JPH01206673A - Optical transmission device - Google Patents

Optical transmission device

Info

Publication number
JPH01206673A
JPH01206673A JP63030791A JP3079188A JPH01206673A JP H01206673 A JPH01206673 A JP H01206673A JP 63030791 A JP63030791 A JP 63030791A JP 3079188 A JP3079188 A JP 3079188A JP H01206673 A JPH01206673 A JP H01206673A
Authority
JP
Japan
Prior art keywords
lead
relay terminal
relay
integrated circuit
circuit element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63030791A
Other languages
Japanese (ja)
Inventor
Masayuki Sugizaki
雅之 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Device Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Device Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP63030791A priority Critical patent/JPH01206673A/en
Publication of JPH01206673A publication Critical patent/JPH01206673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

PURPOSE:To prevent a signal from deteriorating in a property even if it is optically transmitted at a high speed by a method wherein a relay terminal connected with a light emitting integrated circuit element or a photoelectric conversion element through a bonding wire is cut off from a lead to be formed. CONSTITUTION:A lead 9 provided with a photodetective diode mounting face, an externally connecting lead 7a provided with a receiving integrated circuit element mounting face, other externally connecting leads 7a-7c, and a relay terminal 13 provided with a relay face 11 which is cut off from a lead 3 to be formed are provided on the same plane. And, a photodetective diode 21 and the relay face 11 of the relay terminal 13 are connected with each other through a bonding wire. And, a receiving integrated circuit element 23 is connected to the leads 7a-7d, a lead 9, and the relay face 11 of the relay terminal 13. By these processes, the relay terminal 13 provided with the relay face small in area can be formed and a capacitor capacitance induced between the leads 9 and 7d and the relay terminal 13 can be reduced, so that a signal not deformed in a waveform can be obtained in a high speed transmission.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野〉 本発明は光伝送装置に係り、特に中〜高速伝送に適した
光伝送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an optical transmission device, and particularly to an optical transmission device suitable for medium to high speed transmission.

(従来の技術) 樹脂モールド体によって光電変換素子と光伝送用集積回
路素子を備えた光伝送回路が封止されて成る光伝送装置
としては、特公昭62−59478号公報、U、S、−
P、4539476等に記載されたもの等が広く開示さ
れ知られている。
(Prior Art) An optical transmission device in which an optical transmission circuit including a photoelectric conversion element and an integrated circuit element for optical transmission is sealed in a resin molded body is disclosed in Japanese Patent Publication No. 62-59478, U, S, -
P, 4539476, etc. are widely disclosed and known.

例えば第7図は従来の光伝送装置の光伝送回路を示す図
でおり、これを用いて従来の光伝送装置の受信装置を説
明する。
For example, FIG. 7 is a diagram showing an optical transmission circuit of a conventional optical transmission device, and a receiving device of the conventional optical transmission device will be explained using this diagram.

これは4本の外部接続用のリード107と接続の中継面
111を有する中継端子103、及び受信用集積回路素
子123と受光ダイオード121、ざらにボンディング
ワイヤによって成っている。
This consists of four external connection leads 107, a relay terminal 103 having a connecting relay surface 111, a receiving integrated circuit element 123, a light receiving diode 121, and a bonding wire.

外部接続用のり一ド107cは受信用集積回路素子設置
面を有し、その設置面上に受信用集積回路素子123が
設置されている。そしてこの受信用集積回路素子123
はボンディングワイヤによって中継端子103の中継面
111と外部接続用のリード107a、107b、′″
!07c、l’07dにそれぞれ接続されている。
The external connection glue 107c has a reception integrated circuit element installation surface, and a reception integrated circuit element 123 is installed on the installation surface. And this receiving integrated circuit element 123
are connected by bonding wires to the relay surface 111 of the relay terminal 103 and the leads 107a, 107b, '' for external connection.
! 07c and l'07d, respectively.

また受光ダイオード設置面を有する外部接続用リード’
107dの設置面上には受光ダイオード121が設置さ
れており、ボンディングワイヤによって外部接続用リー
ド107dと中継端子’103の中継面111と接続さ
れている。
In addition, there is a lead for external connection with a photodiode installation surface.
A light receiving diode 121 is installed on the installation surface of 107d, and is connected to the external connection lead 107d and the relay surface 111 of the relay terminal '103 by a bonding wire.

上述したように受信用集積回路素子123と受光ダイオ
ード121は中継端子103の中継面111を介して接
続されている。これはボンディングワイヤによって受信
用集積回路素子′!23と受光ダイオード′!21とい
った素子同志を接続することが、技術的に困難であるた
め、中継面111を介して接続して必る。
As described above, the receiving integrated circuit element 123 and the light receiving diode 121 are connected via the relay surface 111 of the relay terminal 103. This is a receiving integrated circuit element' by bonding wire! 23 and the photodetector diode'! Since it is technically difficult to connect elements such as 21 to each other, it is necessary to connect them through the relay plane 111.

