JPH01208338A - Production apparatus for matrix for optical fiber - Google Patents

Production apparatus for matrix for optical fiber

Info

Publication number
JPH01208338A
JPH01208338A JP3091788A JP3091788A JPH01208338A JP H01208338 A JPH01208338 A JP H01208338A JP 3091788 A JP3091788 A JP 3091788A JP 3091788 A JP3091788 A JP 3091788A JP H01208338 A JPH01208338 A JP H01208338A
Authority
JP
Japan
Prior art keywords
reaction vessel
glass
exhaust
exhaust pipe
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3091788A
Other languages
Japanese (ja)
Inventor
Masumi Ito
真澄 伊藤
Toshio Danzuka
彈塚 俊雄
Masahiro Takagi
政浩 高城
Hiroshi Yokota
弘 横田
Masahide Saito
斉藤 真秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3091788A priority Critical patent/JPH01208338A/en
Publication of JPH01208338A publication Critical patent/JPH01208338A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To provide the title apparatus so designed that when a glass material is to be hydrolyzed in the presence of flame in a reaction vessel and a porous matrix is to be grown, an exhaust means comprising an exhaust pipe having an opening of specific shape is installed, thereby effecting greater efficiency for the discharge of suspended granular glass and obtaining the title matrix free from foaming in high yield. CONSTITUTION:An exhaust means is installed in a reaction vessel 11 so that the end 17 i.e., an exhaust port of an exhaust pipe 16 is so constructed that its sectional shape is circular, ellipsoidal or rectangular, as desired, and its sectional area fall between 10 and 60% of the are of the side ABCD where the exhaust pipe 16 is present. Thence, glass material (e.g., SiCl4) and such gases as H2, O2 and Ar are fed, via e.g., a concentric multitubular burner 12, into the reaction vessel where the mixture is combusted to perform hydrolysis in a flame 13 to produce granular glass and a porous matrix 15 is grown on a starting material or core rod each rotatable with a means 14 along with quick and efficient discharge of suspended granular glass through the exhaust pipe 16 having said exhaust port 17 without suspension in the vessel 11, thus suppressing the adherence of said granular glass to the inner wall of the vessel 11 or the matrix 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ゛ 本発明は元ファイバ用ガラス母材の製造装置に関し、詳
しくは火炎加水分解反応を用いて多孔質ガラス母材を製
造する装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an apparatus for producing a glass base material for original fibers, and more specifically to an apparatus for producing a porous glass base material using a flame hydrolysis reaction. be.

〔従来の技術〕[Conventional technology]

