチウム充放電効率の経時変化実施例4 脱水処理を行ったシクロオクタン(C5H1@)、フク
ロヘキサン(C5Htx ) 、n−ドデシルシクロヘ
キサン(CHs(CHs)uc@Hu ]  の各添加
剤を1MLiCtOa−プロビレ/カーボネート(PC
’)/1,2−ジメトキシエタン(DMli) (1/
1 )、t5MLiAsF@−PC%t5 M LiA
sF6−2MeTHF 、  1.5M LLP Fs
−EC/ 2Me TH? (1/1 )の不純物にコ
アトロールした谷を解液中に10−4 M〜15Mの濃
度で添加し、リチウム電池用電解液として用いた。
Third layer Change in lithium charge/discharge efficiency over time Example 4 Each additive of dehydrated cyclooctane (C5H1@), fuclohexane (C5Htx), and n-dodecylcyclohexane (CHs(CHs)uc@Hu) was added to 1M LiCtOa. - Probile/Carbonate (PC
')/1,2-dimethoxyethane (DMli) (1/
1), t5MLiAsF@-PC%t5MLiA
sF6-2MeTHF, 1.5M LLP Fs
-EC/2Me TH? (1/1) of impurities were added to the solution at a concentration of 10-4 to 15M, and used as an electrolyte for lithium batteries.

実施例1と同様にしてコイン型電池を作製し、実施例1
と同様の条件で充放電試験を行つ’ft−。
A coin type battery was produced in the same manner as in Example 1, and Example 1
A charge/discharge test is performed under the same conditions as 'ft-.

試験より得られ次リチウム充放電効率を@4表に示す◎ 第4表より明らかなように、いずれの電解液においても
該添加剤全10−3M〜10−3−10−3M〜10−
IM添加することによシ、無添加時と比べてより高い充
放電効率を示すことが明らかとなつ九。
The following lithium charge/discharge efficiencies obtained from the test are shown in Table 4.◎ As is clear from Table 4, in all electrolytes, the additives total 10-3M to 10-3-10-3M to 10-
It is clear that by adding IM, higher charge/discharge efficiency is exhibited than when no IM is added.

実施例5 不純物をコントロールしfly、 1.5 M LiA
sF・−EC/2MeTHF(1/1) ’IcIc中
に、あらかじメモレキュラーシープズ3A′t−入れ8
0℃恒温槽中に2昼夜放置して脱水処理を施したn−ド
デシルシクロヘキサン(n−cl!am−c@H11)
 t” l OI M添加しリチウム電池用電解液とし
た。
Example 5 Fly with impurity control, 1.5 M LiA
sF・-EC/2MeTHF (1/1) 'In IcIc, add Memolecular Sheeps 3A't-8
n-dodecylcyclohexane (n-cl!am-c@H11) that was left in a constant temperature bath at 0°C for 2 days and nights to undergo dehydration treatment.
t''l OI M was added to prepare an electrolyte for lithium batteries.

活物質に組成が95 mole%VzO@ −5mol
e%P!O。
The active material has a composition of 95 mole% VzO @ -5 mol
e%P! O.

となる非晶質材料を含む実施ガ1と同様にして作製した
正極合剤ベレット(16■φ)全正極として用い、負極
として60 mAhの金属リチウム(17■φ)を用い
、実施例1と同様にしてコイン型リチウム電池を作製し
た。
A positive electrode mixture pellet (16 φ) prepared in the same manner as in Example 1 containing an amorphous material was used as the entire positive electrode, and 60 mAh metallic lithium (17 φ) was used as the negative electrode. A coin-type lithium battery was produced in the same manner.

このリチウム電池を室温中、放電′wL流3峰7cnz
Discharge this lithium battery at room temperature at a rate of 3 peaks of 7cnz
.

