JPH01208696A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH01208696A
JPH01208696A JP3076488A JP3076488A JPH01208696A JP H01208696 A JPH01208696 A JP H01208696A JP 3076488 A JP3076488 A JP 3076488A JP 3076488 A JP3076488 A JP 3076488A JP H01208696 A JPH01208696 A JP H01208696A
Authority
JP
Japan
Prior art keywords
lubricating oil
heat exchanger
average
molecular weight
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3076488A
Other languages
Japanese (ja)
Inventor
Tetsuji Iwama
岩間 哲治
Tsuyoshi Katsumata
堅 勝又
Nobuo Sumida
修生 澄田
Akira Yamada
暁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO GIKEN KK
MA Aluminum Corp
Original Assignee
BIO GIKEN KK
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO GIKEN KK, Mitsubishi Aluminum Co Ltd filed Critical BIO GIKEN KK
Priority to JP3076488A priority Critical patent/JPH01208696A/en
Publication of JPH01208696A publication Critical patent/JPH01208696A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To restrain the proliferation of microbe which utilize the constituents of lubricating oil as one cause of their proliferation, by a method wherein an aluminum alloy material, formed with a film, is worked by a press utilizing lubricating oil mixed with anti-fungas agent and/or microbicide, thereafter, a heat exchanger is assembled. CONSTITUTION:The principal constituent of a lubricating oil is paraffin series hydrocarbon and/or naphthalene series hydrocarbon and anti-fungas agent, having an affinity with said hydrocarbon and dispersed or resolved sufficiently in said hydrocarbon, such as O-phenylphenol, thiapentazole, potassium sorbic acid, ethyl p-hydroxybenzoate or the like example, is mixed with the lubricating oil. An inorganic acid film is formed on the surface of the aluminum alloy member, fins are manufactured untilizing the lubricating oil, in which 2% O- phenyulphenol is contained, and copper tubes are inserted whereby the core of a heat exchanger is manufactured. After degreasing treatment, cooling operation is effected and the proliferation of microbe has not been recognized.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば家電用冷熱機器又は自動車等の熱交換
器といった各種の熱交換器に関するものである。
The present invention relates to various types of heat exchangers, such as heat exchangers for home appliance heating and cooling equipment or automobiles.

【従来技術とその問題点】[Prior art and its problems]

アルミニウム又はアルミニウム合金(以下単にアルミニ
ウム合金)製の熱交換器は、例えばアルミニウム合金の
材料表面に水濡れ性及び耐食性等の良好な無機質系、有
機質系又はこれら複合系の皮膜を形成し、このプレコー
ト工程によって上記のような皮膜が形成されたアルミニ
ウム合金材にドロープレス等のプレス加工を施し、この
プレス加工によってフィンをtiltし、その後このフ
ィンに対して銅製チューブ又はアルミニウム製チューブ
を挿入したり、又、拡管作業を行なう等の作業を施して
熱交換器を組み立て(第1の組立工程)、そしてこの第
1の組立工程後前記プレス加工工程で用いられた潤滑油
(プレス油)をフィン表面から除去する為、例えばトリ
クロルエチレン等で脱脂処理を行ない、この脱脂処理後
ろう付作業を行ないく第2の組立工程)、このようにし
て熱交換器への組立が完了した熱交換器に対して例えば
水没リーク試験といった各種の検査を行ない、これら各
種の検査後室温で自然放置又は100℃以下の温度で屹
燥し、水没試験等の検査で表面に付着した水滴を除去す
ることで得られている。 このような熱交換器において、熱交換器の熱交換効率の
向上、通風抵抗の減少、除霜エネルギーの減少等の為の
熱交換器コアのフィン表面の水濡れ性の向上を目的とし
て、従来より、プレコートフィン材の皮膜表面に各種の
界面活性剤、親水性1T機樹脂等の親水性物質を付与す
る数多くの技術が提案され、これによってそれ相応の大
きな効果が発揮されてきたか、これらの問題点とは全く
その内容が異なる問題点が残されていることに気付いた
。 すなわち、本発明者は、上記のような熱交換器にあって
は、熱交換器のドレン受は等の部分においてカビやバク
テリアといった微生物が多く発生し、又、これに起因し
て悪臭の発生も認められる場合がある等の問題点に気付
いたのである。
A heat exchanger made of aluminum or an aluminum alloy (hereinafter simply referred to as an aluminum alloy) is manufactured by forming an inorganic, organic, or composite film on the surface of the aluminum alloy material, which has good water wettability and corrosion resistance, and is coated with this precoat. The aluminum alloy material on which the above-mentioned film has been formed through the process is subjected to press work such as a draw press, the fins are tilted by this press work, and then a copper tube or an aluminum tube is inserted into the fins, In addition, the heat exchanger is assembled by carrying out operations such as pipe expansion (first assembly process), and after this first assembly process, the lubricating oil (press oil) used in the press working process is applied to the fin surface. After the heat exchanger has been assembled in this way, the heat exchanger is degreased with trichlorethylene, etc., and brazed after the degreasing process (second assembly process). For example, various tests such as a submersion leak test are performed, and after these tests, the product is left to stand naturally at room temperature or dried at a temperature below 100°C, and water droplets adhering to the surface are removed during tests such as a submersion test. ing. In such heat exchangers, conventional methods were used to improve the water wettability of the fin surface of the heat exchanger core in order to improve the heat exchange efficiency of the heat exchanger, reduce ventilation resistance, and reduce defrosting energy. Many techniques have been proposed for applying hydrophilic substances such as various surfactants and hydrophilic 1T machine resins to the film surface of pre-coated fin materials. I realized that there were still problems whose contents were completely different from the actual problems. That is, the inventor of the present invention found that in the heat exchanger as described above, many microorganisms such as mold and bacteria grow in the drain receptacle of the heat exchanger, and that bad odors are generated due to this. This led to the realization of problems such as the fact that there are cases in which the