一般に火炎加水分解反応を用いた多孔質ガラス母材の製
造においては、第8図に示すような装r11に用いて反
応容器81内にてバーナ82から燃焼ガス、ガラス原料
等を混合噴出し、酸水素火炎83中において上記ガラス
原料が加水分解反応するこ・とによシ生じた粒状ガラス
を、回転する出発材または心棒の上に堆積させ、回転軸
84の方向に多孔質母材85t−生長させる方法が用い
られている。このとき、多孔質母材85として堆積しな
かった粒状ガラスは、反応容器81内から排気管86に
よシ吸引され、−廃ガス処理fc11188に導かれる
Generally, in the production of a porous glass base material using a flame hydrolysis reaction, combustion gas, glass raw materials, etc. are mixed and ejected from a burner 82 in a reaction vessel 81 using a device R11 as shown in FIG. The granular glass produced by the hydrolysis reaction of the glass raw material in the oxyhydrogen flame 83 is deposited on a rotating starting material or mandrel, and is deposited on the rotating starting material or mandrel, and is deposited on the porous base material 85t- in the direction of the rotation axis 84. A growing method is used. At this time, the granular glass that has not been deposited as the porous base material 85 is suctioned from inside the reaction vessel 81 through the exhaust pipe 86 and guided to -waste gas treatment fc11188.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のこの徳の製造方法では、生成された粒状ガラスの
50〜80%が多孔質母材として堆積している。したが
って、生成した粒状ガラスのうち20〜50%は多孔質
母材として堆積せず、排出されている。例えば母材の合
成速度を4777分とすれば0.8〜211/分の粒状
ガラスが反応容器内に放出されることになる。この堆積
しなかった粒状ガラスは、反応容器内を漂い、排気管か
ら排出されるわけだが、スムーズに排出できずに反応容
器内に充満した場合には、製品である多孔質母材に悪影
響を及ぼす。すなわち、反応容器内の浮遊粒状ガラスが
多孔質母材表面に付着すると、後工程で多孔質母材を透
明ガラヌ化した際該ガラス中に気泡を発生させる原因と
なる。また、出発材ロンドに浮遊物が付着した場合も気
泡が発生して不良となる。さらに、浮遊粒状ガラスが反
応容器の内壁に厚く付着した場合、清掃に時間がかかり
、設備の稼動率低下の原因となる。以上のように多孔質
母材に堆積しなかつ九粒状ガラスの排気が迅速に行われ
ず反応容器内に充満した場合、種々の悪影響がめる。こ
れは、母材の合成速度を高速化すればするほど顕著にな
シ、重要な問題となってくる。
In conventional manufacturing methods, 50-80% of the granular glass produced is deposited as a porous matrix. Therefore, 20 to 50% of the generated granular glass is not deposited as a porous matrix but is discharged. For example, if the synthesis rate of the base material is 4777 minutes, granular glass will be discharged into the reaction vessel from 0.8 to 211 minutes/minute. This undeposited granular glass floats inside the reaction vessel and is discharged from the exhaust pipe, but if it cannot be discharged smoothly and fills the reaction vessel, it may have a negative impact on the porous base material that is the product. affect That is, if floating particulate glass in the reaction vessel adheres to the surface of the porous base material, it will cause bubbles to be generated in the glass when the porous base material is turned into transparent galanic in a subsequent step. Furthermore, if floating matter adheres to the starting material Rondo, air bubbles will be generated and the product will be defective. Furthermore, if floating particulate glass thickly adheres to the inner wall of the reaction vessel, it takes time to clean it, which causes a decrease in the operating rate of the equipment. As described above, if the nine-grain glass is not deposited on the porous base material and is not evacuated quickly and the reaction vessel is filled, various adverse effects may occur. This becomes more noticeable and becomes an important problem as the synthesis speed of the base material increases.

これに対して、反応容器内の浮遊粒状ガラスを強制的に
排気する之めに、排気の吸引力を強める方法が考えられ
るが、反応容器内のガスの流れの乱れが大きくなる可能
性がある。その場合、バーナの火炎にも影I#を及ぼし
、火炎が乱れることになる。火炎が乱れた場合粒状ガラ
スの多孔質母材への堆積効率が劣化する。さらに、多孔
質母材の径方向に屈折率分布を形成するため、Go  
等の元素t’s加する場合、形成される屈折率分布が乱
れてし1う等の問題がある。実際、排気量を通前の2倍
にしてみると多孔質母材の合成収率は70%から65%
に5え低下し、また、火炎を観察したところ明らかに火
炎の乱れが大きくなっていた。
In order to forcibly exhaust the floating particulate glass inside the reaction vessel, a method of increasing the suction power of the exhaust gas may be considered, but this may cause greater disturbance of the gas flow inside the reaction vessel. . In that case, a shadow I# will also be exerted on the flame of the burner, causing the flame to become turbulent. When the flame is turbulent, the efficiency of depositing granular glass onto the porous matrix deteriorates. Furthermore, in order to form a refractive index distribution in the radial direction of the porous base material, Go
When adding elements such as t's, there is a problem that the refractive index distribution formed becomes disordered. In fact, if the exhaust volume is doubled than before, the synthesis yield of the porous base material will be 70% to 65%.
When the flame was observed, it was clear that the flame turbulence had increased.

本発明は火炎加水分解等により生成させた粒状ガラスを
堆積させて多孔質母材t−S造するための反応容器であ
って、未堆積粒状ガラスを迅速かつ効率よく排気できる
改善された排気手段を有し、これにより高品質の元ファ
イバ用母材を効率よく製造できる装置を目的としてなさ
れたものである。
The present invention is a reaction vessel for forming a porous matrix T-S by depositing granular glass produced by flame hydrolysis, etc., and includes an improved exhaust means that can quickly and efficiently exhaust undeposited granular glass. The purpose of this device is to provide a device that can efficiently produce a high-quality base material for fibers.

〔課題を解決するための手段〕[Means to solve the problem]

不発明者らは種々研究の結果、排気口を排気管から反応
容器内へ向けて大きく広げていく形状にすることにより
排気量を上げずに反応容器内の浮遊粒状ガラスを効率よ
く、排気できることを見出した。
As a result of various studies, the inventors have found that floating particulate glass in the reaction vessel can be efficiently exhausted without increasing the exhaust volume by making the exhaust port widen from the exhaust pipe toward the inside of the reaction vessel. I found out.

