JPH01211965A - Manufacture of solid-state image sensing element - Google Patents

Manufacture of solid-state image sensing element

Info

Publication number
JPH01211965A
JPH01211965A JP63036654A JP3665488A JPH01211965A JP H01211965 A JPH01211965 A JP H01211965A JP 63036654 A JP63036654 A JP 63036654A JP 3665488 A JP3665488 A JP 3665488A JP H01211965 A JPH01211965 A JP H01211965A
Authority
JP
Japan
Prior art keywords
section
electrode
substrate region
transfer
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63036654A
Other languages
Japanese (ja)
Other versions
JP2517045B2 (en
Inventor
Seiichi Suzuki
清市 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63036654A priority Critical patent/JP2517045B2/en
Publication of JPH01211965A publication Critical patent/JPH01211965A/en
Application granted granted Critical
Publication of JP2517045B2 publication Critical patent/JP2517045B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the depth of a recessed section of a potential well for a charge storage section uniform by implanting impurity ions into a substrate region under a storage-section electrode formed at the charge storage section and making the impurity concentration of said substrate region the same as or higher than that of a substrate region under a transfer gate electrode on the charge transfer section side. CONSTITUTION:Impurity ions are implanted into a substrate region under a storage-section electrode 23 shaped to a charge storage section, the impurity concentration of the substrate region under the storage-section electrode 23 is made the same as or slightly higher than that of a substrate region under a transfer gate electrode 24 on the charge transfer section side, the depth of a recessed section in a potential well is shallowed, and the transfer of carrier is facilitated. Accordingly, all of carriers in the charge storage section 23 are transferred, and are not left, thus equalizing the depth of the recessed section in the potential well for the charge storage section.

Description

【発明の詳細な説明】 〔概 要〕 固体撮像素子の製造方法のうち、電荷蓄積部における不
純物濃度の調整方法に関し、 キャリアをすべて転送させて残存しないように、電荷蓄
積部のポテンシャル井戸の凹部深さを均一にすることを
目的とし、 受光部と電荷転送部との間に設けられ、両側部にトラン
スファゲート電極、あるいは、バイアス電極を有する電
荷蓄積部において、該電荷蓄積部に形成する蓄積部電極
下部の基板領域に不純物イオンを注入し、該蓄積部電極
下部の基板領域の不純物濃度を電荷転送部側のトランス
ファゲート電極下部の基板領域の不純物濃度と同等ある
いは高濃度にする工程が含まれることを特徴とする。
[Detailed Description of the Invention] [Summary] Regarding the method for adjusting the impurity concentration in the charge storage part in the manufacturing method of a solid-state image sensor, in order to transfer all the carriers and not to leave them, the concave part of the potential well in the charge storage part is For the purpose of making the depth uniform, in a charge storage part that is provided between a light receiving part and a charge transfer part and has transfer gate electrodes or bias electrodes on both sides, the charge storage part formed in the charge storage part is The method includes a step of implanting impurity ions into the substrate region under the storage section electrode to make the impurity concentration in the substrate region under the storage section electrode equal to or higher than the impurity concentration in the substrate region under the transfer gate electrode on the charge transfer section side. It is characterized by being

〔産業上の利用分野〕[Industrial application field]

本発明は固体撮像素子の製造方法のうち、特に、電荷蓄
積部における不純物濃度の調整方法に関する。
The present invention relates to a method of manufacturing a solid-state imaging device, and particularly to a method of adjusting impurity concentration in a charge storage section.

最近、カメラ分野等に広い用途をもつ光センサとしてC
CD撮像素子(固体撮像素子)が開発されており、その
撮像素子の一層の性能向上が要望されている。
Recently, C
A CD image sensor (solid-state image sensor) has been developed, and there is a demand for further improvement in the performance of the image sensor.

