JPH01205802A - Method for rolling to press weld internal defect of continuously cast stock - Google Patents

Method for rolling to press weld internal defect of continuously cast stock

Info

Publication number
JPH01205802A
JPH01205802A JP3204988A JP3204988A JPH01205802A JP H01205802 A JPH01205802 A JP H01205802A JP 3204988 A JP3204988 A JP 3204988A JP 3204988 A JP3204988 A JP 3204988A JP H01205802 A JPH01205802 A JP H01205802A
Authority
JP
Japan
Prior art keywords
rolling
stands
stock
porosity
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3204988A
Other languages
Japanese (ja)
Other versions
JPH07110362B2 (en
Inventor
Yoshiaki Kusaba
芳昭 草場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63032049A priority Critical patent/JPH07110362B2/en
Publication of JPH01205802A publication Critical patent/JPH01205802A/en
Publication of JPH07110362B2 publication Critical patent/JPH07110362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To press weld microporosities inside a rolled stock and to reduce the manufacturing cost and time by applying an intermediary compressive stress of a specifically proportional value to the deformation resistance of the stock to the stock between one or more pairs of stands. CONSTITUTION:As for hot continuous rolling of a continuously cast stock, an interstand compressive stress of >=25% of the deformation resistance value of the rolled stock is applied to the stock between one or more pairs of stands. Thus, microporosities inside the stock are press welded and steel bars and wires are manufactured by a two-heat-hot-charge method even if a continuously cast bloom of a large section is used. A small section continuously cast billet is rolled by a one-heat method. Hence, the manufacturing cost and time are reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造ブルームまたはビレツトを素材とし
連続圧延機を用いて棒鋼・線材を熱間圧延で製造する圧
延方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a rolling method for producing steel bars and wire rods by hot rolling using a continuous rolling mill using continuously cast blooms or billets as raw materials.

(従来の技術) 一般に連続鋳造ブルームやビレットを素材とする棒鋼・
線材の圧延においては、垂直・水平スタンドを交互に配
列した連続圧延機が用いられている。この場合水平スタ
ンドで材料の厚みを圧下し、垂直スタンドで材料の幅を
圧下する。この圧延方法においては、製品の寸法精度の
点から各スタンド間は、無張力とすることが最良とされ
ている。
(Conventional technology) Steel bars and steel bars made from continuous casting blooms and billets are generally used.
In rolling wire rods, a continuous rolling mill with vertical and horizontal stands arranged alternately is used. In this case, a horizontal stand is used to reduce the thickness of the material, and a vertical stand is used to reduce the width of the material. In this rolling method, it is considered best to have no tension between the stands from the viewpoint of dimensional accuracy of the product.

ただし中間・仕上列における圧延では、材料の適材性を
向上させるためスタンド間に材料変形抵抗の数%程度の
引張力を与えることもある。一方、粗列においては、各
サイズにより圧下パターンが変わるため、サイズによっ
ては、スタンド間に圧縮力を生じることもあるが、それ
も材料変形抵抗の数%以下に留まる。このような棒鋼・
線材の圧延では材料断面形状は、正方形や円に近く、各
パスにおける材料の幅広がりが、板の圧延にくらべ著し
く大きい、このため特に厚み方向中心部・幅方向端部表
層近傍の内部欠陥(ポロシティ)が残存し易い。
However, during rolling in the intermediate and finishing rows, a tensile force of several percent of the material deformation resistance may be applied between the stands in order to improve the suitability of the material. On the other hand, in the case of coarse rows, the rolling down pattern changes depending on the size, so depending on the size, a compressive force may be generated between the stands, but this remains at a few percent or less of the material deformation resistance. Steel bars like this
In the rolling of wire rods, the cross-sectional shape of the material is close to square or circular, and the spread of the material in each pass is significantly larger than that in plate rolling. Therefore, internal defects (particularly in the center in the thickness direction and near the edges in the width direction) occur near the surface layer. porosity) tends to remain.