つまりボンディングワイヤによっての接続は次のように
行なわれているためでおる。まずボンディングワイヤの
一端を加熱してボール状にし、このボール状になったボ
ンディングワイヤを所定の位置にに接続し、伯端は圧力
を加えて所定の位置に圧着する。このように−喘は加熱
して接続するか他□喘は圧着するために、素子等の微細
な位置に接続を行なあうとしても、所定の位置以外の部
分にもボンディングワイヤが広がり接触する危険性がお
る。このため上述のように中継端子103を介して接続
せざるをえない。
In other words, this is because the connection using bonding wires is performed as follows. First, one end of the bonding wire is heated to form a ball, and this ball-shaped bonding wire is connected to a predetermined position, and the square end is crimped into a predetermined position by applying pressure. In this way, the bonding wire is connected by heating or else. Since the bonding wire is crimped, even if the connection is made at a minute location such as an element, the bonding wire will spread out and come into contact with parts other than the designated locations. There is a danger. Therefore, it is necessary to connect via the relay terminal 103 as described above.

そしてこのような光伝送回路が透光性を有する樹脂モー
ルド体Hによって封止されている。
Such an optical transmission circuit is sealed with a resin mold body H having translucency.

次′に上述したような受信装置101を含めた光伝送装
置の動作について説明する。
Next, the operation of the optical transmission device including the receiving device 101 as described above will be explained.

一般にデジタル信号を伝送する光伝送装置の発信装置(
図示せず)においては、発信装置内に入力されるデジタ
ル信号を発信用集積回路素子で波形整形して発光ダイオ
ードに伝達し、この発光ダイオードで電気信号を光信号
に変換して光フアイバー内に信号を送出する。また上)
ホの受信装置101においては外部接続用のり一ド10
7b、107Gはグランドとなってあり、受光ダイオー
ド121を有する外部接続用リード107dには駆動用
の5vの電圧が印加されている。そして発信装置から伝
送された光信号を受信装置101の受光ダイオード12
1で電気信号に変換し、この電気信号は中継面111を
有する中継端子103を経て受信用集積回路素子123
に伝達される。この電気信号を受信用集積回路素子12
3によって波形整形した後にデジタル信号として外部接
続用のリード’!07aから出力する。
Transmitting equipment of optical transmission equipment that generally transmits digital signals (
(not shown), a digital signal input into a transmitting device is waveform-shaped by a transmitting integrated circuit element and transmitted to a light emitting diode, which converts the electrical signal into an optical signal and transmits it into an optical fiber. Send a signal. Also above)
In the receiving device 101 of E, a glue board 10 for external connection is used.
7b and 107G are ground, and a driving voltage of 5V is applied to the external connection lead 107d having the light receiving diode 121. Then, the optical signal transmitted from the transmitting device is transmitted to the light receiving diode 12 of the receiving device 101.
1 converts it into an electric signal, and this electric signal passes through a relay terminal 103 having a relay surface 111 and is sent to a receiving integrated circuit element 123.
transmitted to. An integrated circuit element 12 for receiving this electric signal
After the waveform is shaped by step 3, it is converted into a digital signal and connected to an external lead. Output from 07a.

このように光伝送装置では電気信号を光信号に変換して
伝送するため、伝送中外部からのノイズが進入しにくく
、信号の劣化が電気信号を伝送する場合に比べて著しく
向上した。
In this way, since the optical transmission device converts an electrical signal into an optical signal and transmits it, it is difficult for noise from the outside to enter during transmission, and signal deterioration is significantly improved compared to when transmitting an electrical signal.

そして光伝送装置は上述したように非常に小型軽量化で
きたため、近年種々の分野に利用されるようになり、よ
り高速な伝送が要求されている。
Since optical transmission devices have been made extremely small and lightweight as described above, they have come to be used in a variety of fields in recent years, and higher-speed transmission is required.

(発明が解決しようとする課題) 上述したような受信装置101あるいは送信装置等の光
伝送装置で数百キロビット/秒程度の低速伝送では、正
しく波形整形されたデジタル信号を出力することができ
る。しかし数メガビット/秒以上の高速伝送になると非
常に乱れた出力信号となってしまう。
(Problems to be Solved by the Invention) In low-speed transmission of approximately several hundred kilobits/second, an optical transmission device such as the receiving device 101 or transmitting device as described above can output a digital signal whose waveform has been correctly shaped. However, when high-speed transmission exceeds several megabits/second, the output signal becomes extremely disordered.