【発明の開示】[Disclosure of the invention]

本発明者は、熱交換器の耐微生物性の一層の向上を目的
とした研究を押し進めていくうちに、極めて興味のある
現象を発見した。 すなわち、熱交換器に組み込まれているフィンの表面皮
膜は均一に形成した筈なのに、熱交換器コアの位置によ
って耐微生物性が異なり、つまりフィン表面から流下し
た凝縮水のドレン受けの場所によって微生物の発生が多
い部分と少ない部分とが存在することを発見したのであ
る。 さらに詳述すると、熱交換器コアにおけるろう付は近傍
の部分が特に耐微生物性に優れている(微生物の発生が
少ない)ことを発見したのである。 この現象の発見の初期段階にあっては、上記のようなバ
ラツキはアルミニウム合金の表面処理のバラツキによる
ものであろうと考えていたのであるか、研究の進行につ
れて上記のバラツキは表面処理のバラツキによるもので
はないことが判明してきた。 又、それと件に、熱交換器コアにおけるろう付近傍の部
分の耐微生物性が特に良いのは、熱交換器の組立作業中
のろう付作業時の熱(温度)によって皮膜に付着してい
る微生物が滅菌される為ではないかと考えられたものの
、次第にこの考えも誤っていることが判ってきた。 すなわち、熱交換器は、その第一段階として有機皮膜及
び/又は無機皮膜を形成したアルミニウム合金材をドロ
ープレス加工又はドローレスプレス加工してフィンに形
成している。 尚、このプレス加工工程にあっては、パラフィン系炭化
水素(Cnl12n+2)又はナフラン系炭化水素(C
n II 2n )を主成分とした、例えば50 :5
0あるいは30.70又は70:30といった所定の配
合割合とし、そして平均分子旦が約100〜500であ
って、平均炭素数が約10〜30の範囲のらのであり、
粘度(40°C)は約2〜20cstといった炭化水素
よりなる潤滑油(基本的には11000pp以下の水分
が不可避的に含まれている)が用いられる。 そして、上記プレス加工して得たフィンに例えば銅製チ
ューブが挿入され、拡管されて所定の熱交換器コアが製
作されている。 この後、プレス加工工程で用いられた潤滑油を:例えば
パークロルエチレン、トリクロルエチレン、トリクロル
エタン等の脱脂剤でフィン表面から除去し、潤滑油除去
後銅製のUベンド(接合管)がろう付されている。 ところか、本発明者の研究の結果判明したものであるか
、前記脱脂剤による脱脂処理でその大部分の潤滑油は除
去されているものの、しかし完全と言える程には潤滑油
が除去されておらず、多少の潤滑油が残されていたので
ある。 つまり、これまでの脱脂処理は充分なものであって、脱
脂処理後には潤滑油は実質上残存していないと信じられ
ていたものの、今までの脱脂処理による潤滑油の除去は
完全であるとは言えなかったことが確認された。 そして、銅製のUベンドのろう何時にあっては、当然な
がらこのUベンドに近いフィンの表面はある程度熱せら
れることになり、それ故この熱によってUベンドに近い
部分では潤滑油ががなり充分に除去され、又、Uベンド
から遠い部分ではそれだけ加熱されにくいから潤滑油の
除去は不完全のままであることが判った。 すなわち、熱交換器コアの位置によって耐微生物性が異
なるのは、確かに加熱による効果であることに間違いは
ないか、これは滅菌効果によるものではなく、プレコー
ト皮膜に付与されている各種の界面活性剤、親水性有機
樹脂等の親水性物質と、有機溶剤脱脂後にフィンの表面
及び/又はフィンとチューブの間隙に残存している潤滑
油と、フィン表面に凝縮した水分の三物質がエマルジョ
ンとなってドレン受けに流下した際、該エマルジョン中
に存在する油分量が多い部分では、この流下した潤滑油
が微生物の増殖の役割を大きく発揮し、この結果微生物
の発生が多いことが判ったのである。 本発明は、このような今まで誰も気付がながった特異な
現象の解明の結果なされたものであり、そしてプレス加
工に用いた潤滑油の除去を完全に行うことは極めて困難
、特にフィンとチューブとの間隙に残存している潤滑油
の除去を完全に行うことは極めて困難であることに鑑み
、熱交換器に潤滑油と抗菌剤及び/又は殺菌剤とが共存
、特にアルミニウム合金材をフィンにプレス加工する際
に用いられて残存している潤滑油、特に熱交換器のフィ
ンとチューブとの間隙及び/又はフィンの表面に残存し
ている潤滑油中に抗菌剤及び/又は殺菌剤が存在してい
る熱交換器を提供するものである。 尚、用いられる抗菌剤及び/又は殺菌剤の少なくとも一
つは潤滑油成分を増殖の一因子とする微生物の増殖と抑
制するものであることが望ましい。 又、抗菌剤及び/又は殺菌剤と潤滑油とは親和性に富み
、抗菌剤及び/又゛は殺菌剤が潤滑油中で充分に分散な
いしは溶解するものが望ましく、すなわち潤滑油に含有
させる抗菌剤及び/又は殺菌剤は耐微生物性に効果を示
すわけであるか、潤滑油中で充分に分散あるいは溶解し
ていないと、プレス加工時においてプレス金型を摩耗さ
せたり、又、潤滑油をプレコートしたアルミニウム合金
材に塗布して用いる場合には、殺菌剤等が粒子状に析出
していると、その部分ではアルミニウム合金材表面に潤
滑油が塗布されない為、潤滑油塗布の目的が発揮されな
くなり、さらにはエマルジョンとなった凝縮水と共に抗
菌剤又は殺菌剤が残存している潤滑油と一緒になってド
レン受けに流下しにくくなり、抗菌剤や殺菌剤がその目
的を充分には発揮できなくなったりするがらである。 このような抗菌剤及び殺菌剤としては、安息香酸、安7
9、¥i酸ナトリウム、ケイ皮酸等の芳香属カルボン酸
及びその塩、ソルビン酸、ソルビン酸カリウム、デヒド
ロ酢酸、デしドロ酢酸ナトリウム、10ピオン酸、プロ
ピオン酸ナトリウム、プロピオン酸カルシウム等の脂肪
属カルボン酸及びその塩、パラオキシ安息香酸イソブチ
ル、パラオキシ支店、香酸イソプロピル、パラオキシ安
息香酸エチル、パラオキシ安息香酸プロピル、バラオキ
シ安息香酸ブチル等のエステル類、クレゾール、チモー
ル、オイゲノール、オル1フエニルフエノール、バラフ
ェニルフェノール、ジハイドロオキシフェニル等のフェ
ノール類、N−フルオロ−ジクロロメチル−チオ−シク
ロヘキセン−カルボキシイミド、N−トリクロロメチル
ーマーキャプトフタルイミド、N−フロロジクロロメチ
ルーマーキャプトフタルイミド等の酸アミド類、オルソ
ニトロベンゼンスルファミド、N、N’−ジメチルN′
−フェニル−(N’−フロロジクロロメチル−チオ−)
−スルファミド等のスルファミド類、2−(メトキシ−
カルボニル−アミノ)−ベンズイミダゾ−1し、2−(
メトキシ−カルボニル−アミノ−)ベンズイミダゾール
とドデシルベンゼンスルホン酸との分子塩、チアベンダ
ゾール等のイミダゾール類等を用いることができ、芳香
属カルボン酸又はその塩としては平均分子量約100〜
250、平均炭素数約5〜12のものが好ましく、又、
脂肪属カルボン酸又はその塩としては平均分子量約90
〜250、平均炭素数約8〜15のものが好ましく、又
、エステル類としては平均分子量約150〜250、平
均炭素数約8〜15のものが好ましく、又、フェノール
類としては平均分子量的90〜300、平均炭素数約6
〜20のものが好ましく、又、酸アミド類としては平均
分子量が約120〜500、平均炭素数約8〜20、平
均窒素数約1〜5のものが好ましく、スルファミド類と
しては平均分子量的150〜500、平均炭素数約5〜
20、平均窒素数約1〜6、平均イオウ数約1〜3のも
のが好ましく、イミダゾール類としては平均分子量約1
00〜400、平均炭素数約3〜30、平均窒素数約2
〜4のものが好ましいものであり、そしてこの量は潤滑
油の組成、粘度等によって一義的には定められないか、
通常0.01〜5%、より好ましくは約0.3〜2%程
度の濃度となるよう潤滑油に添加される。 又、潤滑油としてはパラフィン(CnHl”z)系及び
ナフラン(Cnl12n)系の炭化水素をベースとして
なるものが用いられ、その平均炭素数は約10〜30、
平均分子量は約100〜500で、その粘度(40℃)
は約2〜20cstであるものが望ましく、そして潤滑
油のアルミニウム合金材表面への塗布量は約5〜soo
。 mg/n2程度であることが望ましい。 尚、潤滑油中に耐摩耗性の添加剤等が加えられていても
良い。 又、プレコート工程でアルミニウム合金材表面に形成さ
れる皮膜としては、例えば陽極酸化皮膜、ベーマイト系
皮膜、ベーマイト処理又は陽極酸化処理後ケイ酸塩処理
した皮膜、若しくはシリカゾル処理した皮膜、クロメー
ト処理後ケイ酸塩処理した皮膜、ケイ酸塩塗布皮膜、シ
リカゾル水溶液による皮膜、あるいは特開昭58−10
6397号公報開示のような酸化剤を添加した浴で生成
させた皮膜等の無機質系の皮膜、あるいは親水性の有機
樹脂塗膜、又はこれらの複合系の皮膜があり、このよう
な皮膜は約1〜30B/m”のものである。 又、上記した皮膜に少量、例えば約2B/da”以下の
無機リン酸塩、界面活性剤あるいは親水性有機物質を介
在させるようにしていてもよい、。
