JPH07110362B2 - Internal defect pressure bonding rolling method of continuous cast material - Google Patents

Internal defect pressure bonding rolling method of continuous cast material

Info

Publication number
JPH07110362B2
JPH07110362B2 JP63032049A JP3204988A JPH07110362B2 JP H07110362 B2 JPH07110362 B2 JP H07110362B2 JP 63032049 A JP63032049 A JP 63032049A JP 3204988 A JP3204988 A JP 3204988A JP H07110362 B2 JPH07110362 B2 JP H07110362B2
Authority
JP
Japan
Prior art keywords
rolling
porosity
stands
pressure bonding
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63032049A
Other languages
Japanese (ja)
Other versions
JPH01205802A (en
Inventor
芳昭 草場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63032049A priority Critical patent/JPH07110362B2/en
Publication of JPH01205802A publication Critical patent/JPH01205802A/en
Publication of JPH07110362B2 publication Critical patent/JPH07110362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造ブルームまたはビレットを素材とし
連続圧延機を用いて棒鋼・線材を熱間圧延で製造する圧
延方法に関する。
TECHNICAL FIELD The present invention relates to a rolling method in which a continuous casting bloom or a billet is used as a raw material and a steel bar / wire is manufactured by hot rolling using a continuous rolling mill.

(従来の技術) 一般に連続鋳造ブルームやビレットを素材とする棒鋼・
線材の圧延においては、垂直・水平スタンドを交互に配
列した連続圧延機が用いられている。この場合水平スタ
ンドで材料の厚みを圧下し、垂直スタンドで材料の幅を
圧下する。この圧延方法においては、製品の寸法精度の
点から各スタンド間は、無張力とすることが最良とされ
ている。ただし中間・仕上列における圧延では、材料の
通材性を向上させるためスタンド間に材料変形抵抗の数
%程度の引張力を与えることもある。一方、粗列におい
ては、各サイズにより圧下パターンが変わるため、サイ
ズによっては、スタンド間に圧縮力を生じることもある
が、それも材料変形抵抗の数%以下に留まる。このよう
な棒鋼・線材の圧延では材料断面形状は、正方形や円に
近く、各パスにおける材料の幅広がりが、板の圧延にく
らべ著しく大きい。このため特に厚み方向中心部・幅方
向端部表層近傍の内部欠陥(ポロシティ)が残存し易
い。
(Prior art) Generally, steel bars made from continuous casting blooms and billets.
In rolling the wire rod, a continuous rolling mill in which vertical and horizontal stands are alternately arranged is used. In this case, the horizontal stand reduces the thickness of the material, and the vertical stand reduces the width of the material. In this rolling method, it is best to make no tension between the stands from the viewpoint of dimensional accuracy of the product. However, in rolling in the intermediate / finishing row, a tensile force of about several percent of the material deformation resistance may be applied between the stands in order to improve the material permeability. On the other hand, in the rough row, since the rolling pattern changes depending on each size, depending on the size, a compressive force may be generated between the stands, but it also remains within several percent of the material deformation resistance. In such rolling of steel bars and wire rods, the material cross-sectional shape is close to a square or a circle, and the material width spread in each pass is significantly larger than that of sheet rolling. Therefore, in particular, internal defects (porosity) near the surface portion in the thickness direction central portion and the width direction end portion tend to remain.

ところで低炭素鋼連続鋳造ブルーム・ビレットには、中
心部にポロシティが発生しやすく、中炭素鋼において
は、さらに表層部にミクロポロシティを発生しやすい。
鋳片に発生したポロシティは、板圧延のように一方向圧
延で幅広がりの少ない場合は、粗圧延・中間圧延工程に
おいて十分圧着し消滅するが、条鋼のように各パスでの
幅広がりが著しい場合、中央部まで圧下が浸透せず、中
央部のポロシティは圧着されずに製品内にまで残存する
場合もある。また表層近傍のミクロポロシティについて
も、幅広がりの著しい端面中央付近においては、ポロシ
ティは圧下方向に圧着されにくく製品まで残存する。こ
のため製品を二次加工するとき、このポロシティを起点
として切断する必要が生じる場合もある。
By the way, porosity is likely to occur in the central portion of low carbon steel continuously cast bloom billets, and microporosity is likely to occur in the surface layer portion of medium carbon steel.
The porosity generated in the slab disappears by sufficient pressure bonding in the rough rolling / intermediate rolling process when the width spread is small in one direction rolling such as plate rolling, but the width spread in each pass is remarkable like the bar steel. In this case, the reduction may not penetrate to the central portion, and the porosity in the central portion may remain in the product without being pressure bonded. Regarding microporosity in the vicinity of the surface layer as well, in the vicinity of the center of the end face where the width greatly expands, the porosity is difficult to be pressed in the pressing direction and remains in the product. Therefore, it may be necessary to cut from this porosity as a starting point when the product is further processed.