そこで本発明の目的は、高速光伝送を行なっても信号の
特性が劣化しないような光伝送装置を提供するものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical transmission device in which signal characteristics do not deteriorate even when performing high-speed optical transmission.

[発明の構成コ (課題を解決するための手段) 本発明の光伝送装置は、複数のリードと、このリード上
に設置された光伝送用集積回路素子と光電変換素子と、
伝送用集積回路素子と光電変換素子の接続の中継部とな
る中継端子と、光伝送用集積回路素子と中継端子また光
電変換素子と中継端子とを接続するボンディングワイヤ
と、これらを封止するモールド体とから成る光伝送装置
であって、中継端子はリードから切断して形成されてい
ることを特徴とするものである。
[Configuration of the Invention (Means for Solving the Problem) The optical transmission device of the present invention includes a plurality of leads, an optical transmission integrated circuit element and a photoelectric conversion element installed on the leads,
A relay terminal that serves as a relay part for connection between an integrated circuit element for transmission and a photoelectric conversion element, a bonding wire that connects the integrated circuit element for optical transmission and the relay terminal, or a photoelectric conversion element and the relay terminal, and a mold for sealing these. This optical transmission device is characterized in that the relay terminal is formed by cutting the lead.

(作 用) 上述したような光伝送装置では何故高速伝送になると出
力信号の波形が乱れてしまうのかを前述の受信装置1Q
1を例にとって説明する。
(Function) In the above-mentioned receiving device 1Q, we will explain why the waveform of the output signal is distorted when high-speed transmission occurs in the optical transmission device as described above.
1 will be explained as an example.

上述のような受信装置j01では1.受光ダイオード1
21を有する外部接続用のリード10.7 dには駆動
用の電圧が5V印加されており、また受信用集積回路素
子123を有する外部接続用リード”!07Cはグラン
ドに接続しておりOVである。
In the receiving device j01 as described above, 1. Photodetector diode 1
A driving voltage of 5V is applied to the external connection lead 10.7d having the receiving integrated circuit element 123, and the external connection lead "!07C having the receiving integrated circuit element 123 is connected to the ground and is OV. be.

また中継面111を有する中継端子1’ 03では平均
1.3V程度の電圧が印加されている。
Further, a voltage of about 1.3V on average is applied to the relay terminal 1'03 having the relay surface 111.

そし・てこの中継面111を有する中継端子103と受
光ダイオード121を有するリードIC)7d、必るい
は受信用集積回路素子123を有するリード107d間
は受信装置1が小型であるため非常に狭くなっている。
The space between the relay terminal 103 having the relay surface 111 of the lever and the lead IC) 7d having the light receiving diode 121, or the lead 107d having the receiving integrated circuit element 123 is very narrow because the receiving device 1 is small. ing.

このため各間にコンデンサ容量が発生し、このコンデン
サ容量が受信する信号の波形を劣化させていた。
For this reason, capacitor capacitance is generated between the two, and this capacitor capacitance deteriorates the waveform of the received signal.

特に受光ダイオード121−中継端子103−受信用集
積回路素子123間の信号は数μAオーダーと非常に微
弱な信号であるため、他のコンデンサ容量を生じる箇所
に比べてコンデンサ容量による影響を受ける割合が大き
い。また中継端子103が外部からの雑音を拾うため外
部雑音の影響も受けていた。
In particular, the signal between the light receiving diode 121, the relay terminal 103, and the receiving integrated circuit element 123 is a very weak signal on the order of several microamperes, so it is affected more by the capacitor capacitance than other locations that have capacitor capacitance. big. Furthermore, since the relay terminal 103 picks up noise from the outside, it is also affected by external noise.

このような現象は光伝送装置の発信装置についても同様
に発生するが、特に受信装置1で顕著に市られれる。
Although such a phenomenon similarly occurs in the transmitting device of the optical transmission device, it is particularly noticeable in the receiving device 1.

第6図はデジタル信号の劣化状況を示したものである。FIG. 6 shows the state of deterioration of the digital signal.