充11LNfM 1 mA/″cy?、 2 V〜l 
5 V(01に圧規制で充放電試験を行い、充放を特性
を評価し友。比較のため、添加剤を含まない電解液を用
いてコイン塩電池を作製し、同様の充放電試験を行った
O 結果を第3図に示す。すなわち、第3図はt5M Li
AaFs −E C/ 2Me THF (1/1 )
電解液とこれにα01M  n−ドデシルシクロヘキサ
ンを添加した電解液とを用い次それぞれの電池について
放電電R,5mA/cm?、充電電流1−A−12v〜
五5Vの電圧規制で 充放電試験を行った際の充放電サイクル(横軸)に伴う
放電容ii (mAh 、縦軸)の変化を示したグラフ
である。第5図のうち曲線Aはn−ドデシルシクロヘキ
サンを添加剤として[lL01Mi含む電解液を用いた
本発明の電池の場合であシ、曲線Bは添加剤を含まない
電解液を用い友電池の場合である。
Charge 11LNfM 1 mA/″cy?, 2 V~l
A charge/discharge test was conducted under pressure regulation at 5 V (01) to evaluate the charge/discharge characteristics.For comparison, a coin salt battery was fabricated using an electrolyte containing no additives, and a similar charge/discharge test was conducted. The results are shown in Figure 3. That is, Figure 3 shows t5M Li
AaFs-EC/2Me THF (1/1)
Using an electrolytic solution and an electrolytic solution to which α01M n-dodecylcyclohexane was added, the discharge current R for each battery was 5 mA/cm? , charging current 1-A-12v~
5 is a graph showing changes in discharge capacity ii (mAh, vertical axis) with charge/discharge cycles (horizontal axis) when a charge/discharge test was conducted under voltage regulation of 55V. In FIG. 5, curve A is for the battery of the present invention using an electrolyte containing n-dodecylcyclohexane as an additive [lL01Mi, and curve B is for a friend battery using an electrolyte containing no additive. It is.

第3図よシ明らかなように、n−ドデシルシクロヘキサ
ンを添加剤として含む電解液を用いた電池は、該添加剤
を含まない電解成金用いた電池に比べて優れた充放電サ
イクル安定性を示した。
As is clear from Figure 3, a battery using an electrolytic solution containing n-dodecylcyclohexane as an additive exhibits superior charge-discharge cycle stability compared to a battery using electrolytic metallization that does not contain this additive. Ta.

実施例6 1、5 M LiAsF6− E C/ 2Me TH
F (1/1 ) ’It解液に、ろらかじめモレキュ
2−シーブズ3Aを入れ80℃の恒温槽中に2昼伎置い
て十分脱水したn−ドデシルシクロヘキサン(n−Cu
Hn−C@Hu ) k1101M添加し、リチウム電
池用電解液とした。
Example 6 1,5 M LiAsF6-EC/2Me TH
F (1/1) 'N-dodecylcyclohexane (n-Cu
Hn-C@Hu) k1101M was added to prepare an electrolyte for lithium batteries.

この′fIL解液を解散て、実施例5と同様にしてコイ
ン型リチウム電池を作製し友。この電池を放電電流がそ
れぞれ1 mA7’cxP、  2 mA/cd、  
4mA/cm”、及び充電1!流j ml、10re”
、2v〜xsvの電圧規制で充放電試験を行った。比較
のために、添加剤を含まない!解散を用い、同様にして
コイン型リチウム電池を作製し、同様の条件で充放電試
験を行った。
This 'fIL solution was dissolved and a coin-type lithium battery was prepared in the same manner as in Example 5. The discharge current of this battery was 1 mA7'cxP, 2 mA/cd, respectively.
4mA/cm", and charging 1!flow j ml, 10re"
, a charge/discharge test was conducted under voltage regulation of 2v to xsv. For comparison, without additives! A coin-type lithium battery was produced in the same manner using dissolution, and a charge/discharge test was conducted under the same conditions.

結果を第4図に示す。すなわち、第4図は上記リチウム
電池の充放電サイクル回数(横軸)に伴う放電容量(m
Ah 、縦軸)の変化を表わし九グラフである。第4図
において、曲線Cは放電試験におけるn−ドデシルシク
ロヘキサンを添加した電解液使用Q′域池の場合でめシ
、曲線りは同条件の充放電試験における添加剤を含まな
い[解散便用の電池の場合でらシ、曲線Eは放電型R2
m)−/cl 、充電電流1 mA〜の条件での充放電
試験におけるn−ドデシルシクロヘキサン添加の!解散
を使用した電池の場合でろ広曲線Fは同条件での充放電
試験における添加剤を含まない電解液を使用した電池の
場合である。
The results are shown in Figure 4. In other words, Figure 4 shows the discharge capacity (m
It is a graph showing the change in Ah (vertical axis). In Figure 4, curve C indicates the case of a Q' area pond using an electrolyte with n-dodecylcyclohexane added in the discharge test, and the curve C indicates the case without additive in the charge/discharge test under the same conditions. In the case of a battery, curve E is discharge type R2
of n-dodecylcyclohexane addition in a charge/discharge test under the conditions of m)-/cl and a charging current of 1 mA~! In the case of a battery using dissolution, the filtration curve F is for a battery using an electrolyte containing no additives in a charge/discharge test under the same conditions.