The present inventor discovered an extremely interesting phenomenon while pursuing research aimed at further improving the microbial resistance of heat exchangers. In other words, although the surface film of the fins incorporated in the heat exchanger should have been formed uniformly, the microbial resistance varies depending on the position of the heat exchanger core. They discovered that there are areas where this occurs more often and areas where it occurs less. More specifically, they discovered that the brazing in the heat exchanger core has particularly excellent microbial resistance (low generation of microorganisms) in the vicinity. At the initial stage of the discovery of this phenomenon, it was thought that the above-mentioned variations were due to variations in the surface treatment of the aluminum alloy, but as the research progressed, it was thought that the above-mentioned variations were due to variations in the surface treatment. It turned out that it wasn't a thing. Additionally, the part of the heat exchanger core near the brazing area has particularly good microbial resistance because it adheres to the film due to the heat (temperature) during the brazing process during the assembly process of the heat exchanger. It was thought that this was due to the sterilization of microorganisms, but this idea gradually turned out to be wrong. That is, as a first step, the heat exchanger is formed into fins by draw-pressing or drawless-pressing an aluminum alloy material on which an organic film and/or an inorganic film is formed. In addition, in this press working process, paraffinic hydrocarbon (Cnl12n+2) or naprane hydrocarbon (Cnl12n+2)
n II 2n ) as the main component, for example 50:5
0, 30.70 or 70:30, and has an average molecular weight of about 100 to 500 and an average carbon number of about 10 to 30;
A lubricating oil (basically, it inevitably contains 11,000 pp or less of water) having a viscosity (40° C.) of about 2 to 20 cst is used. Then, a copper tube, for example, is inserted into the fins obtained by the above-mentioned press processing and expanded to produce a predetermined heat exchanger core. After this, the lubricating oil used in the pressing process is removed from the fin surface with a degreasing agent such as perchlorethylene, trichlorethylene, trichloroethane, etc. After the lubricating oil is removed, the copper U-bend (joint pipe) is brazed. has been done. However, as a result of the inventor's research, it has been discovered that although most of the lubricating oil is removed by the degreasing process using the degreasing agent, the lubricating oil is not completely removed. There was some lubricating oil left behind. In other words, although it was believed that the previous degreasing treatments were sufficient and that virtually no lubricating oil remained after degreasing, it is believed that the removal of lubricating oil by conventional degreasing treatments is complete. It was confirmed that this could not be said. When a copper U-bend is being soldered, the surface of the fin near the U-bend will of course be heated to some extent, and this heat will cause the lubricating oil to run off in the area near the U-bend. Furthermore, it was found that the lubricating oil remained incompletely removed in the portion far from the U-bend because it was less likely to be heated. In other words, there is no doubt that the difference in microbial resistance depending on the position of the heat exchanger core is due to the effect of heating.This is not due to the sterilization effect, but rather due to the various interfaces provided to the precoat film. An emulsion consists of three substances: a hydrophilic substance such as an activator and a hydrophilic organic resin, a lubricating oil remaining on the surface of the fin and/or in the gap between the fin and the tube after degreasing with an organic solvent, and water condensed on the surface of the fin. It was found that when the lubricating oil flows down to the drain receptacle, the lubricating oil that flows down plays a large role in the growth of microorganisms in areas where there is a large amount of oil present in the emulsion, and as a result, there is a large number of microorganisms. be. The present invention was made as a result of elucidation of such a unique phenomenon that no one has noticed until now, and it is extremely difficult to completely remove the lubricating oil used in press working. Considering that it is extremely difficult to completely remove lubricating oil remaining in the gaps between the fins and tubes, it is recommended that lubricating oil and antibacterial and/or bactericidal agents coexist in the heat exchanger, especially for aluminum alloys. Antibacterial agents and/or lubricants remain in the lubricating oil used when pressing materials into fins, especially in the gaps between the fins and tubes of heat exchangers and/or on the surfaces of the fins. A heat exchanger is provided in which a disinfectant is present. It is preferable that at least one of the antibacterial agent and/or bactericidal agent used suppresses the growth of microorganisms whose growth factor is the lubricating oil component. Furthermore, antibacterial agents and/or bactericidal agents have a high affinity