例えば受信装置101の受光ダイオード121に劣化の
ないデジタル信号が伝送されても、上述したように中継
面111を有する中継端子103と受光ダイオード12
1を有するリード107d、あるいは中継端子103と
受信用集積回路素子123を有するリード107c間で
それぞれコンデンサ容量が存在するため、デジタル信号
は劣化し、図中aに示すように鈍った波形となってしま
う。しかしこの程度の劣化であれば受信用集積回路素子
123で波形整形することによって図中すに示すような
錬りのないデジタル波形を出力することができる。しか
し同様の受信装置101で前述の2倍の伝送速度で信号
を伝送しようとすると、デジタル波形の鈍りの度合は図
中aと同様でおるため、図中Cに示すように波形が完全
に立上らない時点で次の信号に移ってしまうほど劣化し
てしまう。このような波形となると受信用集積回路素子
123では整形不可能となり、出力されるのは図中dに
示すような三角波形となってしまう。
For example, even if a digital signal without deterioration is transmitted to the light-receiving diode 121 of the receiving device 101, the relay terminal 103 having the relay surface 111 and the light-receiving diode 12
1, or between the relay terminal 103 and the lead 107c that has the receiving integrated circuit element 123, the digital signal deteriorates and becomes a blunt waveform as shown in a in the figure. Put it away. However, if the deterioration is to this extent, by shaping the waveform in the receiving integrated circuit element 123, it is possible to output an unrefined digital waveform as shown in the figure. However, when a similar receiving device 101 attempts to transmit a signal at twice the transmission speed described above, the degree of dullness of the digital waveform is the same as that shown in a in the figure, so the waveform completely stands up as shown in c in the figure. It deteriorates to such an extent that the signal moves on to the next signal when the signal does not rise. Such a waveform cannot be shaped by the receiving integrated circuit element 123, and what is output is a triangular waveform as shown in d in the figure.

このようにコンデンサ容量は高速光伝送に悪影響を及ぼ
していた。
In this way, capacitor capacitance has had a negative effect on high-speed optical transmission.

しかし上述したように受光ダイオード121と受信用集
積回路素子123の直接のワイヤボンディングは不可能
であり、これらを間接的に接続する中継端子103を設
けることは必要不可欠である。従って中継面111を有
する中継端子103を設けても、発生するコンデンサ容
量を最小限にすることによって、デジタル波形の劣化を
防ぐことが考えられる。
However, as described above, direct wire bonding between the light receiving diode 121 and the receiving integrated circuit element 123 is impossible, and it is essential to provide the relay terminal 103 to connect them indirectly. Therefore, even if the relay terminal 103 having the relay surface 111 is provided, deterioration of the digital waveform can be prevented by minimizing the capacitance generated.

一般にコンデンサ容量は次の式から求めることができる
Generally, capacitor capacity can be calculated from the following formula.

C=εX(S/d) このときCはコンデンサ容量を示し、εは定数、Sは面
積、dは距離を示している。この式より明らかなように
コンデンサ容量は面積に比例し距離に反比例するもので
ある。
C=εX(S/d) At this time, C represents capacitor capacity, ε represents a constant, S represents area, and d represents distance. As is clear from this equation, capacitor capacity is proportional to area and inversely proportional to distance.

このことから中継面111を有する中継端子103の面
積を小さくすると共に、この中継端子103と受光ダイ
オードを有するリード107d、あるいは中継端子10
3と受信用集積回路素子123を有するリード”107
Gとの距離を長くして、コンデンサ容量を最小限に抑え
ることによって受信する波形の劣化を防ぐことができる
Therefore, the area of the relay terminal 103 having the relay surface 111 is reduced, and the relay terminal 103 and the lead 107d having the light receiving diode, or the relay terminal 10
3 and a receiving integrated circuit element 123.
Deterioration of the received waveform can be prevented by increasing the distance to G and minimizing the capacitance of the capacitor.

ところがり−ド107c、107dと中継端子103の
間隔を長くすることは、光伝送装置の大型化をまねくた
め実用的とは言えない。従って中継部111を有する中
継端子’103の面積を小さくすることによってコンデ
ンサ容量あるいは外部雑音の進入を抑え、高速伝送に的
した受信装置とすることができる。
However, increasing the distance between the nodes 107c and 107d and the relay terminal 103 is not practical because it increases the size of the optical transmission device. Therefore, by reducing the area of the relay terminal '103 having the relay section 111, it is possible to suppress the capacitor capacitance or the intrusion of external noise, thereby making it possible to provide a receiving device suitable for high-speed transmission.

また送信装置でも同様に中継部を有する中継端子の面積
を最小限に抑えることによって、高速伝送に的した送信
装置とすることが可能となる。
Similarly, in the transmitting device, by minimizing the area of the relay terminal having the relay section, it becomes possible to make the transmitting device suitable for high-speed transmission.

(実施例) 以下、本発明の一実施例を図面を参照して詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例である光伝送装置の受信装置
の斜視図であり、第2図は第1図に示した受信装置の光
伝送回路を示した図でおる。
FIG. 1 is a perspective view of a receiving device of an optical transmission device according to an embodiment of the present invention, and FIG. 2 is a diagram showing an optical transmission circuit of the receiving device shown in FIG.