本発明は反応容器内に、気体のガラス原料を火炎加水分
解させることにより粒状ガラスを生成させるバーナと、
その表面に該粒状ガラスを堆積させて多孔質母材を成長
させるための出発材又は心棒を把持して回転させる回転
手段と排気手段とを有してなる元ファイバ用母材の製造
装置において、該排気手段は排気管が反応容器内に向っ
て開口部が広がった形状を有することを特徴とする元フ
ァイバ用母材の製造装置である。
The present invention includes a burner in a reaction vessel that generates granular glass by flame hydrolyzing a gaseous glass raw material;
In an apparatus for producing a base material for an original fiber, the apparatus comprises a rotation means for gripping and rotating a starting material or a mandrel for growing a porous base material by depositing the granular glass on the surface thereof, and an exhaust means, The exhaust means is an apparatus for producing a base material for original fiber, characterized in that the exhaust pipe has a shape in which the opening widens toward the inside of the reaction vessel.

不発明を図面を参照して具体的に説明すると、第1図は
本発明の実施態様を示す概略断面図、第2図は第1因の
a −a’方向矢視図であって、図中11は反応容器、
12はバーナ、13は火炎、14は回転軸、15は多孔
質母材、18は廃ガス処理装置であり、ここまでは第8
図に示した従来の構成と同様であるが、本発明の特徴は
排気管16にあって、該排気管16の反応容器11内に
開口する端部(排気口)17は、反応容器内に向って該
端部が広がる形状をとるものである。該端部17の断面
形状は円形、長円形、矩形等の纜々の形状をと夛うるが
、第2図に示すように該端部17の断面積(図中の斜線
部分)は反応容器の排気管のある側面A ’B CDの
面積の10〜60%の範囲内にあることが、最も効率よ
い排気を可能とする。
To specifically explain the non-invention with reference to the drawings, FIG. 1 is a schematic sectional view showing an embodiment of the present invention, and FIG. 2 is a view taken along arrows a-a' of the first cause. Middle 11 is a reaction container,
12 is a burner, 13 is a flame, 14 is a rotating shaft, 15 is a porous base material, and 18 is a waste gas treatment device.
Although the structure is similar to the conventional structure shown in the figure, the feature of the present invention is in the exhaust pipe 16, and the end (exhaust port) 17 of the exhaust pipe 16 that opens into the reaction vessel 11 is The end portion is shaped so as to widen toward the direction. The cross-sectional shape of the end portion 17 may have various shapes such as circular, oval, and rectangular, but as shown in FIG. 2, the cross-sectional area of the end portion 17 (the shaded area in the figure) The most efficient exhaust is possible if the exhaust pipe is within the range of 10 to 60% of the area of the side A'B CD.

〔作用〕[Effect]

本発明の排気管側から反応容器内にむかって大きく広が
る排気口形状をとることで迅速な排気が実現できるとい
う効果は、広口の排気口が反応容器内の広範囲のガスを
平均的に吸引するためと考えられる。すなわち、第9図
に示すごとく、通常の排気口の場合強く吸引される領域
が前方の狭い範囲に限定されてしまいその他の領域での
吸引力が小さく、むしろ流れが第9図に矢印で示す如く
反応容器81内で循環してし1う。一方、本発明の広い
排気口の場合、反応容器内の広い領域を平均して吸引す
るため、第3図に矢印で示す如く、反応容器内のガス流
れが、排気口17に向けて一様に近くなる。このため、
反応容器11内に放出された粒状ガラスは、反応容器1
1内に漂うことなく、速やかに排気口17より外に排出
される。
The effect of the present invention that rapid exhaust can be realized by adopting the shape of the exhaust port that widens from the exhaust pipe side toward the inside of the reaction container is that the wide exhaust port sucks in a wide range of gases in the reaction container evenly. It is thought that this is because of this. In other words, as shown in Figure 9, in the case of a normal exhaust port, the area where the air is strongly sucked is limited to a narrow area in front, and the suction force in other areas is small, and the flow is rather distorted as shown by the arrow in Figure 9. The mixture is circulated in the reaction vessel 81 as shown in FIG. On the other hand, in the case of the wide exhaust port of the present invention, since a wide area inside the reaction container is sucked evenly, the gas flow inside the reaction container is uniform toward the exhaust port 17, as shown by the arrow in FIG. It becomes close to. For this reason,
The granular glass discharged into the reaction container 11
1, and is quickly discharged outside from the exhaust port 17.