ところで低炭素鋼連続鋳造ブルーム・ビレットには、中
心部にポロシティが発生しやすく、中炭素鋼においては
、さらに表層部にミクロポロシティを発生しやすい、鋳
片に発生したポロシティは、板圧延のように一方向圧延
で幅広がりの少ない場合は、粗圧延・中間圧延工程にお
いて十分圧着し消滅するが、条鋼のように各パスでの幅
広がりが著しい場合、中央部まで圧下が浸透せず、中央
部のポロシティは圧着されずに製品内にまで残存する場
合もある。また表層近傍のミクロポロシティについても
、幅広がりの著しい端面中央付近においては、ポロシテ
ィは圧下方向に圧着されにくく製品まで残存する。この
ため製品を二次加工するとき、このポロシティを起点と
して切断する必要が生じる場合もある。
By the way, low carbon steel continuously cast bloom billets tend to have porosity in the center, and medium carbon steel is even more likely to have microporosity in the surface layer. If the width spread is small during unidirectional rolling, it will be sufficiently compressed and disappear in the rough rolling/intermediate rolling process, but if the width spread is significant in each pass, such as with long steel, the reduction will not penetrate to the center, and the center In some cases, porosity remains in the product without being crimped. Regarding microporosity near the surface layer, near the center of the end face where the width is significantly widened, the porosity is difficult to be compressed in the rolling direction and remains in the product. For this reason, when secondary processing a product, it may be necessary to cut using this porosity as a starting point.

従来、このようなポロシティを圧着させるためには、厚
み方向・幅方向の圧下量を大きくし、これにより、この
ポロシティを圧着させようとして来た。この結果、近年
素材としてブルームを用いることが一般的となり、ブル
ームの断面サイズも300mm X 40h−以上の大
寸法となりつつある。さらに冷間鍛造される線材・棒鋼
においては、厳しい内質が要求されるため、ブルームか
ら分塊圧延されたビレットの段階において超音波検査し
、表層部・中心部にポロシティによる欠陥がある場合は
、手入れあるいはりジヱクトを行い、曳網のビレットの
みを製品工場へ送っている。
Conventionally, in order to crimp such porosity, attempts have been made to increase the amount of reduction in the thickness direction and width direction, thereby crimping the porosity. As a result, in recent years, it has become common to use bloom as a material, and the cross-sectional size of bloom is also becoming larger, such as 300 mm x 40 h- or more. Furthermore, as cold-forged wire rods and steel bars require strict internal quality, ultrasonic inspection is performed at the billet stage after blooming and blooming to detect defects due to porosity in the surface layer or center. Only the billets of the seine net are sent to the production factory after being cleaned and reused.

(発明が解決しようとする課題) このように従来の無張力圧延法においては、通常の圧下
量で鋳片内のポロシティを完全に圧着・消滅させること
は不可能である。このため従来は素材として大断面のブ
ルームを用いて幅方向・厚み方向の圧下量を大きくし、
できるだけポロシティを圧着させようとしている。この
ため分塊ミルでまずブルームからビレットを圧延し、こ
こで−端冷間材とし、検査・手入れを行っている。従っ
て2ヒート圧延法を採用した上に冷間手入れを必要とし
ており、コストおよび時間の損失が太き(、現今の製鋼
−圧延の直結化に逆行する結果となっている。
(Problems to be Solved by the Invention) As described above, in the conventional tensionless rolling method, it is impossible to completely compress and eliminate the porosity in the slab with a normal rolling reduction amount. For this reason, conventionally, blooms with a large cross section were used as the material to increase the amount of reduction in the width and thickness directions.
I'm trying to crimp the porosity as much as possible. For this reason, the billet is first rolled from the bloom in a blooming mill, where it is turned into a cold material and inspected and maintained. Therefore, in addition to adopting a two-heat rolling method, cold treatment is required, resulting in significant cost and time loss (which goes against the current direct connection of steelmaking and rolling).