〔従来の技術と発明が解決しようとする問題点〕例えば
、ラインセンサ用のCCD (Charge Coup
led Devices)撮像素子は通常、受光部と電
荷蓄積部と電荷転送部との3つの機能をもっており、受
光部(フォトダイオード)は入射光をキャリア(電荷)
に変換する部分、電荷蓄積部はそのキャリアを一定量蓄
積する部分、電荷転送部は配列された電極の電位を順次
に変えて転送するシフトレジスタ部分である。第3図は
ラインセンサの構成図を示しており、1は受光部、2は
電荷蓄積部。
[Problems to be solved by the prior art and the invention] For example, CCD (Charge Coup
(LED Devices) Image sensors usually have three functions: a light receiving section, a charge storage section, and a charge transfer section.The light receiving section (photodiode) converts incident light into carriers (charges).
The charge storage section is a section that stores a certain amount of carriers, and the charge transfer section is a shift register section that sequentially changes and transfers the potentials of the arranged electrodes. FIG. 3 shows a configuration diagram of the line sensor, where 1 is a light receiving section and 2 is a charge storage section.

3は電荷転送部、4は出力部である。3 is a charge transfer section, and 4 is an output section.

第4図はこのようなCCD撮像素子の断面図と従来のポ
テンシャル図を示しており、第4図(alは受光部と電
荷蓄積部からなるフォトセンサを主体に示した断面図で
、10はp型シリコン基板、 11は受光部(フォトダ
イオード)、12は電荷蓄積部。
FIG. 4 shows a cross-sectional view of such a CCD image sensor and a conventional potential diagram. A p-type silicon substrate, 11 a light receiving section (photodiode), and 12 a charge storage section.

13は電荷転送部、21はn+型シリコン層、22はn
型シリコン層、23は蓄積部電極、24は転送電極。
13 is a charge transfer section, 21 is an n+ type silicon layer, and 22 is an n
23 is a storage electrode, and 24 is a transfer electrode.

PA、 PB、 PCはトランスファゲート電極である
。受光部11で発生したキャリアは電荷蓄積部12に蓄
えられ、一定量に達すると電荷転送部13に転送される
が、その各部からの転送にはトランスファゲート電極に
電圧を与えて動作させている。なお、電荷転送部13は
紙面に垂直な方向に複数個配置させているが、図には一
部しか示していない。また、トランスファゲート電極の
代わりにバイアスを印加するバイアス電極を設ける構成
も採られる。
PA, PB, and PC are transfer gate electrodes. Carriers generated in the light receiving section 11 are stored in the charge storage section 12, and when a certain amount is reached, they are transferred to the charge transfer section 13, and the transfer from each section is operated by applying a voltage to the transfer gate electrode. . Note that a plurality of charge transfer units 13 are arranged in a direction perpendicular to the plane of the paper, but only a part of them is shown in the figure. Furthermore, a configuration may be adopted in which a bias electrode for applying a bias is provided instead of the transfer gate electrode.

第4図(b)、 (C1は第4図(a)の配置位置に対
応したポテンシャル図で、同図(b)は平常状態時のポ
テンシャル図、同図(C)は動作状態時のポテンシャル
図を示している。
Fig. 4(b), (C1 is a potential diagram corresponding to the arrangement position in Fig. 4(a), Fig. 4(b) is a potential diagram in a normal state, and Fig. 4(C) is a potential diagram in an operating state. The figure shows.

ところで、受光部11から電荷蓄積部12にキャリアを
転送する場合はフォトダイオードの接合部からの転送に
なり、余り問題はない。しかし、電荷蓄積部12から電
荷転送部13へのキャリアの転送には、トランスファゲ
ート電極PA下のポテンシャルが充分下がらないために
、第4図(C)に図示しているように、蓄積部電極23
の下にキャリアが残存して完全に転送されないと云う不
具合が生じ、しかも、多数個設けられた蓄積部電極23
下のキャリア残存量が不均一になる欠点がある。
By the way, when carriers are transferred from the light receiving section 11 to the charge storage section 12, the transfer is from the junction of the photodiode, and there is no problem. However, in order to transfer carriers from the charge storage section 12 to the charge transfer section 13, the potential under the transfer gate electrode PA is not lowered sufficiently. 23
A problem arises in that carriers remain under the surface and are not completely transferred, and moreover, the accumulation part electrode 23, which is provided in large numbers,
There is a drawback that the amount of carrier remaining at the bottom becomes uneven.