この排気口の開口端部の断面積は、反応容器の排気口1
I111411面の面積cr) 10 S60 X O
範囲内であることが最適であることを見出した。10%
より小さい場合は、上述の如く、大口径の効果が失われ
、60%よシ大きくした場合は、排気力全体が低下して
しまうためである。
The cross-sectional area of the open end of this exhaust port is the exhaust port 1 of the reaction vessel.
Area of I111411 plane cr) 10 S60 X O
We have found that being within this range is optimal. 10%
This is because if the diameter is smaller, the effect of the large diameter is lost as described above, and if it is made larger than 60%, the entire exhaust force is reduced.

〔実施例〕〔Example〕

実施例1 第1図に示す本発明に係わる元ファイバ用多孔質母材製
造装置を使用して、以下の条件で多孔質母材を製造し丸
。該反応容器の排気口側の側面の面積は4500m2′
であり、排気口の形状は第4図(&)に示すように、直
径lが1001の断面円形の排気管の先端が反応容器内
に向って口径の大きくなるラッパ形で、脇は10傷、そ
の反応容器内、の開口部先端は牛後rが17伽の円形で
断面積は900m2、すなわち容器a面面積の20%で
あった。向心円状4]!管バーナの中心の第1ボートに
ガラス原料SiC/4を1!/分、第2ボートにH2を
10!/分、第3ポートにkrf51/分、第4ボート
に02i2(1/分の流量で供給した。297分の合成
速度で外径800の多孔質母材を合成できたが、その収
率は70%でめった。多孔質母材に堆積せずに放出され
た粒状ガラスの大部分は排気管から排出され、容器餐面
に付着した粒状ガラスは放出されたものの1%以下であ
つ九。また、得られた多孔質母材も滑かな表面であり、
これを脱水、焼結してガラス化し九母材中に気泡の発生
は見られなかった。
Example 1 A porous base material was manufactured under the following conditions using the apparatus for manufacturing a porous base material for original fiber according to the present invention shown in FIG. The area of the side surface of the reaction vessel on the exhaust port side is 4500 m2'
As shown in Figure 4 (&), the shape of the exhaust port is a trumpet-shaped exhaust pipe with a circular cross section with a diameter l of 1001 mm, and the tip of the exhaust pipe increases in diameter toward the inside of the reaction vessel, and the side has 10 scratches. The tip of the opening in the reaction vessel was circular with a rear radius of 17 degrees, and the cross-sectional area was 900 m2, that is, 20% of the area of the side A of the vessel. Centripetal 4]! 1 glass raw material SiC/4 is placed in the first boat at the center of the tube burner! / minute, 10 H2 on the second boat! /min, krf51/min to the 3rd port, and 02i2 (1/min flow rate) to the 4th port. A porous base material with an outer diameter of 800 mm was synthesized at a synthesis speed of 297 minutes, but the yield was Most of the granular glass that was released without being deposited on the porous matrix was discharged from the exhaust pipe, and the granular glass that adhered to the container surface was less than 1% of the ejected glass. , the obtained porous matrix also has a smooth surface;
This was dehydrated and sintered to vitrify it, and no air bubbles were observed in the base material.

比較例1 上記実施例の装置で排気口のみ第4図(blに示すよう
にラッパ形状部分がなく直径jがIon円筒状のものを
用い、その他はすべて実施例1と同条件にして多孔質母
材の合成を試みて、排気管の形状による差を比較し九。
Comparative Example 1 Using the device of the above example, only the exhaust port was made of a cylindrical type without a trumpet-shaped part and the diameter j was Ion as shown in Fig. 4 (bl), and all other conditions were the same as in Example 1. We attempted to synthesize the base materials and compared the differences depending on the shape of the exhaust pipe.