最もコスト的に有利な方法は、小断面の連鋳ビレットを
素材とし、ホットチャージで製品工場(棒鋼ミル、線材
ミル等)へ搬入し、1ヒートで製品まで圧延する方法で
ある。しかし、連続鋳造材断面積が小さ(なれば圧下率
も低下し製品内にポロシティが残存する可能性が大きく
なるため、従来の圧延方法では小断面の連鋳ビレットを
素材とすればポロシティ残存の危険は避けられない、従
って高級な条鋼製品については大断面の連続鋳造ブルー
ムを用いた2ヒート圧延が従来は一般的であり、これが
製造コストを引き上げ製造時間を長くする要因となって
いた。
The most cost-effective method is to use a continuously cast billet with a small cross-section as a raw material, transport it to a product factory (steel bar mill, wire rod mill, etc.) using a hot charge, and roll it into a product in one heat. However, if the cross-sectional area of the continuously cast material is small (the rolling reduction rate will also decrease, and the possibility of residual porosity in the product increases), conventional rolling methods can reduce the residual porosity by using continuous cast billets with a small cross-section as the material. Risk is unavoidable, so for high-grade long steel products, two-heat rolling using a continuous casting bloom with a large cross section has conventionally been common, and this has been a factor in raising manufacturing costs and prolonging manufacturing time.

従って本発明の目的は、高級条鋼製品を小断面の連続鋳
造ビレットを用いて1ヒート圧延で鋳片内のポロシティ
を圧延中に完全に圧着・消滅させる圧延方法を提供する
ことである。
Therefore, an object of the present invention is to provide a method of rolling a high-grade long steel product by using a continuously cast billet with a small cross section and completely compressing and eliminating the porosity in the slab in one heat rolling process.

(課題を解決するための手段) 本発明者はこの目的を達成するため実験、研究を重ね、
次の着想を得た。
(Means for solving the problem) In order to achieve this purpose, the inventor has repeatedly conducted experiments and research,
I got the following idea.

連続圧延機のスタンド間に強力なスタンド間圧縮力を与
えることにより上流側スタンドの圧延においてロールバ
イト出側に均一に圧縮力を与え、圧下を厚さ方向中央ま
で浸透させるとともに、材料の幅方向においても均一に
浸透させることができる。またこのようにスタンド間に
おいて圧縮力を作用させると材料は、圧延長手方向に圧
縮(圧下)され、幅・厚みを増加する。従ってポロシテ
ィの圧延方向の圧着効果も特に押込まれるロールバイト
内で期待できる。この材料に圧縮力を与える方法は、各
スタンド間で実施することが可能であるが、スタンド間
圧縮力によりスタンド間で材料が座屈してしまうとポロ
シティ圧着効果が失われるだけでなく圧延の続行さえ不
可能となる。座屈が発生するのは、スタンド間のロール
軸心間距離がスタンド間の材料の厚み・幅に対し大き過
ぎる場合である。従ってポロシティ圧着のための圧縮力
は、ブルームの分塊圧延工程、ビレットの粗圧延工程で
作用させることがもっとも有効である。
By applying a strong inter-stand compression force between the stands of a continuous rolling mill, compression force is applied uniformly to the roll bite exit side during rolling of the upstream stand, allowing the reduction to penetrate to the center of the thickness direction, and reducing the pressure in the width direction of the material. It can be evenly penetrated even in the water. Further, when a compressive force is applied between the stands in this manner, the material is compressed (rolled down) in the longitudinal direction of the rolling direction, increasing the width and thickness. Therefore, the effect of compressing the porosity in the rolling direction can also be expected, especially within the roll bite where it is pressed. This method of applying compressive force to the material can be carried out between each stand, but if the material buckles between the stands due to the compressive force between the stands, not only will the porosity crimping effect be lost, but rolling will not continue. even becomes impossible. Buckling occurs when the distance between the roll axes between the stands is too large relative to the thickness and width of the material between the stands. Therefore, it is most effective to apply the compressive force for porosity compression during the bloom blooming process and the billet rough rolling process.

こうして本発明の要旨とするところは、連続鋳造材の熱
間連続圧延において、少なくとも1組以上のスタンド間
において、圧延されている材料の熱間変形抵抗の値の2
5%以上のスタンド間圧縮応力を与えることを特徴とす
る連続鋳造材の内部欠陥圧着圧延法である。
Thus, the gist of the present invention is that in continuous hot rolling of continuous casting materials, between at least one set of stands, the value of the hot deformation resistance of the material being rolled is doubled.
This is an internal defect crimping rolling method for continuous cast materials, which is characterized by giving an inter-stand compressive stress of 5% or more.