そこでまず受信装置1の構成を示すと次のようでおる。First, the configuration of the receiving device 1 is as follows.

受光ダイオード設置面を有するリード9と受信用集積回
路素子設置面を有する外部接続用のり一部7dと他の外
部接続用リード7a、7b、7cと、ざらにリード3か
ら切断形成された中継面11を有する中継端子13が同
一平面上に設置されている。
A lead 9 having a light receiving diode installation surface, an external connection glue portion 7d having a reception integrated circuit element installation surface, other external connection leads 7a, 7b, 7c, and a relay surface roughly cut from the lead 3. 11 are installed on the same plane.

そしてリード9上には受光ダイオード21が設置されて
おり、この受光ダイオード21はリード9と中継端子1
3の中継面11はボンディングワイヤによって接続され
てる。また外部接続用のり一部7dの受信用集積回路素
子膜−面上には受信用集積回路素子23が設置され、ボ
ンディングワイヤによってリード7a、7b、7c、7
6間、そしてリード9、さらに中継端子13の中継面1
1に接続されている。ざらに外部接続用のリード7c、
7cl、また受光ダイオードが設置されたリード9と外
部接続用のり一ド7d間にはそれぞれチップコンデンサ
25a、25bが接続されている。
A light receiving diode 21 is installed on the lead 9, and this light receiving diode 21 connects the lead 9 and the relay terminal 1.
The relay surfaces 11 of No. 3 are connected by bonding wires. Further, the receiving integrated circuit element 23 is installed on the receiving integrated circuit element film surface of the external connection glue portion 7d, and the leads 7a, 7b, 7c, 7 are connected by bonding wires.
6, then the lead 9, and then the relay surface 1 of the relay terminal 13.
Connected to 1. Roughly lead 7c for external connection,
Chip capacitors 25a and 25b are connected between the lead 9 on which the light receiving diode is installed and the external connection glue 7d, respectively.

そしてこのような構成となっている光伝送回路を′透光
性の樹脂モールド休31で外部接続用のリード7a、7
b、7c、7dの一部を除いて封止されている。そして
この樹脂モールド休31の受光ダイオード21上を封止
する部分は、光ファイバの接続が容易なように円形で肉
薄な第一の孔33が設けられている。またリード3と中
継端子13の切断部5上の樹脂部分には1ノード3に達
する深度の第2の孔35がもうけられている。
Then, the optical transmission circuit having such a configuration is connected to the leads 7a, 7 for external connection using a transparent resin mold 31.
It is sealed except for a part of b, 7c, and 7d. A circular and thin first hole 33 is provided in a portion of the resin mold 31 that seals the light receiving diode 21 so that an optical fiber can be easily connected. Further, a second hole 35 having a depth reaching one node 3 is formed in the resin portion above the cut portion 5 of the lead 3 and the relay terminal 13.

そしてこのような構造の受信装置1では、外部接続用の
り一部7b、7dはグランドし、また外部を電気信号に
変換し波形整形して外部接続用リ−ド7aから出力され
る。
In the receiving device 1 having such a structure, the external connection glue portions 7b and 7d are grounded, and the external signal is converted into an electrical signal, the waveform is shaped, and the signal is output from the external connection lead 7a.

次に上述した構成の受信装置の製造方法について、第2
図、第3図、第4図を参照して説明する。
Next, a second method for manufacturing a receiving device having the above-mentioned configuration will be described.
This will be explained with reference to FIGS. 3, 3, and 4.

第3図は本実施例に使用するリードフレームを示した正
面図でおる。これは受光ダイオード設置面を有するリー
ド9と受信用集積回路素子設置面を有する外部接続用の
り一部7dと他の外部接続用リード7、a、7b、7d
と中継面11を有するリード3の6個のリードが1組と
なって、リードフレーム15にはこれらが複数個形成さ
れている。
FIG. 3 is a front view showing the lead frame used in this embodiment. This includes a lead 9 having a light receiving diode installation surface, an external connection glue part 7d having a reception integrated circuit element installation surface, and other external connection leads 7, a, 7b, and 7d.
A plurality of six leads of the lead 3 having a relay surface 11 and a relay surface 11 form a set, and a plurality of these leads are formed on the lead frame 15.