多孔質母材の収率は実施例1と同じく70比であったが
、反応容器内の内壁には放出された粒状ガラスが厚く付
着しており、全放出粒状ガラスの約10%と推定された
。また合成された多孔質母材の表噌には反応容器内に浮
遊していた粒状ガラスが付層したと思われる突起が多数
見られた。マ九、この母材をガラス化したところ、ガラ
ス内に気泡が10圓見出された。
The yield of the porous matrix was 70% as in Example 1, but the released granular glass was thickly attached to the inner wall of the reaction vessel, and was estimated to account for about 10% of the total released granular glass. Ta. In addition, many protrusions were observed on the surface of the synthesized porous base material, which appeared to be a layer of granular glass floating in the reaction vessel. When this base material was vitrified, 10 square meters of air bubbles were found within the glass.

以上の実施例はwIT面が円状の口を有する排気口金使
用したものであるが、その他長方形、だ円形状のものに
ついても同様の効果が期待できる。
Although the above embodiment uses an exhaust cap whose wIT surface has a circular opening, similar effects can be expected with other rectangular or elliptical exhaust caps.

本発明の別の実施態様として、第6図(ml、(bl第
7図(IL)、(bl、第8図(亀)、(b) K断面
図f:示f!うな棟々の形状の排気管が挙げられる。勿
論、図示した以外の形状であっても、反応容器内側の開
口部が広がった形状の排気管を用いるものは、本発明に
包含される。
As another embodiment of the present invention, Fig. 6 (ml, (bl) Fig. 7 (IL), (bl, Fig. 8 (tortoise), (b) K cross-sectional view f: Show f! Shape of eel ridges Of course, even if the exhaust pipe has a shape other than that shown in the drawings, the present invention includes the use of an exhaust pipe with a wide opening inside the reaction vessel.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、不発明は反応容器内に向ってその
端部口径が広がる形状の排気管を設けることにより、反
応容器内の浮遊粒状ガラスを効率よく排出することを可
能とし、浮遊粒状ガラスが反応容器内壁に付層したり、
多孔質母材に付着する仁とを抑制でき墨ので、設備メン
テナンスのコストを低下し、しかもガラス化したときの
気泡発生のない多孔質母材を製造できるので製品歩留り
を向上するという、生産性向上に有効な装置である。
As explained above, the invention makes it possible to efficiently discharge floating particulate glass in the reaction vessel by providing an exhaust pipe whose end diameter widens toward the inside of the reaction vessel. may form a layer on the inner wall of the reaction vessel,
It reduces the cost of equipment maintenance because it prevents particles from adhering to the porous base material, and it also improves productivity by producing a porous base material that does not generate bubbles when vitrified. It is an effective device for improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一具体例の概略断面図、第2図は
第1図の& −a’方向矢視図、第3図は本発明装置内
でのガス流れの説明図、第4図(a)は本発明の実施例
で用いた排気管の説明図、同図(blは比較例の排気管
の説明図、第5図(&I、(b)、第6図(a)、(b
)、第7図(ILI、(1))はいずれも本発明におけ
る各種の排気管形状を示すvjT面図である。 第8図は従来装置を説明する概略断面図、第9図は第8
図の従来装置内でのガス流れの説明図である。
FIG. 1 is a schematic sectional view of a specific example of the device of the present invention, FIG. 2 is a view taken in the &-a' direction of FIG. 1, and FIG. Figure 4 (a) is an explanatory diagram of the exhaust pipe used in the example of the present invention, the same figure (bl is an explanatory diagram of the exhaust pipe of the comparative example, Figure 5 (&I, (b), Figure 6 (a) , (b
) and FIG. 7 (ILI, (1)) are vjT plane views showing various exhaust pipe shapes in the present invention. Fig. 8 is a schematic sectional view explaining the conventional device, and Fig. 9 is a schematic sectional view of the conventional device.
FIG. 3 is an explanatory diagram of gas flow within the conventional device shown in the figure.

Claims (2)