即ち、CCD撮像素子には多数の電荷蓄積部12が設け
られているが、その多数の蓄積部電極23下のポテンシ
ャル井戸の凹部深さにバラツキが生じて、そのために、
出力が不均一になり、SN比が悪くなって感度が低く、
例えば、暗所での検知能力が低いと云う問題がある。
That is, although the CCD image sensor is provided with a large number of charge storage sections 12, the depths of the recesses of the potential wells under the electrodes 23 of the large number of charge storage sections vary.
The output becomes uneven, the signal-to-noise ratio deteriorates, and the sensitivity is low.
For example, there is a problem in that the detection ability in dark places is low.

本発明はこのような問題点を除去して、電荷蓄積部のキ
ャリアをすべて転送させて残存しないように、電荷蓄積
部のポテンシャル井戸の凹部深さを均一にすることを目
的とした固体撮像素子の製造方法を提案するものである
The present invention eliminates such problems and provides a solid-state imaging device that aims to uniformize the depth of the concave portion of the potential well in the charge storage area so that all carriers in the charge storage area are transferred and no carriers remain. This paper proposes a method for manufacturing.

〔問題点を解決するための手段〕[Means for solving problems]

その目的は、電荷蓄積部に形成する蓄積部電極下部の基
板領域に不純物イオンを注入し、蓄積部電極下部の基板
領域の不純物濃度を電荷転送部側のトランスファゲート
電極下部の基板領域の不純物濃度と同等あるいは高濃度
にする工程が含まれる固体撮像素子の製造方法によって
達成される。
The purpose of this is to implant impurity ions into the substrate region under the storage electrode formed in the charge storage section, and to change the impurity concentration in the substrate region under the storage electrode to the impurity concentration in the substrate region under the transfer gate electrode on the charge transfer section side. This is achieved by a method for manufacturing a solid-state imaging device that includes a step of increasing the concentration to the same level or to a higher concentration.

〔作 用〕[For production]

即ち、本発明は電荷蓄積部の蓄積部電極の下の基板領域
に不純物イオンを注入し、その不純物濃度を電荷転送部
側のトランスファゲート電極下部領域の不純物濃度と同
等あるいはやや高濃度にする。
That is, in the present invention, impurity ions are implanted into the substrate region under the storage electrode of the charge storage section, and the impurity concentration is made equal to or slightly higher than the impurity concentration in the lower region of the transfer gate electrode on the charge transfer section side.

その理由は、トランスファゲート電極を1回目に形成し
、次に、絶縁膜を介して蓄積部電極を2回目に形成する
ため、その間の熱処理(絶縁膜を生成するための熱処理
など)の際に、表面が露出した蓄積部電極形成部分の基
板領域から不純物が外方拡散する(これを不純物のパイ
ルダウンと云う)。しかし、一方のトランスファゲート
電極下の基板領域からは電極に遮蔽されているから、不
純物の外方拡散は少ない。
The reason for this is that the transfer gate electrode is formed in the first step, and then the storage electrode is formed in the second step via the insulating film, so during the heat treatment (such as heat treatment for forming the insulating film) in between, , impurities diffuse outward from the substrate region of the storage portion electrode formation portion where the surface is exposed (this is referred to as impurity pile-down). However, since the substrate region under one transfer gate electrode is shielded by the electrode, outward diffusion of impurities is small.

そのために、蓄積部電極形成部分の基板領域はトランス
ファゲート電極下の基板領域より濃度が低くなる。本発
明ではその蓄積部電極の下の基板領域に不純物を添加し
て、むしろトランスファゲ−ト電極下の基板領域よりや
や高濃度にしてポテンシャル井戸の凹部深さを浅くし、
キャリアを転送し易くするものである。
Therefore, the concentration of the substrate region where the storage electrode is formed is lower than that of the substrate region under the transfer gate electrode. In the present invention, impurities are added to the substrate region under the storage electrode, and the concentration is rather higher than that of the substrate region under the transfer gate electrode, so that the depth of the recess of the potential well is made shallow.
This makes it easier to transfer carriers.