with lubricating oil, and it is desirable that the antibacterial agent and/or bactericidal agent be sufficiently dispersed or dissolved in the lubricating oil. If the agent and/or bactericide are not sufficiently dispersed or dissolved in the lubricant, they may wear out the press die during press processing or cause the lubricant to deteriorate. When applying the lubricant to pre-coated aluminum alloy material, if the bactericide etc. is precipitated in particles, the lubricant will not be applied to the surface of the aluminum alloy material in those areas, and the purpose of the lubricant application will not be achieved. Moreover, the condensed water that has become an emulsion and the lubricating oil that contains the antibacterial agent or bactericide become difficult to flow down to the drain tray, and the antibacterial agent or bactericide cannot fully perform its purpose. It almost disappears. Such antibacterial and bactericidal agents include benzoic acid,
9. Aromatic carboxylic acids and their salts such as sodium chloride, cinnamic acid, sorbic acid, potassium sorbate, dehydroacetic acid, sodium dehydroacetate, 10. Fats such as pionic acid, sodium propionate, calcium propionate, etc. Carboxylic acids and their salts, isobutyl paraoxybenzoate, paraoxy branch, isopropyl fragrant, ethyl paraoxybenzoate, propyl paraoxybenzoate, butyl paraoxybenzoate and other esters, cresol, thymol, eugenol, or-1 phenylphenol, Phenols such as phenylphenol and dihydroxyphenyl, acid amides such as N-fluoro-dichloromethyl-thio-cyclohexene-carboximide, N-trichloromethyl-mercaptophthalimide, N-fluorodichloromethyl-mercaptophthalimide, ortho Nitrobenzenesulfamide, N,N'-dimethyl N'
-phenyl-(N'-fluorodichloromethyl-thio-)
-Sulfamides such as sulfamide, 2-(methoxy-
carbonyl-amino)-benzimidazo-1,2-(
Molecular salts of methoxy-carbonyl-amino-)benzimidazole and dodecylbenzenesulfonic acid, imidazoles such as thiabendazole, etc. can be used, and aromatic carboxylic acids or salts thereof have an average molecular weight of about 100 to
250, with an average carbon number of about 5 to 12, and
Average molecular weight for aliphatic carboxylic acids or salts thereof: approximately 90
-250, with an average carbon number of about 8-15; as esters, those with an average molecular weight of about 150-250 and with an average carbon number of about 8-15 are preferred; and as phenols, those with an average molecular weight of about 90 ~300, average carbon number approximately 6
The average molecular weight of acid amides is preferably about 120 to 500, the average carbon number is about 8 to 20, and the average nitrogen number is about 1 to 5. As sulfamides, those with an average molecular weight of about 150 are preferable. ~500, average carbon number approximately 5~
20, the average nitrogen number is preferably about 1 to 6, the average sulfur number is about 1 to 3, and the imidazoles have an average molecular weight of about 1.
00-400, average carbon number approximately 3-30, average nitrogen number approximately 2
~4 is preferable, and this amount is not uniquely determined depending on the composition, viscosity, etc. of the lubricating oil, or
It is added to the lubricating oil at a concentration of usually 0.01 to 5%, more preferably about 0.3 to 2%. In addition, as lubricating oils, those based on paraffin (CnHl''z) and napuran (Cnl12n) type hydrocarbons are used, and the average number of carbon atoms is about 10 to 30.
The average molecular weight is about 100-500, and its viscosity (40℃)
is preferably about 2 to 20 cst, and the amount of lubricant applied to the surface of the aluminum alloy material is about 5 to soo
. It is desirable that it be about mg/n2. Incidentally, an anti-wear additive or the like may be added to the lubricating oil. In addition, the film formed on the surface of the aluminum alloy material in the pre-coating process includes, for example, an anodized film, a boehmite-based film, a film treated with boehmite or a film treated with silicate after anodization, a film treated with silica sol, and a film treated with silicate after chromate treatment. Acid-treated film, silicate-coated film, film with silica sol aqueous solution, or JP-A-58-10
There are inorganic coatings such as those produced in a bath containing an oxidizing agent as disclosed in Publication No. 6397, hydrophilic organic resin coatings, or composite coatings of these. 1 to 30 B/m''. Also, a small amount, for example, about 2 B/da'' or less, of an inorganic phosphate, a surfactant, or a hydrophilic organic substance may be interposed in the above-mentioned film. .