(作用) 隣接するスタンドでのロール駆動モーター回転数等の調
節によりスタンド間での圧縮応力の大きさを調節し、ス
タンド間でポロシティ等の内部欠陥を圧着するのに必要
な圧縮応力を両ロール間で発生させる。この圧縮応力の
具体的な値は実験的に決定した。この実験について次に
述べる。
(Function) The magnitude of the compressive stress between the stands is adjusted by adjusting the rotational speed of the roll drive motor in the adjacent stands, and the compressive stress necessary for crimping internal defects such as porosity between the stands is applied to both rolls. occur between. The specific value of this compressive stress was determined experimentally. This experiment will be described next.

実験装置 第1図は実験に用いた圧延機の配置を示す、駆動水平ロ
ールH1と非駆動垂直ロールv2、および駆動水平ロー
ルH3を連続的に配置し、ロール81.V2間で圧縮力
を作用させながら圧延材1を矢印の方向に圧延する。こ
の装置の諸元は次のとおりである。
Experimental Apparatus FIG. 1 shows the arrangement of the rolling mill used in the experiment, in which a driven horizontal roll H1, a non-driven vertical roll v2, and a driven horizontal roll H3 are successively arranged, and rolls 81. The rolled material 1 is rolled in the direction of the arrow while applying a compressive force between V2. The specifications of this device are as follows.

H10−ル径 : 300mm V2C)−1Lt径 ? 200s− ■30−ル径 :300−一 8l−V2軸心間距1m : 700s+mV2− H
3軸心間距離? 700m5圧延林料 第2図に示すように圧延材料としては、正方形断面のビ
レット(鋼種SS 41)を用い、圧延による内部欠陥
(ポロシティ)圧着の効果を確認するため、図に示すよ
うに内部に穴を形成し人工ポロシティとした。これらの
穴(人工ポロシティ)は、中心部のポロシティを模擬す
る厚み中心の穴1aと表層近くのミクロポロシティを模
擬する表面下101―の穴1b、1cから成る0表層近
くの六1b、 lcのうち、六1bは水平圧延において
、厚み中央部に存在するものである。これらの穴1a、
1b、1cは第2図に示されるようビレット内Wに直径
2−閣の穴を幅゛ 方向に開け、同径の針金を挿入して
長さ2mmの空間を残し、その他は溶接して閉鎖した。
H10-L diameter: 300mm V2C)-1Lt diameter? 200s- ■30-le diameter: 300-18l-V2 center distance 1m: 700s+mV2-H
Distance between 3 axes? 700m5 rolled forest material As shown in Figure 2, a billet with a square cross section (steel type SS 41) was used as the rolling material, and in order to confirm the effect of crimping internal defects (porosity) due to rolling, internal defects were Holes were formed to create artificial porosity. These holes (artificial porosity) consist of a hole 1a at the center of the thickness that simulates the porosity in the center, and holes 1b and 1c below the surface that simulates microporosity near the surface layer. Of these, 61b exists at the center of the thickness during horizontal rolling. These holes 1a,
For 1b and 1c, as shown in Figure 2, a hole with a diameter of 2 mm is made in the width direction in W inside the billet, a wire of the same diameter is inserted, leaving a space of 2 mm in length, and the rest are closed by welding. did.

この圧延材料の各寸法を下にまとめて示す。The dimensions of this rolled material are summarized below.

材料厚 t:too−曽 材料幅 W  :  100m5+ 穴長さ 1   :   2mm 穴直径 d   :   21111 距*XIIX!   :    10g+m距離)’+
+3’g  :  40+ue正  および 上述のようにして人工エポロシティを設けた材料(ビレ
ット)1を多数、用意して実験を行った。
Material thickness t: too-Material width W: 100m5+ Hole length 1: 2mm Hole diameter d: 21111 Distance*XIIX! : 10g+m distance)'+
+3'g: 40+ue positive And an experiment was conducted by preparing a large number of materials (billets) 1 provided with artificial porosity as described above.

圧延材料1はいづれの場合も1250℃に加熱し、旧に
おける圧延温度は1100℃で一定とした。またHlに
おける圧下率は一定とし、材料の厚みをto”100−
霧からt+−8051mに20%圧下した。一方v2に
おける圧下量はO〜20腸−まで種々に変化させて両ロ
ール旧、v2間の圧縮応力を変化させた。なお、最後の
駆動水平ロールH3では厚みを70mmまで圧下した。
The rolled material 1 was heated to 1250°C in both cases, and the rolling temperature in the former case was kept constant at 1100°C. In addition, the rolling reduction rate in Hl is constant, and the thickness of the material is to”100-
The pressure was reduced by 20% from fog to t+-8051 m. On the other hand, the amount of reduction in v2 was varied from 0 to 20 mm to change the compressive stress between both rolls and v2. In addition, the thickness was rolled down to 70 mm by the last driving horizontal roll H3.