更に第4図において、曲?a()は、放電型fL3mA
/ctl 、充電電流1 mv讐の条件での充放電試験
におけるn−ドデシルシクロヘキサンを添加した電′s
gを用いた電池の場合でめシ、曲線Hに、同条件での充
放電試験における添加剤を含まない電解tを用いた電池
の場合である。
Furthermore, in Figure 4, the song? a() is discharge type fL3mA
/ctl, charge current 1 mv, charge/discharge test with n-dodecylcyclohexane added.
Curve H is for a battery using electrolysis t without additives in a charge/discharge test under the same conditions.

第4図に明らかなように、いずれの条件での充放電試験
においてもn−ドデシルシクロヘキサンを添加した本発
明における電解液を用い九場合、無添加の電解液金柑い
た場合と比較して容量の大幅な低下はみられず、かつ長
期にわ九る充放電サイクル安定性金示した。
As is clear from Figure 4, in the charge and discharge tests under all conditions, when using the electrolyte of the present invention containing n-dodecylcyclohexane, the capacity was lower than when using the electrolyte containing kumquat without additives. No significant deterioration was observed, and long-term charge/discharge cycle stability was demonstrated.

〔発明の効果〕 以上説明し友ように本発明による環状飽和炭化水素又は
直鎖アルキル基を分子中に含む環状飽和炭化水素21o
−s〜1 g−I Mの濃度範囲で添加したリチウム塩
t−溶解した有機溶媒系電解液tVチウム電池に用いる
と充放電容置が大きく、かつ優れた充放電サイクル寿命
を示す高エネルギー密度電池が可能となり、権々の分野
で広く利用できるという利点がある。
[Effects of the Invention] As explained above, the cyclic saturated hydrocarbon 21o containing a cyclic saturated hydrocarbon or a linear alkyl group in the molecule according to the present invention
- Lithium salt added in a concentration range of s to 1 g-I M dissolved organic solvent-based electrolyte It has the advantage that batteries can be made available and can be widely used in various fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1.5 M LiAsF6− EC/ 2Me
THF (1/1 )中にシクロオクタンを101M添
加した電解液を用いる本発明の電池で、負極に15mA
hリチウムを用いた電池の1mA、 2 V〜五5vの
電圧範囲で充放電試#1−行った除のサイクル回数と放
電容量の関係を示したグラフ、第2図は1.5M Li
A31F@ −E C/ 2 Me THF (1/1
 )中にn−ドデシルシクロヘキサンを101M添加し
た電解液金柑いる本発明の電池で負極に15mAkリチ
ウムを用いた電池の1mA、2〜&SVO@圧範囲で充
放電試験を行った際■サイクル回数と放電容量の関係を
示したグラブ、第3図は1.5 M LiAsF6− 
E C/ 2Me THF (1/1 )中にn−ドデ
シルシクロヘキサンをα01M添加した電解液と添加し
ない電解液金柑いた電池の放電電流5 mA/c+m”
、充電電流1 mA/cpg”、 2 V〜XSVの電
圧規制で充放電試験を行った際のサイクル回数に伴う放
電容量の変化を示したグラフ、第4図は同じ系の電池に
ついて放電電流がそれぞれ1 m)y’cm”、2mA
/3”、 4 mA/cm”、充電電流が1 mA/c
s”、2v〜五5vの電圧規制で充放電試験を行った際
のサイクルに伴う放電容量の変化を示したグラフでるる
。 特許出願人 日本電信電話株式会社
Figure 1 shows 1.5 M LiAsF6-EC/2Me
In the battery of the present invention using an electrolyte solution containing 101 M of cyclooctane in THF (1/1), 15 mA was applied to the negative electrode.
Charging and discharging test #1 of a battery using lithium in a voltage range of 1 mA and 2 V to 55 V. A graph showing the relationship between the number of cycles performed and the discharge capacity.
A31F@-E C/ 2 Me THF (1/1
) When a charge/discharge test was conducted in the pressure range of 1 mA, 2 ~ & SVO @ pressure range of a battery of the present invention containing an electrolyte containing 101 M of n-dodecylcyclohexane (kumquat) and using 15 mAk lithium as the negative electrode, the number of cycles and discharge were A graph showing the relationship of capacity, Figure 3 is 1.5 M LiAsF6-
E C/ 2Me THF (1/1) with α01M of n-dodecylcyclohexane added to the electrolyte and the electrolyte without kumquat discharge current 5 mA/c+m”
, a charging current of 1 mA/cpg", a graph showing the change in discharge capacity with the number of cycles when a charging/discharging test was conducted under voltage regulations of 2 V to XSV. Figure 4 shows the discharge current of batteries of the same type 1 m)y'cm'', 2mA respectively
/3", 4 mA/cm", charging current 1 mA/c
A graph showing the change in discharge capacity due to cycles when a charge/discharge test was conducted under voltage regulation of 2V to 55V. Patent applicant: Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 1、リチウム塩を有機溶媒に溶解させたリチウム電池用
電解液において、環状飽和炭化水素、又は直鎖アルキル
基を分子中に含む環状飽和炭化水素を添加剤として10
^−^3M〜10^−^1Mの濃度範囲で含有している
ことを特徴とするリチウム電池用電解液。
1. In an electrolytic solution for lithium batteries in which a lithium salt is dissolved in an organic solvent, a cyclic saturated hydrocarbon or a cyclic saturated hydrocarbon containing a linear alkyl group in the molecule is used as an additive.
An electrolytic solution for a lithium battery, characterized in that it contains in a concentration range of ^-^3M to 10^-^1M.
JP63038573A 1988-02-23 1988-02-23 Electrolyte for lithium battery Pending JPH01213969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038573A JPH01213969A (en) 1988-02-23 1988-02-23 Electrolyte for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63038573A JPH01213969A (en) 1988-02-23 1988-02-23 Electrolyte for lithium battery