【実施例1】 JIS 1200−H28アルミニウム合金材を次亜塩
素酸ナトリウム水溶液中に約85℃の温度下で浸漬し、
次いで水ガラス溶液中に浸漬し、表面に水濡れ性良好な
無機質系の酸化皮膜を形成する。 その後、上記酸化皮膜形成アルミニウム合金材表面に、
トリポリリン酸ナトリウム及びポリオキシエチレンノニ
ルフェニルエーテル水溶液を塗布し、無機リン酸化合物
及び非イオン系界面活性剤を付着させる。 そして、上記無機リン酸化合物及び非イオン系界面活性
剤の付いた無機質系皮膜が形成されたアルミニウム合金
材を、潤滑油(昭和シェル石油(株)製のフィンストッ
クオイルA、動粘度(40℃)7〜8cst)中に抗菌
剤としてオル1〜フエニルフエノールを濃度2%となる
よう分散させたものを用いた、しごき加工を中心とした
ドローレスプレス加工を施し、フィンを得る。 次に、このフィンに銅製チューブを挿入して拡管し、熱
交換器コアを製作する。 そして、このようにして組み立てられた熱交換器コアよ
り上記ドローレスプレス加工で付着した潤滑油を除去す
る為、通常の条件下でトリクロルエチレンを用いた脱脂
処理を行なう。 この脱脂処理後、銅製のUベンドをろう付する。 上記のようにして組み立てられた熱交換器のコアを、突
器のエバポレータ(室内機)に組み込み、4時間の連続
冷房運転を行ない、そしてその凝縮水を採取して微生物
の繁殖具合を調べた結果、フィンとチューブとの間隙に
残存していた潤滑油の流下が認められたものの、この流
下した潤滑油に起因しての微生物の増殖は殆ど認められ
なかった。
[Example 1] JIS 1200-H28 aluminum alloy material was immersed in a sodium hypochlorite aqueous solution at a temperature of about 85°C,
Next, it is immersed in a water glass solution to form an inorganic oxide film with good water wettability on the surface. Then, on the surface of the oxide film-formed aluminum alloy material,
Apply an aqueous solution of sodium tripolyphosphate and polyoxyethylene nonyl phenyl ether to adhere an inorganic phosphoric acid compound and a nonionic surfactant. Then, the aluminum alloy material on which the inorganic film with the inorganic phosphoric acid compound and nonionic surfactant was formed was coated with a lubricating oil (Finstock Oil A manufactured by Showa Shell Sekiyu Co., Ltd.) with a kinematic viscosity of 40°C. ) 7 to 8 cst) in which an antibacterial agent, ol-1 to phenylphenol, was dispersed to a concentration of 2%, and a drawless press process, mainly ironing, was performed to obtain fins. Next, a copper tube is inserted into the fin and expanded to produce a heat exchanger core. Then, in order to remove the lubricating oil deposited during the drawless press processing from the thus assembled heat exchanger core, a degreasing treatment using trichlorethylene is performed under normal conditions. After this degreasing treatment, the copper U-bend is brazed. The core of the heat exchanger assembled as described above was installed in the evaporator (indoor unit) of the projector, and continuous cooling operation was performed for 4 hours, and the condensed water was collected to examine the growth of microorganisms. As a result, although it was observed that the lubricating oil remaining in the gap between the fin and the tube was flowing down, almost no growth of microorganisms due to this flowing down lubricating oil was observed.