【特許請求の範囲】[Claims] (1)反応容器内に、気体のガラス原料を火炎加水分解
させることにより粒状ガラスを生成させるバーナと、そ
の表面に該粒状ガラスを堆積させて多孔質母材を成長さ
せるための出発材又は心棒を把持して回転させる回転手
段と排気手段とを有してなる光ファイバ用母材の製造装
置において、該排気手段は排気管が反応容器内に向つて
開口部が広がつた形状を有することを特徴とする光ファ
イバ用母材の製造装置。
(1) A burner that generates granular glass by flame hydrolyzing a gaseous glass raw material in a reaction vessel, and a starting material or mandrel for depositing the granular glass on the surface of the burner and growing a porous base material. In the apparatus for producing an optical fiber preform, the apparatus comprises a rotating means for gripping and rotating the base material, and an evacuation means, wherein the evacuation means has a shape in which the evacuation pipe has an opening that widens toward the inside of the reaction vessel. An optical fiber base material manufacturing device characterized by:
(2)上記開口部は端部の断面積が反応容器の排気管の
ある側面の面積の10〜60%の範囲内であることを特
徴とする特許請求の範囲第1項に記載の光ファイバ用母
材の製造装置。
(2) The optical fiber according to claim 1, wherein the cross-sectional area of the end of the opening is within a range of 10 to 60% of the area of the side surface of the reaction vessel where the exhaust pipe is located. Manufacturing equipment for base materials.
JP3091788A 1988-02-15 1988-02-15 Production apparatus for matrix for optical fiber Pending JPH01208338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3091788A JPH01208338A (en) 1988-02-15 1988-02-15 Production apparatus for matrix for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3091788A JPH01208338A (en) 1988-02-15 1988-02-15 Production apparatus for matrix for optical fiber

Publications (1)

Publication Number Publication Date
JPH01208338A true JPH01208338A (en) 1989-08-22

Family

ID=12317053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3091788A Pending JPH01208338A (en) 1988-02-15 1988-02-15 Production apparatus for matrix for optical fiber

Country Status (1)

Country Link
JP (1) JPH01208338A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637179A (en) * 1979-09-04 1981-04-10 Mitsubishi Electric Corp Heat-sensitive recording system
JPS595709U (en) * 1982-07-05 1984-01-14 本田技研工業株式会社 Secondary air supply device for exhaust purification equipment for motorcycles
JPS595708U (en) * 1982-07-03 1984-01-14 大岩 正博 Automotive exhaust gas fire extinguishing system
JPS605036A (en) * 1983-05-31 1985-01-11 アメリカン テレフォン アンド テレグラフ カムパニー Manufacture of single mode light conducting preform
JPS629295U (en) * 1986-06-10 1987-01-20

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637179A (en) * 1979-09-04 1981-04-10 Mitsubishi Electric Corp Heat-sensitive recording system
JPS595708U (en) * 1982-07-03 1984-01-14 大岩 正博 Automotive exhaust gas fire extinguishing system
JPS595709U (en) * 1982-07-05 1984-01-14 本田技研工業株式会社 Secondary air supply device for exhaust purification equipment for motorcycles
JPS605036A (en) * 1983-05-31 1985-01-11 アメリカン テレフォン アンド テレグラフ カムパニー Manufacture of single mode light conducting preform
JPS629295U (en) * 1986-06-10 1987-01-20

Similar Documents

Publication Publication Date Title
JP2002193633A (en) Apparatus for producing porous optical fiber preform
US20040065120A1 (en) Multi-tube burner and glass preform manufacturing method using the same
JPH01208338A (en) Production apparatus for matrix for optical fiber
AU739089B2 (en) Method of manufacturing a porous glass preform for an optical fiber
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JP2000327341A (en) Multiple pipe burner for producing porous glass base material and method and device for producing porous glass base material by use of the same
JP2751176B2 (en) Manufacturing method of base material for optical fiber
JPH0742129B2 (en) Method for manufacturing base material for optical fiber
JP2004131303A (en) Exhaust hood apparatus, exhaust method and process for manufacturing glass preform
JP3524209B2 (en) Method for producing glass preform for optical fiber
JPS58167442A (en) Production of optical fiber parent material
JPS63190735A (en) Production of fine glass particle deposit
JP2000203865A (en) Receptacle for producing porous glass preform
JP2005247636A (en) Method of manufacturing porous preform for optical fiber and glass preform
JPH02145449A (en) Production of preform for optical fiber
JPH0225848B2 (en)
JPS61151031A (en) Production of optical fiber preform
JP2003040626A (en) Method for producing fine glass particle heap
JPS6126527A (en) Production of porous quartz glass base material
JPS6227344A (en) Production of porous base material for optical fiber
JPS63282137A (en) Production of porous base material for quartz glass
JPS6355135A (en) Production of optical fiber preform
JP3118723B2 (en) Method for producing porous glass preform for optical fiber
JPH1017331A (en) Apparatus for producing optical waveguide film
JPS5939735A (en) Production of soot body of pulverized glass particle and its burner