Publications (1)

Publication Number Publication Date
JPH01213969A true JPH01213969A (en) 1989-08-28

Family

ID=12529034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038573A Pending JPH01213969A (en) 1988-02-23 1988-02-23 Electrolyte for lithium battery

Country Status (1)

Country Link
JP (1) JPH01213969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005027254A1 (en) * 2003-09-11 2006-11-24 独立行政法人 宇宙航空研究開発機構 Non-aqueous electrolyte containing additive for improving capacity of lithium-ion battery and lithium-ion battery using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634569A (en) * 1986-06-24 1988-01-09 Bridgestone Corp Nonaqueous electrolyte secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634569A (en) * 1986-06-24 1988-01-09 Bridgestone Corp Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005027254A1 (en) * 2003-09-11 2006-11-24 独立行政法人 宇宙航空研究開発機構 Non-aqueous electrolyte containing additive for improving capacity of lithium-ion battery and lithium-ion battery using the same
JP4512776B2 (en) * 2003-09-11 2010-07-28 独立行政法人 宇宙航空研究開発機構 Non-aqueous electrolyte solution containing additive for capacity enhancement of lithium ion battery and lithium ion battery using the same
US8124284B2 (en) 2003-09-11 2012-02-28 Japan Aerospace Exploration Agency Nonaqueous electrolytic solution containing additive for increasing capacity of lithium-ion cell and lithium-ion cell using same
US8580440B2 (en) 2003-09-11 2013-11-12 Japan Aerospace Exploration Agency Non-aqueous electrolytic solution containing additive for increasing capacity of lithium-ion cell and lithium-ion cell using same

Similar Documents

Publication Publication Date Title
CN102077405A (en) Non-aqueous electrolyte for a high-voltage lithium battery
CN108886168A (en) Additive for non-aqueous electrolytic solution, the non-aqueous electrolytic solution for lithium secondary battery and the lithium secondary battery including the non-aqueous electrolytic solution
CN109301207A (en) A kind of surface layer doping Ce3+And surface layer coats CeO2NCM tertiary cathode material and preparation method thereof
KR20000026804A (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2000223152A (en) Lithium ion secondary battery having extended cycle life in charge/discharge
CN101351921B (en) Nonaqueous electrolyte battery use method
CN105226269A (en) A kind of nickel ion doped manufacturing process
Chen et al. Reactivating dead Li by shuttle effect for high-performance anode-free Li metal batteries
WO2022127796A1 (en) Battery electrolyte solution, secondary battery, and terminal
JPH1021898A (en) Lithium battery
JP2548573B2 (en) Electrolyte for lithium battery
JP3547575B2 (en) Lithium iron oxide, method for producing the same, and lithium battery
CN207909958U (en) A kind of flexibility all-solid-state battery
JP3190039B2 (en) Novel electrode material Lix Mz V &lt;2&gt;-&lt;z&gt; O &lt;5&gt;-&lt;t&gt;, its production method and its use in electrochemical generator
JPH0636797A (en) Lithium secondary battery
JPH03291863A (en) Secondary cell
CN112310478B (en) Electrolyte and electrochemical device thereof
CN117317153A (en) Interface-modified hard carbon anode material/anode of sodium ion battery, preparation method and application
JPH01213969A (en) Electrolyte for lithium battery
CN114497739A (en) Lithium secondary battery electrolyte and application thereof
JP2548574B2 (en) Electrolyte for lithium battery
JP2002270170A (en) Carbonaceous negative electrode material for lithium secondary battery and producing method thereof
JP2951706B2 (en) Battery components
JP2546680B2 (en) Electrolyte for lithium battery
JPS58214280A (en) Nonaqueous electrolyte for lithium secondary battery