【実施例2】 実施例1において、抗菌剤としてパラオキシ安息香酸エ
チルを用いる外は全て同様に行ない、熱交換器を得る。 上記のようにして組み立てられた熱交換器のコアを、突
器のエバポレータ(室内機)に組み込み、4時間の連続
冷房運転を行ない、そしてその凝縮水を採取して微生物
の繁殖具合を調べた結果、フィンとチューブとの間隙に
残存していた潤滑油の流下が認められたものの、この流
下した潤滑油に起因しての微生物の増殖は殆ど認められ
なかった。
Example 2 A heat exchanger was obtained by carrying out the same procedure as in Example 1 except that ethyl paraoxybenzoate was used as the antibacterial agent. The core of the heat exchanger assembled as described above was installed in the evaporator (indoor unit) of the projector, and continuous cooling operation was performed for 4 hours, and the condensed water was collected to examine the growth of microorganisms. As a result, although it was observed that the lubricating oil remaining in the gap between the fin and the tube was flowing down, almost no growth of microorganisms due to this flowing down lubricating oil was observed.

【実施例3】 実施例1において、抗菌剤としてソルビン酸カリウムを
用いる外は全て同様に行ない、熱交換器を得る。 上記のようにして組み立てられた熱交換器のコアを、突
器のエバポレータ(室内機)に組み込み、4時間の連続
冷房運転を行ない、そしてその凝縮水を採取して微生物
の繁殖具合を調べた結果、フィンとチューブとの間隙に
残存していた潤滑油の流下が認められたものの、この流
下した潤滑油に起因しての微生物の増殖は殆ど認められ
なかった。
Example 3 A heat exchanger was obtained in the same manner as in Example 1 except that potassium sorbate was used as the antibacterial agent. The core of the heat exchanger assembled as described above was installed in the evaporator (indoor unit) of the projector, and continuous cooling operation was performed for 4 hours, and the condensed water was collected to examine the growth of microorganisms. As a result, although it was observed that the lubricating oil remaining in the gap between the fin and the tube was flowing down, almost no growth of microorganisms due to this flowing down lubricating oil was observed.

【実施例4】 実施例1において、抗菌剤としてデヒドロ酢酸を用いる
外は全て同様に行ない、熱交換器を得る。 上記のようにして組み立てられた熱交換器のコアを、突
器のエバポレータ(室内機)に組み込み、4時間の連続
冷房運転を行ない、そしてその凝縮水を採取して微生物
の繁殖具合を調べた結果、フィンとチューブとの間隙に
残存していた潤滑油の流下が認められたものの、この流
下した潤滑油に起因しての微生物の増殖は殆ど認められ
なかった。
Example 4 A heat exchanger was obtained by carrying out the same procedure as in Example 1 except that dehydroacetic acid was used as the antibacterial agent. The core of the heat exchanger assembled as described above was installed in the evaporator (indoor unit) of the projector, and continuous cooling operation was performed for 4 hours, and the condensed water was collected to examine the growth of microorganisms. As a result, although it was observed that the lubricating oil remaining in the gap between the fin and the tube was flowing down, almost no growth of microorganisms due to this flowing down lubricating oil was observed.

【実施例5】 実施例1において、抗菌剤としてチアベンダゾールを用
いる外は全て同様に行ない、熱交換器を得る。 上記のようにして組み立てられた熱交換器のコアを、突
器のエバポレータ(室内機)に組み込み、4時間の連続
冷房運転を行ない、そしてその凝縮水を採取して微生物
の繁殖具合を調べた結果、フィンとチューブとの間隙に
残存していた潤滑油の流下が認められたものの、この流
下した潤滑油に起因しての微生物の増殖は殆ど認められ
なかった。
Example 5 A heat exchanger was obtained by carrying out the same procedure as in Example 1 except that thiabendazole was used as the antibacterial agent. The core of the heat exchanger assembled as described above was installed in the evaporator (indoor unit) of the projector, and continuous cooling operation was performed for 4 hours, and the condensed water was collected to examine the growth of microorganisms. As a result, although it was observed that the lubricating oil remaining in the gap between the fin and the tube was flowing down, almost no growth of microorganisms due to this flowing down lubricating oil was observed.