これら複数のリード上に各受信装置用の素子を設置して
いく。まずチップコンデンサ25aを受光ダイオード設
置面を有するリード5と受信用集積回路素子設置面を有
する外部接続用リード7d間に設置し、さらにこのリー
ド7dと外部接続用1ノード7C間にチップコンデンサ
25bを設置する。
Elements for each receiving device are installed on these plurality of leads. First, a chip capacitor 25a is installed between the lead 5 having a light-receiving diode installation surface and an external connection lead 7d having a receiving integrated circuit element installation surface, and then a chip capacitor 25b is installed between this lead 7d and the 1 node 7C for external connection. Install.

次に、受光ダイオード設置面を有するリード9上に受光
ダイオード21を設置し、ボンディングワイヤによって
このリード9及びリード3の中継面11にそれぞれ接続
する。受信用集積回路素子設置面を有する外部接続用の
り一ド7d上に受信用集積回路素子23を設置し、この
リード7c及び各外部接続用のリード7a、7b、7c
にそれぞれ接続する。そして更にリード3の中継面11
に接続する。このようにして各素子が設置されて、そし
てボンディングワイヤによって接続された状態を示すの
が第4図である。
Next, the light receiving diode 21 is installed on the lead 9 having a light receiving diode installation surface, and is connected to the lead 9 and the relay surface 11 of the lead 3 by bonding wires, respectively. The receiving integrated circuit element 23 is installed on the external connection glue 7d having the receiving integrated circuit element installation surface, and this lead 7c and each external connection lead 7a, 7b, 7c
Connect to each. Furthermore, the relay surface 11 of lead 3
Connect to. FIG. 4 shows a state in which each element is installed in this manner and connected by bonding wires.

このように複数の光伝送回路の形成されたリードフレー
ム15の各光伝送回路を外部リード端子7を除いて透明
な樹脂によって実装・封止する。
Each optical transmission circuit of the lead frame 15 on which a plurality of optical transmission circuits are formed in this manner is mounted and sealed with a transparent resin except for the external lead terminals 7.

このとき受光ダイオード21上に光ファイバーが設置し
やすいように、他の部分に比べて肉薄な第1の孔33を
形成しておく。また受信用集積回路素子23と受光ダイ
オード21を間接的に接続した中継面11を有するリー
ド3上には、このり一部3が一部露出するような第2の
孔35を形成しておく。
At this time, a first hole 33 that is thinner than other parts is formed so that the optical fiber can be easily installed on the light receiving diode 21. Further, a second hole 35 is formed on the lead 3 having the relay surface 11 that indirectly connects the receiving integrated circuit element 23 and the light receiving diode 21, so that a portion of the groove 3 is partially exposed. .

次にこの第2の孔35から中継面11をリード3からレ
ーザービームによって切断し中継面11を有する中継端
子13を形成する。この時中継端子13が実質的に受信
用集積回路素子23と受光ダイオード21とを間接的に
接続する部分となり、この中継端子13の面積が最小に
なるように切断することが好ましい。
Next, the relay terminal 13 having the relay surface 11 is formed by cutting the relay surface 11 from the lead 3 through the second hole 35 using a laser beam. At this time, the relay terminal 13 substantially becomes a portion that indirectly connects the receiving integrated circuit element 23 and the light receiving diode 21, and it is preferable to cut the relay terminal 13 so that its area is minimized.

そしてこのようにして複数の受信装置1が形成されたリ
ードフレーム3から、各受信装置1に切断し製造される
The lead frame 3 on which a plurality of receivers 1 are formed in this manner is then cut into individual receivers 1 and manufactured.

上述したように本実施例の受信装置1では、中継面11
を有するリード3からこの中継面11を切断することに
よって、中継面11の面積が小さい中継端子13を形成
することができる。このため従来生じていた受光ダイオ
ード設置面を有するリード9と受信用集積回路素子設置
面を有するリード7dと中継面11を有する中継端子1
3との間で生じていたコンデンサ容量が低減できるため
、高速伝送においても波形の乱れない信号を出力するこ
とができる。
As described above, in the receiving device 1 of this embodiment, the relay surface 11
By cutting this relay surface 11 from the lead 3 having a shape, it is possible to form a relay terminal 13 in which the area of the relay surface 11 is small. For this reason, the relay terminal 1 has a lead 9 having a light-receiving diode installation surface, a lead 7d having a reception integrated circuit element installation surface, and a relay surface 11, which have conventionally been produced.
Since the capacitor capacitance that occurs between 3 and 3 can be reduced, a signal with no waveform disturbance can be output even during high-speed transmission.