〔実施例〕〔Example〕

以下、図面を参照して実施結果により詳細に説明する。 Hereinafter, implementation results will be explained in detail with reference to the drawings.

第1図(al〜(d)は本発明にかかるCCD撮像素子
の製造方法の工程順断面図を示している。
FIGS. 1A to 1D show cross-sectional views in the order of steps of a method for manufacturing a CCD image sensor according to the present invention.

第1図(al参照;まず、p型シリコン基板10にフィ
ールド絶縁膜25を°形成し、電荷転送部のn型993
7層22を形成(このシリコン層22は後工程で形成し
てもよい)した後、ゲート絶縁膜を介してトランスファ
ゲート電極PA、 PR,PCを設ける。このゲート電
極は導電性多結晶シリコンからなり、化学気相成長(C
VD)法で被着し、フォトプロセスでパターンニングし
て形成される。また、他の方法として、リフトオフ法に
よってゲート電極を形成しても良い。
FIG. 1 (see al; First, a field insulating film 25 is formed on a p-type silicon substrate 10, and an n-type 993
After forming seven layers 22 (this silicon layer 22 may be formed in a later step), transfer gate electrodes PA, PR, and PC are provided via a gate insulating film. This gate electrode is made of conductive polycrystalline silicon and is made of chemical vapor deposition (C
It is deposited using the VD method and patterned using a photo process. Furthermore, as another method, the gate electrode may be formed by a lift-off method.

第1図(b)参照;次いで、電荷蓄積部の蓄積部電極形
成部分以外をレジスト膜マスク26で被覆した後、その
蓄積部電極形成部分に硼素(B)イオンをドーズ量10
10ブctA、エネルギー出力数十KeV程度で注入す
る。
Refer to FIG. 1(b); Next, after covering the part of the charge storage part other than the part where the storage part electrode is to be formed with a resist film mask 26, boron (B) ions are applied to the part where the storage part electrode is to be formed at a dose of 10.
The injection is performed with an energy output of about 10 ctA and an energy output of several tens of KeV.

第1図(C1参照;次いで、熱酸化してトランスファゲ
ート電極PA、 PB、 PCの表面に絶縁膜27を生
成した後、CVD法により2回目の導電性多結晶シリコ
ン膜を被着し、フォトプロセスでパターンニングして、
蓄積部電極23.転送電極24を形成する。
FIG. 1 (see C1; next, after thermal oxidation is performed to form an insulating film 27 on the surfaces of the transfer gate electrodes PA, PB, and PC, a second conductive polycrystalline silicon film is deposited by the CVD method, and then photo-coated. Patterning in the process,
Accumulator electrode 23. Transfer electrodes 24 are formed.

なお、図示していないが、転送電極は交互に重ね合わす
ため、前記のトランスファゲート電極と同時に1回目に
形成する電極部分もある。
Although not shown, since the transfer electrodes are alternately overlapped, there is also an electrode portion that is formed for the first time at the same time as the transfer gate electrode.

第1図+d)参照;次いで、受光部以外をレジスト膜マ
スク2Bで被覆した後、砒素(As )またはp+型不
純物イオンを注入し、熱処理してn+型シリコン層21
を画定する。
See FIG. 1+d); Next, after covering the area other than the light-receiving part with a resist film mask 2B, arsenic (As) or p+ type impurity ions are implanted and heat-treated to form the n+ type silicon layer 21.
Define.