従来、このようなポロシティを圧着させるためには、厚
み方向・幅方向の圧下量を大きくし、これにより、この
ポロシティを圧着させようとして来た。この結果、近年
素材としてブルームを用いることが一般的となり、ブル
ームの断面サイズも300mm×400mm以上の大寸法となりつ
つある。さらに冷間鍛造される線材・棒鋼においては、
厳しい内質が要求されるため、ブルームから分塊圧延さ
れたビレットの段階において超音波検査し、表層部・中
心部にポロシティによる欠陥がある場合は、手入れある
いはリジェクトを行い、良鋼のビレットのみを製品工場
へ送っている。
Conventionally, in order to crimp such porosity, it has been attempted to crimp this porosity by increasing the amount of reduction in the thickness direction and the width direction. As a result, in recent years, it has become common to use bloom as a material, and the cross-sectional size of the bloom is becoming larger than 300 mm × 400 mm. For wire rods and steel bars that are cold forged,
Since strict internal quality is required, ultrasonic inspection is performed at the stage of billet that has been slab-rolled from bloom, and if there are defects due to porosity in the surface layer / center part, care or reject is performed and only billets made of good steel are used. Are sent to the product factory.

(発明が解決しようとする課題) このように従来の無張力圧延法においては、通常の圧下
量で鋳片内のポロシティを完全に圧着・消滅させること
は不可能である。このため従来は素材として大断面のブ
ルームを用いて幅方向・厚み方向の圧下量を大きくし、
できるだけポロシティを圧着させようとしている。この
ため分塊ミルでまずブルームからビレットを圧延し、こ
こで一端冷間材として、検査・手入れを行っている。従
って2ヒート圧延法を採用した上に冷間手入れを必要と
しており、コストおよび時間の損失が大きく、現今の製
鋼−圧延の直結化に逆行する結果となっている。
(Problems to be Solved by the Invention) As described above, in the conventional tensionless rolling method, it is impossible to completely press-bond and eliminate porosity in the slab with a normal reduction amount. For this reason, conventionally, a large cross-section bloom was used as the material to increase the amount of reduction in the width and thickness directions.
I try to crimp the porosity as much as possible. For this reason, the billet is first rolled from the bloom in a slab, where it is used as a cold material for inspection and maintenance. Therefore, it requires cold maintenance in addition to adopting the two-heat rolling method, resulting in a large cost and time loss, which is contrary to the current direct steelmaking-rolling connection.

最もコスト的に有利な方法は、小断面の連鋳ビレットを
素材とし、ホットチャージで製品工場(棒鋼ミル、線材
ミル等)へ搬入し、1ヒートで製品まで圧延する方法で
ある。しかし、連続鋳造材断面積が小さくなれば圧下率
も低下し製品内にポロシティが残存する可能性が大きく
なるため、従来の圧延方法では小断面の連鋳ビレットを
素材とすればポロシティ残存の危険は避けられない。従
って高級な条鋼製品については大断面の連続鋳造ブルー
ムを用いた2ヒート圧延が従来は一般的であり、これが
製造コストを引き上げ製造時間を長くする要因となって
いた。
The most cost-effective method is a method in which a continuously cast billet having a small cross section is used as a raw material, is carried into a product factory (bar steel mill, wire rod mill, etc.) by hot charging, and is rolled into a product in one heat. However, if the cross-sectional area of the continuous cast material becomes smaller, the reduction rate also decreases and the possibility of porosity remaining in the product increases, so in the conventional rolling method, if continuous casting billets with a small cross section are used as the material, there is a risk of residual porosity. Is inevitable. Therefore, for high-grade steel products, two-heat rolling using a continuous casting bloom having a large cross section has been generally used in the past, which has been a factor of increasing the manufacturing cost and lengthening the manufacturing time.