この実験では旧ミル・1バス圧延における人工ボロシテ
ィ圧着状態を、各圧縮応力について調査した。第3図は
、旧圧延前後の圧延長手方向の材料断面を模式的に示し
たもので、材料厚がto−100醜−からL+=80m
lに圧下されたのに伴い人工ポロシティ1aの円形断面
が楕円に潰れて断面積がS、からS、に変化した状態を
図示する。圧延に伴いポロシティの断面積がS、からS
lに減少するのであるから、ポロシティ圧着率の指標と
しては空孔減面率r −(se −St)/Ss X 
100に)を用いるmy−100%はポロシティが完全
に圧着されたことを意味する。一方、圧延時の材料の塑
性変形は、材料内部の応力と材料の熱間変形抵抗kfの
関係で決まるものであるから、内部欠陥(ポロシティ)
圧着に効果的な圧縮応力σの大きさの指標としては、σ
へ、を用いることが有効である。
In this experiment, the state of artificial volocity crimping in the old mill and one-bus rolling was investigated for each compressive stress. Figure 3 schematically shows the cross section of the material in the longitudinal direction of rolling before and after old rolling, and the material thickness ranges from to-100m to L+=80m.
The figure shows a state in which the circular cross section of the artificial porosity 1a collapses into an ellipse as the artificial porosity 1a is reduced to 1, and the cross-sectional area changes from S to S. Due to rolling, the cross-sectional area of porosity changes from S to S.
Therefore, as an index of the porosity bonding rate, the pore area reduction rate r - (se -St)/Ss
100%) means that the porosity is completely crimped. On the other hand, the plastic deformation of a material during rolling is determined by the relationship between the stress inside the material and the hot deformation resistance kf of the material, so internal defects (porosity)
As an index of the magnitude of compressive stress σ effective for crimping, σ
It is effective to use .

次にこの実験の条件および結果をまとめて第1表に示す
、この表において、TいT、(至)はそれぞれ厚み方向
・幅方向ともに中央部に位置する穴1asおよび厚み方
向中央部・幅方向エツジ部表層近くの六1bの空孔減面
率を示す、なお3541材の熱間変形抵抗kWは6.0
kg/smπで一定である。
Next, the conditions and results of this experiment are summarized in Table 1. In this table, T, (to) is the hole 1as located at the center in both the thickness direction and width direction, and the hole 1as located at the center in the thickness direction and width. The hot deformation resistance kW of the 3541 material is 6.0, which shows the pore area reduction rate of 61b near the surface layer of the directional edge part.
It is constant at kg/smπ.

第1表 第4図は、この第1表の結果をグラフで示したものであ
る。
Table 1, Figure 4 is a graph showing the results of Table 1.

この第1表および第4図の結果から次のように結論され
る。σhttが0.2から0.3にかけて空孔減面率が
急激に増加してポロシティ圧着効果が顕著になり、σ/
kf−0,4では中心部の穴1aは完全に圧着する(y
t−100%)、さらにσへ、=0.6ではγ。=γ、
−100%となり、最も圧着効果の小さい厚み方向中央
部・幅方向端部表層近傍の表層ポロシティ1bを含め、
全てのポロシティが圧着される。
From the results shown in Table 1 and FIG. 4, the following conclusions can be drawn. As σhtt increases from 0.2 to 0.3, the pore area reduction rate increases rapidly and the porosity compression effect becomes noticeable, and σ/
At kf-0, 4, the center hole 1a is completely crimped (y
t-100%), further to σ, and γ at =0.6. =γ,
-100%, including the surface layer porosity 1b near the surface layer in the central part in the thickness direction and the end part in the width direction, where the crimping effect is the smallest.
All porosity is crimped.