このようにして、蓄積部電極23の下に不純物を添加す
れば、トランスファゲート電極PA下の基板領域の不純
物濃度が10/cn!(基板抵抗10Ω程度)であるの
に対し、電荷蓄積部の蓄積部電極下の基板領域は10I
ゞ/cfl!と僅かに高不純物濃度に形成することがで
き、しかも、蓄積部電極を形成する前に添加するから蒸
発も少なくて、多数の蓄積部電極下の基板領域の不純物
濃度を均一にすることができる。
If impurities are added under the storage electrode 23 in this way, the impurity concentration in the substrate region under the transfer gate electrode PA will be 10/cn! (substrate resistance of about 10Ω), whereas the substrate area under the storage electrode of the charge storage section is 10I
ゞ/cfl! It can be formed with a slightly high impurity concentration, and since it is added before forming the storage electrode, there is less evaporation, and the impurity concentration in the substrate region under many storage electrodes can be made uniform. .

第2図は本発明にかかるCCD撮像素子の断面図とポテ
ンシャル図を示しており、第2図(a)は断面図、同図
(b)はその配置位置に対応した動作状態時のポテンシ
ャル図で、図中の記号は前記第4図と同じである。第2
図(b)に示すポテンシャル図は、トランスファゲート
電極PAを動作させると、蓄積部電極23下のキャリア
が残らずに全部転送電極部に転送されることを図示して
おり、それは蓄積部電極下の基板領域が高不純物濃度に
なって、蓄積部電極23の下のポテンシャル井戸の底部
が上がり、動作時にトランスファゲート電極PA下のポ
テンシャルが蓄積部電極23の下のポテンシャル井戸の
底部より下に下がることになるからである。
FIG. 2 shows a cross-sectional view and a potential diagram of the CCD image sensor according to the present invention, FIG. 2(a) is a cross-sectional view, and FIG. The symbols in the figure are the same as in FIG. 4 above. Second
The potential diagram shown in Figure (b) shows that when the transfer gate electrode PA is operated, all the carriers under the storage electrode 23 are transferred to the transfer electrode without remaining; The substrate region becomes high in impurity concentration, the bottom of the potential well under the storage electrode 23 rises, and during operation, the potential under the transfer gate electrode PA falls below the bottom of the potential well under the storage electrode 23. This is because it will happen.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明にかかる固体撮
像素子の製造方法によれば蓄積部電極下の基板領域の不
純物が添加され均一になって、出力が均一化され、SN
比が改善されて暗所での検出能力が増大する効果が得ら
れるものである。
As is clear from the above description, according to the method for manufacturing a solid-state image sensor according to the present invention, the impurities in the substrate region under the storage electrode are added and made uniform, and the output is made uniform.
This has the effect of improving the ratio and increasing the detection ability in the dark.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明にかかるCCD撮像素子
の製造方法の工程順断面図、 第2図は本発明にかかるCCD撮像素子の断面図とポテ
ンシャル図、 第3図はラインセンサの構成図、 第4図はCCD撮像素子の断面図と従来のボテン長ヤル
図である。 図において、 10はp型シリコン基板、 11は受光部(フォトダイオード)、 12は電荷蓄積部、 13は電荷転送部、 21はn+型シリコン層、 22はn型シリコン層、 23は蓄積部電極、 24は転送電極、 25はフィールド絶縁膜、 27は絶縁膜、 26、28はレジスト膜マスク、 PA、 PB、 PCはトランスファゲート電極ライレ
I=ン丈−ノ五へ’m 第3図 ccoj!Afile+;lfr韻(2)を懸め不1テ
レシ〒ルm第4図 一          、0 −J
Figures 1 (a) to (d) are cross-sectional views in the order of steps of the method for manufacturing a CCD image sensor according to the present invention, Figure 2 is a cross-sectional view and potential diagram of the CCD image sensor according to the present invention, and Figure 3 is a line FIG. 4 shows a cross-sectional view of a CCD image sensor and a conventional button length diagram. In the figure, 10 is a p-type silicon substrate, 11 is a light receiving part (photodiode), 12 is a charge storage part, 13 is a charge transfer part, 21 is an n+ type silicon layer, 22 is an n-type silicon layer, 23 is a storage part electrode , 24 is a transfer electrode, 25 is a field insulating film, 27 is an insulating film, 26, 28 are resist film masks, PA, PB, PC are transfer gate electrodes. Afile+;lfr rhyme (2) and non-1 teleseal mFigure 4-1, 0-J