【実施例6】 実施例1において、無機リン酸化合物及び非イオン系界
面活性剤の付いた無機質系皮膜が形成されたアルミニウ
ム合金材を用い、そしてドローレスプレス加工時には実
施例1で用いた抗菌剤分散潤滑油をアルミニウム合金材
表面に塗布して行ない、その他は同様に行なって熱交換
器を得る。 上記のようにして組み立てられた熱交換器のコアを、突
器のエバポレータ(室内機)に組み込み、4時間の連続
冷房運転を行ない、そしてその凝縮水を採取して微生物
の繁殖具合を調べた結果、フィンとチューブとの間隙に
残存していた潤滑油の流下が認められたものの、この流
下した潤滑油に起因しての微生物の増殖は殆ど認められ
なかった。
[Example 6] In Example 1, an aluminum alloy material on which an inorganic film with an inorganic phosphoric acid compound and a nonionic surfactant was formed was used, and the antibacterial agent used in Example 1 was used during drawless press processing. A heat exchanger is obtained by applying dispersed lubricating oil to the surface of an aluminum alloy material, and otherwise performing the same procedure. The core of the heat exchanger assembled as described above was installed in the evaporator (indoor unit) of the projector, and continuous cooling operation was performed for 4 hours, and the condensed water was collected to examine the growth of microorganisms. As a result, although it was observed that the lubricating oil remaining in the gap between the fin and the tube was flowing down, almost no growth of microorganisms due to this flowing down lubricating oil was observed.

【比較例1】 実施例1において、抗菌剤を全く用いないで同様に行な
い、熱交換器を得る。 上記のようにして組み立てられた熱交換器のコアを、突
器のエバポレータ(室内fi>に組み込み、4時間の連
続冷房運転を行ない、そしてその凝縮水を採取して微生
物の繁殖具合を調べた結果、流下した潤滑油に起因して
と思われる微生物が多く発生していた。
[Comparative Example 1] A heat exchanger was obtained by carrying out the same procedure as in Example 1 without using any antibacterial agent. The core of the heat exchanger assembled as described above was installed in a convex evaporator (indoor fi>), and continuous cooling operation was performed for 4 hours, and the condensed water was collected to examine the growth of microorganisms. As a result, many microorganisms were found, which appeared to be caused by the lubricating oil that had flowed down.

【比較例2] 実施例1において、無機質系の酸化皮膜の代りに親水性
のポリイミド系樹脂塗膜を設けたアルミニウム合金材を
用い、そして抗菌剤を全く用いないで同様に行ない、熱
交換器を1:)る。 上記のようにして組み立てられた熱交換器のコアを、実
器のエバポレータく室内1!l)に組み込み、4時間の
連続冷房運転を行ない、そしてその凝縮水を採取して微
生物の繁殖具合を調べた結果、流下した潤滑油に起因し
てと思われる微生物が多く発生していた。 【比較例3】 実施例1において、無機質系の酸化皮膜の代りに実施例
1の抗菌剤を分散せしめたポリイミド系樹脂塗料を塗布
して得た塗膜を設けたアルミニウム合金材を用い、そし
て抗菌剤を分散させてない潤滑油を用いた同様に行ない
、熱交換器を得る。
[Comparative Example 2] In the same manner as in Example 1, using an aluminum alloy material provided with a hydrophilic polyimide resin coating instead of the inorganic oxide coating, and without using any antibacterial agent, the heat exchanger 1:). Place the heat exchanger core assembled as described above into an actual evaporator indoors. 1), continuous cooling operation was performed for 4 hours, and the condensed water was collected to examine the growth of microorganisms. As a result, a large number of microorganisms were observed, which appeared to be caused by the lubricating oil that had flowed down. [Comparative Example 3] In Example 1, instead of the inorganic oxide film, an aluminum alloy material was used, which was provided with a coating obtained by applying a polyimide resin paint in which the antibacterial agent of Example 1 was dispersed, and A heat exchanger is obtained in the same manner using a lubricating oil in which no antibacterial agent is dispersed.

Claims (1)