従って本発明の目的は、高級条鋼製品を小断面の連続鋳
造ビレットを用いて1ヒート圧延で鋳片内のポロシティ
を圧延中に完全に圧着・消滅させる圧延方法を提供する
ことである。
Accordingly, an object of the present invention is to provide a rolling method for completely pressing and extinguishing porosity in a slab by one heat rolling of a high-grade steel product using a continuously cast billet having a small cross section.

(課題を解決するための手段) 本発明者はこの目的を達成するため実験、研究を重ね、
次の着想を得た。
(Means for Solving the Problem) The present inventor has conducted experiments and research to achieve this object,
I got the following idea.

連続圧延機のスタンド間に強力なスタンド間圧縮力を与
えることにより上流側スタンドの圧延においてロールバ
イト出側に均一に圧縮力を与え、圧下を厚さ方向中央ま
で浸透させるとともに、材料の幅方向においても均一に
浸透させることができる。またこのようにスタンド間に
おいて圧縮力を作用させると材料は、圧延長手方向に圧
縮(圧下)され、幅・厚みを増加する。従ってポロシテ
ィの圧延方向の圧着効果も特に押込まれるロールバイト
内で期待できる。この材料に圧縮力を与える方法は、各
スタンド間で実施することが可能であるが、スタンド間
圧縮力によりスタンド間で材料が座屈してしまうとポロ
シティ圧着効果が失われるだけでなく圧延の続行さえ不
可能となる。座屈が発生するのは、スタンド間のロール
軸心間距離がスタンド間の材料の厚み・幅に対し大き過
ぎる場合である。従ってポロシティ圧着のための圧縮力
は、ブルームの分塊圧延工程、ビレットの粗圧延工程で
作用させることがもっとも有効である。
By applying a strong inter-stand compression force between the stands of the continuous rolling mill, in the rolling of the upstream side stand, the compression force is evenly applied to the roll bite exit side, allowing the reduction to penetrate to the center of the thickness direction and the width direction of the material. Even in the case of, it is possible to uniformly permeate. Further, when a compressive force is applied between the stands in this way, the material is compressed (rolled down) in the rolling longitudinal direction, and the width and thickness are increased. Therefore, the effect of pressure bonding in the rolling direction of porosity can be expected especially in the rolled bite. This method of applying compressive force to the material can be performed between each stand, but if the material buckles between the stands due to the inter-stand compressive force, the porosity compression effect is lost and the rolling continues. Even impossible. Buckling occurs when the distance between the roll axes of the stands is too large with respect to the thickness and width of the material between the stands. Therefore, it is most effective to apply the compressive force for porosity compression in the bloom slab rolling process and billet rough rolling process.

こうして本発明の要旨とするところは、連続鋳造材の熱
間連続圧延において、分塊圧延または粗圧延の段階で少
なくとも1組以上のスタンド間において、圧延されてい
る材料の熱間変形抵抗の値の25%以上のスタンド間圧縮
応力を与えることを特徴とする棒鋼および線材圧延用の
連続鋳造材の内部欠陥圧着圧延法である。
Thus, the gist of the present invention is that in hot continuous rolling of a continuous cast material, the value of the hot deformation resistance of the material being rolled between at least one set of stands at the stage of slabbing or rough rolling. It is an internal defect crimping rolling method for continuous casting materials for bar steel and wire rod, which is characterized by applying a compressive stress between stands of 25% or more.

(作用) 隣接するスタンドでのロール駆動モーター回転数等の調
節によりスタンド間での圧縮応力の大きさを調節し、ス
タンド間でポロシティ等の内部欠陥を圧着するのに必要
な圧縮応力を両ロール間で発生させる。この圧縮応力の
具体的な値は実験的に決定した。この実験について次に
述べる。
(Operation) Adjust the magnitude of the compressive stress between the stands by adjusting the roll drive motor rotation speed etc. between the adjacent stands, and apply the compressive stress necessary to crimp internal defects such as porosity between the stands to both rolls. Generate between. The specific value of this compressive stress was experimentally determined. This experiment will be described next.