なお本実施例では受信装置について説明したが、発光ダ
イオードと発信用集積回路素子を有する発信装置におい
ても上述したような方法でリードから中継面を切断し中
継端子として、送信波形にかかるコンデンサ容量を最小
限にすることによって、高速伝送時に歪のない、信号が
送信できることは言うまでもない。
In this example, a receiving device has been described, but a transmitting device having a light emitting diode and a transmitting integrated circuit element can also be used by cutting the relay surface from the lead using the method described above and using it as a relay terminal to reduce the capacitor capacitance applied to the transmitting waveform. It goes without saying that by minimizing the distortion, signals can be transmitted without distortion during high-speed transmission.

また本実施例では受信装置の正面の第2の孔からリード
を切断し中継端子を形成したが、第2の孔を設けること
なく受信装置の上部から切断して中継端子を形成しても
よい。そして切断はレーザーヒーム以外に、機械的手法
によって切断しても全くさしつかえない。
Furthermore, in this embodiment, the relay terminal is formed by cutting the lead from the second hole on the front side of the receiving device, but the relay terminal may be formed by cutting the lead from the top of the receiving device without providing the second hole. . In addition to laser beam cutting, mechanical methods may also be used for cutting.

この機械的手法とは、例えばリードよりも径の大きいポ
ンチでリードを打ち扱く、おるいはドリルでリードに穴
をあけ′て切断する等種々前えられるが、このような場
合はリード切断用に設けた第2の孔を両側に設けること
が良い。このように両側に第2の孔を設けることによっ
て切断の際、−方の第2の孔からリードを固定し、光伝
送装置の樹脂モールド体にヒビ等の入らないようにする
ことが必要である。
This mechanical method can be done in various ways, such as punching the reed with a punch that has a larger diameter than the reed, or drilling a hole in the reed with a drill and cutting it. It is preferable to provide second holes on both sides. By providing second holes on both sides in this way, it is necessary to secure the lead from the second hole on the - side when cutting, and to prevent cracks from forming in the resin molded body of the optical transmission device. be.

[発明の効果] 上)ホしたように本発明の光伝送装置では、光電変換素
子と光伝送用集積回路素子との間接接続を行うための中
継端子をもうけることにより発生するコンデンサ容量を
最小限に抑えているために、高速伝送時においても波形
の歪の少ない信号を送信おるいは受信して出力すること
ができる。
[Effects of the Invention] As mentioned above, in the optical transmission device of the present invention, the capacitor capacitance generated by providing a relay terminal for indirect connection between the photoelectric conversion element and the optical transmission integrated circuit element can be minimized. Therefore, even during high-speed transmission, signals with less waveform distortion can be transmitted or received and output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る受信装置の斜視図、
第2図は第1図にあける受信装置の光伝送回路の斜視図
、第3図、第4図、第5図は本発明の一実施例に係る受
信装置の製造過程を示す図で必り゛、第3図はリードフ
レームの正面図、第4図は素子設置後のリードフレーム
の正面図、第5図は樹脂封止後のリードフレームの正面
図、第6図は受信用集積回路素子による出力波形の整形
の様子を示した出力波形図、第7図は従来の光伝送装置
の受信装置の配線図である。 1・・・・・・・・・・・・・・・・・・受信装置3.
103・・・・・・リード 5・・・・・・・・・・・・・・・・・・切断部7.1
07・・・・・・リード 9・・・・・・・・・・・・・・・・・・リード11.
11’!・・・中継面 13・・・・・・・・・・・・・・・中継端子2.1.
.1’21・・・受光ダイオード23.123・・・受
信用集積回路素子25a、b・・・・・・チィップコン
デンサ31、七呑#・・・樹脂モールド体
FIG. 1 is a perspective view of a receiving device according to an embodiment of the present invention;
FIG. 2 is a perspective view of the optical transmission circuit of the receiving device shown in FIG. 1, and FIGS. 3, 4, and 5 are diagrams showing the manufacturing process of the receiving device according to an embodiment of the present invention.゛, Figure 3 is a front view of the lead frame, Figure 4 is a front view of the lead frame after device installation, Figure 5 is a front view of the lead frame after resin sealing, and Figure 6 is the receiving integrated circuit element. FIG. 7 is a wiring diagram of a receiving device of a conventional optical transmission device. 1......... Receiving device 3.
103... Lead 5... Cutting part 7.1
07...Lead 9...Lead 11.
11'! ...Relay surface 13...Relay terminal 2.1.
.. 1'21...Light receiving diode 23.123...Receiving integrated circuit element 25a, b...Chip capacitor 31, Seven cup #...Resin mold body

Claims (1)