【特許請求の範囲】 1 熱交換器に潤滑油と抗菌剤及び/又は殺菌剤とが共
存していることを特徴とする熱交換器。 2 特許請求の範囲第1項記載の熱交換器において、抗
菌剤及び/又は殺菌剤が、熱交換器のフィンとチューブ
との隙間及び/又はフィン表面に存在している潤滑油と
共に存在するもの。 3 特許請求の範囲第1項記載の熱交換器において、有
機皮膜及び/又は無機皮膜が形成されたアルミニウム又
はアルミニウム合金材を、抗菌剤及び/又は殺菌剤を混
入した潤滑油を用いたプレス加工し、該プレス加工によ
って得たものを組み立ててなるもの。 4 特許請求の範囲第1項〜第3項記載の熱交換器にお
いて、潤滑油か、パラフィン系/及び又はナフラン系の
炭化水素をベースとしてなるもの。 5 特許請求の範囲第1項〜第3項記載の熱交換器にお
いて、抗菌剤及び/又は殺菌剤の少なくとも一つが、潤
滑油成分を増殖の一因子とする微生物の増殖を抑制する
もの。 6 特許請求の範囲第1項〜第3項記載の熱交換器にお
いて、抗菌剤及び/又は殺菌剤と潤滑油とは親和性に富
み、抗菌剤及び/又は殺菌剤が潤滑油中で充分に分散な
いしは溶解するもの。 7 特許請求の範囲第5項又は第6項記載の熱交換器に
おいて、抗菌剤及び殺菌剤が、平均分子量約100〜2
50、平均炭素数約5〜12の芳香属カルボン酸及びそ
の塩、平均分子量約90〜250、平均炭素数約5〜1
2の脂肪属カルボン酸及びその塩、平均分子量約150
〜250、平均炭素数約8〜15のエステル類、平均分
子量約90〜300、平均炭素数約6〜20のフェノー
ル類、平均分子量約120〜500、平均炭素数約8〜
20、平均窒素数約1〜5の酸アミド類、平均分子量約
150〜500、平均炭素数約5〜20、平均窒素数約
1〜6、平均イオウ数約1〜3のスルファミド類、平均
分子量約100〜400、平均炭素数約3〜30、平均
窒素数約2〜4のイミダゾール類の中から選ばれる少な
くとも一種以上のもの。
[Scope of Claims] 1. A heat exchanger characterized in that a lubricating oil and an antibacterial agent and/or a bactericidal agent coexist in the heat exchanger. 2. The heat exchanger according to claim 1, in which the antibacterial agent and/or bactericidal agent is present together with the lubricating oil present in the gap between the fins and tubes of the heat exchanger and/or on the fin surface. . 3. In the heat exchanger according to claim 1, the aluminum or aluminum alloy material on which the organic film and/or inorganic film is formed is pressed using a lubricating oil mixed with an antibacterial agent and/or a bactericidal agent. A product made by assembling the products obtained by the press processing. 4. The heat exchanger according to claims 1 to 3, which is based on a lubricating oil or a paraffinic/and/or naprane hydrocarbon. 5. The heat exchanger according to claims 1 to 3, in which at least one of the antibacterial agent and/or the bactericidal agent suppresses the growth of microorganisms whose growth factor is a lubricating oil component. 6. In the heat exchanger according to claims 1 to 3, the antibacterial agent and/or bactericidal agent has a high affinity with the lubricating oil, and the antibacterial agent and/or bactericidal agent is sufficiently contained in the lubricating oil. Something that disperses or dissolves. 7. In the heat exchanger according to claim 5 or 6, the antibacterial agent and the bactericidal agent have an average molecular weight of about 100 to 2.
50, aromatic carboxylic acids and salts thereof having an average carbon number of about 5 to 12, average molecular weight of about 90 to 250, average carbon number of about 5 to 1
2 aliphatic carboxylic acid and its salt, average molecular weight approximately 150
-250, esters with an average carbon number of about 8-15, average molecular weight of about 90-300, phenols with an average carbon number of about 6-20, average molecular weight of about 120-500, average carbon number of about 8-
20. Acid amides with an average nitrogen number of about 1 to 5, average molecular weight of about 150 to 500, average carbon number of about 5 to 20, average nitrogen number of about 1 to 6, and sulfamides with an average sulfur number of about 1 to 3, average molecular weight At least one imidazole selected from imidazoles having about 100 to 400 carbon atoms, an average carbon number of about 3 to 30, and an average nitrogen number of about 2 to 4.
JP3076488A 1988-02-15 1988-02-15 Heat exchanger Pending JPH01208696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3076488A JPH01208696A (en) 1988-02-15 1988-02-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3076488A JPH01208696A (en) 1988-02-15 1988-02-15 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH01208696A true JPH01208696A (en) 1989-08-22

Family

ID=12312749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3076488A Pending JPH01208696A (en) 1988-02-15 1988-02-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH01208696A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705391B1 (en) * 2001-10-19 2004-03-16 Scott Jay Lewin Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705391B1 (en) * 2001-10-19 2004-03-16 Scott Jay Lewin Heat exchanger

Similar Documents

Publication Publication Date Title
US5116521A (en) Aqueous lubrication treatment liquid and method of cold plastic working metallic materials
KR20020013570A (en) Heat exchanger made of aluminum alloy
JP5586834B2 (en) Aluminum fin material for heat exchanger
WO2016190347A1 (en) Method for producing evaporator for refrigeration device
BRPI0819753B1 (en) COMPOSITION OF WATER LIQUID LUBRICANT, METHOD OF FORMING A PASSIVE AND LUBRICANT COATING COMBINED IN A METAL SUBSTRATE, METAL SUBSTRATE, AND PROCESS FOR MANUFACTURING A METAL PART.
JPH0747756B2 (en) Aqueous lubrication liquid for cold plastic working of metals
JPS60215772A (en) Surface treatment of aluminum and its alloy
JPH01208696A (en) Heat exchanger
JP3427071B2 (en) anti-rust
CN104120439A (en) Environment-friendly type water-based metal cleaning agent and manufacturing method thereof
JP5566835B2 (en) Coating composition and aluminum fin material using the same
JPH01207394A (en) Lubricant
US5091100A (en) Fatty triglyceride-in-water solid film high temperature prelube emulsion for hot rolled steel
JP2000262968A (en) Surface treated fin material
JPH08291269A (en) Treating composition for making substance hydrophilic and parts for heat exchanger made hydrophilic
JP2002361302A (en) Method for rolling metal material plate
JPH11211377A (en) Aluminum for heat-exchanger or aluminum alloy fin materials, and manufacture thereof
JPH02167398A (en) Aqueous lubricant for plastic processing of metal material and treatment therefor
JP2005343955A (en) Aqueous lubricant composition for metal processing and method for metal-processing using the same
JPH03177796A (en) Heat exchanger and manufacture thereof
JP3428546B2 (en) Anti-rust grease
JP2019183274A (en) Refrigerant piping, heat exchanger, and manufacturing method for refrigerant piping
JP2748027B2 (en) Heat exchanger and method of manufacturing the same
JP2008075094A (en) Water-based lubricant composition used for plastic processing of metal material
JPS6281221A (en) Production of metal product with cold plastic work