従ってσ/kW −0,6以上の圧延をくり返すことに
より、中心部および表層近傍にあるポロシティを完全に
圧着消滅できる。またこの実験においてスタンド間圧縮
力の効果があられれ出すのは、σ/ k tが0.25
以上であり、この値が25%以上であれば直径2Il1
m程度のかなり大きいポロシティについても全断面につ
いて完全に圧着することが期待できる。また、60%以
上とすることによりポロシティの圧着が完全となる。
Therefore, by repeating rolling at σ/kW -0.6 or more, the porosity in the center and near the surface layer can be completely compressed and eliminated. In addition, in this experiment, the effect of the compressive force between the stands begins to appear when σ/kt is 0.25.
or more, and if this value is 25% or more, the diameter is 2Il1
It can be expected that even if the porosity is quite large, on the order of m, the entire cross section will be completely crimped. In addition, by setting it to 60% or more, the porosity can be completely crimped.

よって本発明を実施する際のスタンド間の圧縮力は、上
述の実験結果および材料内のポロシティの大きさ等を考
慮し、材料の座屈を生じない範囲でσ/ktがポロシテ
ィ圧着に十分な効果を有する値となるように選択するべ
きである。
Therefore, when carrying out the present invention, the compressive force between the stands should be such that σ/kt is sufficient for porosity bonding without causing buckling of the material, taking into account the above experimental results and the size of porosity within the material. The value should be selected to have an effect.

(実施例) 実施班上 この実施例は、粗列6スタンド、中間列lOスタンラド
仕上列6スタンド、合計22スタンドのVH配列の連続
ミルにおいて、−辺180mmの連続鋳造ビレットから
一辺20mmの棒鋼を製造する棒鋼ミルに本発明の方法
を適用した例であり、第5図は、この実施例のミルレイ
アウトを示す。
(Example) Implementation Team In this example, a steel bar with a side of 20 mm was produced from a continuous casting billet with a side of 180 mm in a continuous mill with a VH arrangement of 22 stands in total, including 6 stands in the rough row, 6 stands in the intermediate row, 1O Stan, and 6 stands in the finishing row. This is an example in which the method of the present invention is applied to a steel bar mill to be manufactured, and FIG. 5 shows the mill layout of this example.

この実施例のミルは全スタンドで個別駆動であり、H2
−V3間においてスタンド間に圧延材の熱間変形抵抗の
50%に当たる2 kg/sm’のスタンド間圧縮力が
働くように各モータの回転数、出力を設定している。こ
の実施例の粗列のバススケジュールを第2表に示す。
The mill in this example has all stands individually driven, and H2
-V3, the rotational speed and output of each motor are set so that a compressive force of 2 kg/sm', which is 50% of the hot deformation resistance of the rolled material, acts between the stands between the stands. Table 2 shows the bus schedule for the coarse lines of this embodiment.

なお、スタンド間の圧縮力は、全長にわたる寸法変動を
増大させる傾向があるがこの実施例においては粗列の上
流のみで圧縮力を作用させており、12− V3間で発
生する寸法変動は、下流の19スタンドの圧延において
十分吸収され、無張力の場合と寸法に大きな差を生じな
い。
Note that the compressive force between the stands tends to increase the dimensional variation over the entire length, but in this example, the compressive force is applied only upstream of the coarse row, and the dimensional variation that occurs between 12 and V3 is It is sufficiently absorbed in the rolling of the 19 stands downstream, and there is no large difference in dimensions from the case without tension.

第2表 この実施例は、粗列7スタンド、中間列水平10スタン
ド、仕上列水平4スタンドのツイストによる水平タンデ
ムミルを用いて、−辺125mm 3!続鋳造ビレ−/
 )から−辺10+u+の線材を製造する工程に本発明
の方法を通用した例であり、第6図は、このミルのミル
レイアウトを示す。
Table 2 This example uses a twisted horizontal tandem mill with 7 stands in the coarse row, 10 horizontal stands in the intermediate row, and 4 horizontal stands in the finishing row, and the -side is 125 mm 3! Continuous casting belay/
) is an example in which the method of the present invention is applied to the process of manufacturing a wire rod with a -side of 10+u+, and FIG. 6 shows the mill layout of this mill.