Claims (1)

【特許請求の範囲】[Claims]  受光部と電荷転送部との間に設けられ、両側部にトラ
ンスファゲート電極、あるいは、バイアス電極を有する
電荷蓄積部において、該電荷蓄積部に設ける蓄積部電極
下部の基板領域に不純物イオンを注入し、該蓄積部電極
下部の基板領域の不純物濃度を電荷転送部側のトランス
ファゲート電極下部の基板領域の不純物濃度と同等ある
いは高濃度にする工程が含まれてなることを特徴とする
固体撮像素子の製造方法。
In a charge storage section provided between a light receiving section and a charge transfer section and having transfer gate electrodes or bias electrodes on both sides, impurity ions are implanted into a substrate region under the storage section electrode provided in the charge storage section. , a solid-state imaging device comprising the step of making the impurity concentration of the substrate region under the storage section electrode equal to or higher than the impurity concentration of the substrate region below the transfer gate electrode on the charge transfer section side. Production method.
JP63036654A 1988-02-18 1988-02-18 Method of manufacturing solid-state image sensor Expired - Lifetime JP2517045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63036654A JP2517045B2 (en) 1988-02-18 1988-02-18 Method of manufacturing solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63036654A JP2517045B2 (en) 1988-02-18 1988-02-18 Method of manufacturing solid-state image sensor

Publications (2)

Publication Number Publication Date
JPH01211965A true JPH01211965A (en) 1989-08-25
JP2517045B2 JP2517045B2 (en) 1996-07-24

Family

ID=12475844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63036654A Expired - Lifetime JP2517045B2 (en) 1988-02-18 1988-02-18 Method of manufacturing solid-state image sensor

Country Status (1)

Country Link
JP (1) JP2517045B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277708A (en) * 2001-03-22 2002-09-25 Asahi Optical Co Ltd Lens block
JP2008277861A (en) * 2008-07-15 2008-11-13 Toshiba Corp Solid imaging device and charge transfer device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277708A (en) * 2001-03-22 2002-09-25 Asahi Optical Co Ltd Lens block
JP2008277861A (en) * 2008-07-15 2008-11-13 Toshiba Corp Solid imaging device and charge transfer device

Also Published As

Publication number Publication date
JP2517045B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
Burkey et al. The pinned photodiode for an interline-transfer CCD image sensor
US5341008A (en) Bulk charge modulated device photocell with lateral charge drain
JP2970158B2 (en) Method for manufacturing solid-state imaging device
JPH01211965A (en) Manufacture of solid-state image sensing element
JPH0680811B2 (en) CCD image sensor
JP3341517B2 (en) Charge coupled device type solid-state imaging device and method of manufacturing the same
CN100527429C (en) CMOS image sensor and method for manufacturing the same
JP3093212B2 (en) Method for manufacturing solid-state imaging device
JP2912533B2 (en) Solid-state imaging device
JPH0254561A (en) Semiconductor device
KR0140634B1 (en) The fabrication method of solid state image sensing device
JP3100624B2 (en) Non-interlaced interline transfer CCD image sensor with simple electrode structure for each pixel
KR100359767B1 (en) Method for manufacturing solid state image sensor
JP2712246B2 (en) Semiconductor device and manufacturing method thereof
JP2944785B2 (en) Method for manufacturing solid-state imaging device
JPH05183184A (en) Manufacture of solid-state image sensor
JP2555888B2 (en) Method of manufacturing solid-state image sensor
JPS59124764A (en) Semiconductor photoelectric conversion element
JPH022677A (en) Solid-state image sensing element
JP2000236082A (en) Solid-state image pickup element and manufacture thereof
JPH036860A (en) Solid state image pickup device
JPH07302891A (en) Manufacture of solid image pick-up device
JPH0459828B2 (en)
JPH04279037A (en) Manufacture of solid image pick-up element
KR20010003830A (en) Solid state image pickup device and method of fabricating the same