【特許請求の範囲】  複数のリードと、 このリード上に設置された光伝送用集積回路素子と、 前記リード上に設置された光電変換素子と、前記光伝送
用集積回路素子と前記光電変換素子の接続の中継部とな
る中継端子と、 前記光伝送用集積回路素子と前記中継端子また前記光電
変換素子と前記中継端子とを接続するボンディングワイ
ヤと、 前記リードと前記光伝送用集積回路素子と前記光電変換
素子と前記中継端子と前記ボンディングワイヤを封止す
るモールド体とから成る光伝送装置において、 前記中継端子は前記リードから切断して形成されている
ことを特徴とする光伝送装置。
[Claims] A plurality of leads, an optical transmission integrated circuit element installed on the leads, a photoelectric conversion element installed on the leads, the optical transmission integrated circuit element, and the photoelectric conversion element. a relay terminal serving as a relay part for connection between the optical transmission integrated circuit element and the relay terminal, a bonding wire that connects the photoelectric conversion element and the relay terminal, and the lead and the optical transmission integrated circuit element. An optical transmission device comprising the photoelectric conversion element, the relay terminal, and a molded body for sealing the bonding wire, wherein the relay terminal is formed by cutting from the lead.
JP63030791A 1988-02-15 1988-02-15 Optical transmission device Pending JPH01206673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63030791A JPH01206673A (en) 1988-02-15 1988-02-15 Optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63030791A JPH01206673A (en) 1988-02-15 1988-02-15 Optical transmission device

Publications (1)

Publication Number Publication Date
JPH01206673A true JPH01206673A (en) 1989-08-18

Family

ID=12313499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63030791A Pending JPH01206673A (en) 1988-02-15 1988-02-15 Optical transmission device

Country Status (1)

Country Link
JP (1) JPH01206673A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689297A (en) * 1993-05-11 1997-11-18 Tohoku Ricoh Co., Ltd. Thermosensitive stencil printer capable of controlling image density
JP2006253436A (en) * 2005-03-11 2006-09-21 Rohm Co Ltd Semiconductor module and manufacturing method thereof
JP2007087991A (en) * 2005-09-20 2007-04-05 Rohm Co Ltd Light receiving module
JP2014017460A (en) * 2012-07-11 2014-01-30 Fusheng Industrial Co Ltd Method for manufacturing lead frame assembly of light-emitting diode
CN103579446A (en) * 2012-07-27 2014-02-12 复盛精密工业股份有限公司 Method for manufacturing support structure of LED

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689297A (en) * 1993-05-11 1997-11-18 Tohoku Ricoh Co., Ltd. Thermosensitive stencil printer capable of controlling image density
JP2006253436A (en) * 2005-03-11 2006-09-21 Rohm Co Ltd Semiconductor module and manufacturing method thereof
JP4675653B2 (en) * 2005-03-11 2011-04-27 ローム株式会社 Semiconductor module manufacturing method and semiconductor module
JP2007087991A (en) * 2005-09-20 2007-04-05 Rohm Co Ltd Light receiving module
JP2014017460A (en) * 2012-07-11 2014-01-30 Fusheng Industrial Co Ltd Method for manufacturing lead frame assembly of light-emitting diode
TWI497779B (en) * 2012-07-11 2015-08-21 Fusheng Electronics Corp Method for manufacturing led leadframe
CN103579446A (en) * 2012-07-27 2014-02-12 复盛精密工业股份有限公司 Method for manufacturing support structure of LED

Similar Documents

Publication Publication Date Title
DE102004025735B4 (en) Optical receiver housing and method of making the same
US7609461B1 (en) Optical module having cavity substrate
US11221452B2 (en) Communication receiver
JPH09284217A (en) Optical communication device
US9793427B1 (en) Air venting on proximity sensor
JPH0481348B2 (en)
JPH01206673A (en) Optical transmission device
TWI247144B (en) Receiving optical subassembly
US20040201080A1 (en) Leadless leadframe electronic package and IR transceiver incorporating same
JPS62124780A (en) Optical semiconductor module
JP3205660B2 (en) Semiconductor device and remote control light receiving device
CN111916419B (en) Electrical coupling fitting and method for an optoelectronic module
JP3717623B2 (en) Optoelectronic device and manufacturing method thereof
JP4027820B2 (en) Semiconductor device and manufacturing method thereof
JPH02187075A (en) Optical semiconductor device
JPH065717B2 (en) Solid photography equipment
JP3832728B2 (en) Bi-directional optical transmission device
JPH0342861A (en) Resin seal type semiconductor device
JPS6317336B2 (en)
CN106340507B (en) The encapsulation of MEMS sensor chip
JPS6345842A (en) Plastic package
JPH05259483A (en) Semiconductor package for photoelectric conversion
JPS58204573A (en) Optically linked transmitting/receiving circuit
JPS63281454A (en) Multi-mounting structure of semiconductor chip
JPH05275609A (en) Semiconductor module substrate