この実施例では、一番スタンドH1と二番スタンド■2
の間で圧延材の熱間変形抵抗の60%に当たる2.2k
g/+*m”のスタンド間圧縮応力を与え、H2スタン
ド出側で材料を90°ツイストして■3スタンドに導入
する。この実施例の粗列バススケジュールを第3表に示
す。
In this example, the first stand H1 and the second stand ■2
2.2k, which is 60% of the hot deformation resistance of the rolled material.
A compressive stress of "g/+*m" was applied between the stands, the material was twisted by 90 degrees at the exit side of the H2 stand, and introduced into the ■3 stand. The rough bus schedule for this example is shown in Table 3.

第3表 (T): 90’ ツイスト 実施且1 この実施例は、HVの8スタンドから成る鋼片連続ミル
を用い、30〇−厚×300驕−幅の連続鋳造プルーム
から一辺180m−のビレットを圧延する分塊工場に本
発明の方法を適用した例であって、第7図にスタンドの
配置を示す。
Table 3 (T): 90' twist implementation and 1 This example uses a continuous billet mill consisting of 8 stands of HV to cast a billet of 180 m on a side from a continuous casting plume of 300 mm thick x 300 mm wide. This is an example in which the method of the present invention is applied to a blooming factory that rolls .

このミルにおいてはv2を非駆動とし、Hl −V2間
、V4−85間の2回において、材料変形抵抗の40%
にあたるスタンド間圧縮応力を与えている。さらにこの
2回の圧縮圧延によて発生する寸法変動をV8で軽圧下
することにより軽減している。この実施例のパススケジ
ュールは第4表に示す通りである。
In this mill, v2 is not driven, and 40% of the material deformation resistance is applied twice between Hl and V2 and between V4 and 85.
This gives a compressive stress between the stands corresponding to . Furthermore, dimensional fluctuations caused by these two compression rollings are reduced by light rolling with V8. The pass schedule for this embodiment is shown in Table 4.

なおこの実施例の場合、従来法に較ベビレットの寸法精
度は数%はど悪化するが、圧縮力の作用により特に表層
下のミクロポロシティの大部分が圧着・消滅し、次工程
の線材工場に手入れなしに直接ホットチャージできる。
In the case of this example, the dimensional accuracy of the babylet deteriorates by a few percent compared to the conventional method, but most of the microporosity, especially under the surface layer, is crimped and disappears due to the action of the compressive force, so that it can be transferred to the wire rod factory in the next process. Can be hot charged directly without maintenance.

第4表 (発明の効果) 本発明は、以上のように、連続鋳造プルーム・ビレット
の連続圧延において任意のスタンド間で圧延材の変形抵
抗の25%以上の値の圧縮応力を与え、これにより圧延
材内部のミクロポロシティを圧着させる。従って大断面
の連続鋳造ブルームを用いても2ヒート・ホットチャー
ジで棒鋼・線材を圧延でき、また小断面の連続鋳造ビレ
ットからは1ヒートで圧延できる。この結果製造コスト
および製造に要する時間を大幅に削減できる。
Table 4 (Effects of the Invention) As described above, the present invention applies a compressive stress of 25% or more of the deformation resistance of the rolled material between arbitrary stands in continuous rolling of continuously cast plume billets, thereby The microporosity inside the rolled material is crimped. Therefore, even if a continuous casting bloom with a large cross section is used, steel bars and wire rods can be rolled in two heats and hot charging, and continuous casting billets with a small cross section can be rolled in one heat. As a result, manufacturing costs and time required for manufacturing can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明におけるスタンド間の圧縮力の大きさ
とポロシティ圧着効率の関係を調べる実験に用いた圧延
機の配置を示す図: 第2図は、第1図の装置を使った実験において用いた圧
延材料断面を示す斜視図; 第3図は、第2図の圧延材料の第1回水平圧延前後の圧
延長手方向断面を模式的に示す断面図;第4図は、圧縮
応力とポロシティ圧着効率の関係を示すグラフ;および 第5図〜第7図は、それぞれ、本発明の第1〜第3の実
施例における圧延機の配置を示す平面図である。 1: 圧延材料
Figure 1 is a diagram showing the arrangement of a rolling mill used in an experiment to investigate the relationship between the magnitude of compressive force between stands and porosity crimping efficiency in the present invention. Figure 2 is a diagram showing the arrangement of a rolling mill used in an experiment using the apparatus shown in Figure 1. A perspective view showing a cross section of the rolled material used; FIG. 3 is a cross-sectional view schematically showing a longitudinal cross-section of the rolled material in FIG. 2 before and after the first horizontal rolling; FIG. 4 is a cross-sectional view showing compressive stress and A graph showing the relationship between porosity crimping efficiency; and FIGS. 5 to 7 are plan views showing the arrangement of rolling mills in the first to third embodiments of the present invention, respectively. 1: Rolled material

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造材の熱間連続圧延において、少なくとも1組以
上のスタンド間において、圧延されている材料の熱間変
形抵抗の値の25%以上のスタンド間圧縮応力を与える
ことを特徴とする連続鋳造材の内部欠陥圧着圧延法。
A continuous cast material characterized in that, in hot continuous rolling of the continuous cast material, an inter-stand compressive stress of 25% or more of the hot deformation resistance value of the material being rolled is applied between at least one or more stands. internal defect crimping rolling method.
JP63032049A 1988-02-15 1988-02-15 Internal defect pressure bonding rolling method of continuous cast material Expired - Lifetime JPH07110362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032049A JPH07110362B2 (en) 1988-02-15 1988-02-15 Internal defect pressure bonding rolling method of continuous cast material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032049A JPH07110362B2 (en) 1988-02-15 1988-02-15 Internal defect pressure bonding rolling method of continuous cast material

Publications (2)

Publication Number Publication Date
JPH01205802A true JPH01205802A (en) 1989-08-18
JPH07110362B2 JPH07110362B2 (en) 1995-11-29

Family

ID=12348009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032049A Expired - Lifetime JPH07110362B2 (en) 1988-02-15 1988-02-15 Internal defect pressure bonding rolling method of continuous cast material

Country Status (1)

Country Link
JP (1) JPH07110362B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324172A (en) * 1976-08-16 1978-03-06 Matsushita Electric Ind Co Ltd Device for supplying powder-mixed liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324172A (en) * 1976-08-16 1978-03-06 Matsushita Electric Ind Co Ltd Device for supplying powder-mixed liquid

Also Published As

Publication number Publication date
JPH07110362B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
NL8001197A (en) METHOD FOR SIGNIFICANTLY PLASTIC REDUCTION OF THE WIDTH OF A PLATE PRE-PRODUCED BY ROLLERS.
JP3551129B2 (en) Manufacturing method and manufacturing equipment for hot rolled steel strip
JPH01205802A (en) Method for rolling to press weld internal defect of continuously cast stock
US5983481A (en) Method of making forged steel bar
JPH01205801A (en) Method for rolling to press weld internal defect of continuously cast stock
JP3257472B2 (en) Continuous casting / hot-rolled steel strip manufacturing equipment row and hot-rolled steel strip manufacturing method
JP3648825B2 (en) Manufacturing method of continuous cast round slab for seamless steel pipe manufacturing with good workability
JP3649054B2 (en) Rolling method to prevent rolling cracks in continuously cast billet slabs
JP3356024B2 (en) Hot rolled steel strip manufacturing method
JPS6157082B2 (en)
JP4218115B2 (en) Method and apparatus for producing hot-rolled steel sheet by sheet thickness press
JPH0230303A (en) Method for hot rolling steel bar and wire stock
JP4217333B2 (en) Manufacturing method of hot-rolled steel sheet by sheet thickness press
JP4172084B2 (en) Manufacturing method of hot-rolled steel sheet by sheet thickness press
JPH1034201A (en) Manufacture of round billet for manufacturing seamless steel tube containing chromium excellent in workability
RU2336961C2 (en) Method of production of strips from low-alloyed steel
JP2529846B2 (en) Cavity rolling method for clad wire rod
JP2890198B2 (en) Method for producing long member made of steel or steel alloy having low deformability
JP2001087801A (en) Rolling method for preventing rolling crack on billet in continuous casting
JP2001113302A (en) Rolling method for preventing rolling crack on continuously cast billet
RU2231402C1 (en) Blank rolling method
JPS63215303A (en) Method for bloom rolling ingot
KR101522785B1 (en) Method and apparatus for cold rolling of titanium plate
JP4193532B2 (en) Rolling method for bar steel
JP2005125387A (en) Method for manufacturing steel sheet