実験装置 第1図は実験に用いた圧延機の配置を示す。駆動水平ロ
ールH1と非駆動垂直ロールV2、および駆動水平ロールH3
を連続的に配置し、ロールH1、V2間で圧縮力を作用させ
ながら圧延材1を矢印の方向に圧延する。この装置の諸
元は次のとおりである。
Experimental apparatus Fig. 1 shows the arrangement of rolling mills used in the experiment. Driven horizontal roll H1 and non-driven vertical roll V2, and driven horizontal roll H3
Are continuously arranged, and the rolled material 1 is rolled in the direction of the arrow while applying a compressive force between the rolls H1 and V2. The specifications of this device are as follows.

H1ロール径:300mm V2ロール径:200mm H3ロール径:300mm H1−V2軸心間距離:700mm V2−H3軸心間距離:700mm 圧延材料 第2図に示すように圧延材料としては、正方形断面のビ
レット(鋼種SS41)を用い、圧延による内部欠陥(ポロ
シティ)圧着の効果を確認するため、図に示すように内
部に穴を形成し人工ポロシティとした。これらの穴(人
工ポロシティ)は、中心部のポロシティを模擬する厚み
中心の穴1aと表層近くのミクロポロシティを模擬する表
面下10mmの穴1b、1cから成る。表層近くの穴1b、1cのう
ち、穴1bは水平圧延において、厚み中央部に存在するも
のである。これらの穴1a、1b、1cは第2図に示されるよ
うにビレット内に直径2mmの穴を幅方向に開け、同径の
針金を挿入して長さ2mmの空間を残し、その他は溶接し
て閉鎖した。
H1 roll diameter: 300mm V2 roll diameter: 200mm H3 roll diameter: 300mm H1-V2 axial center distance: 700mm V2-H3 axial center distance: 700mm Rolling material As shown in Fig. 2, the rolling material has a square cross section. In order to confirm the effect of internal defect (porosity) pressure bonding by rolling using a billet (steel type SS41), artificial porosity was created by forming holes inside as shown in the figure. These holes (artificial porosity) consist of a hole 1a at the center of thickness that simulates the porosity of the center and holes 1b and 1c 10 mm below the surface that simulate microporosity near the surface. Among the holes 1b and 1c near the surface layer, the hole 1b is present in the central portion of the thickness in horizontal rolling. As shown in Fig. 2, these holes 1a, 1b and 1c are made by forming a hole with a diameter of 2 mm in the billet in the width direction, inserting a wire of the same diameter to leave a space of 2 mm in length, and welding the others. Closed.

この圧延材料の各寸法を下にまとめて示す。The dimensions of this rolled material are summarized below.

材料厚t:100mm 材料幅w:100mm 穴長さl:2mm 穴直径d:2mm 距離x1,x2:10mm 距離y1,y2:40mm 圧延条件および結果 上述のようにして人工ポロシティを設けた材料(ビレッ
ト)1を多数、用意して実験を行った。圧延材料1はい
づれの場合も1250℃に加熱し、H1における圧延温度は11
00℃で一定とした。またH1における圧下率は一定とし
て、材料の厚みをt0=100mmからt1=80mmに20%圧下し
た。一方V2における圧下量は0〜20mmまで種々に変化さ
せて両ロールH1、V2間の圧縮応力を変化させた。なお、
最後の駆動水平ロールH3では厚みを70mmまで圧下した。
Material thickness t: 100mm Material width w: 100mm Hole length l: 2mm Hole diameter d: 2mm Distance x 1 , x 2 : 10mm Distance y 1 , y 2 : 40mm Rolling conditions and results Producing artificial porosity as described above A large number of different materials (billet) 1 were prepared for the experiment. Rolling material 1 was heated to 1250 ℃ in either case, and the rolling temperature at H1 was 11
It was kept constant at 00 ° C. Further, with the reduction ratio at H1 being constant, the material thickness was reduced by 20% from t 0 = 100 mm to t 1 = 80 mm. On the other hand, the amount of reduction at V2 was variously changed from 0 to 20 mm to change the compressive stress between both rolls H1 and V2. In addition,
The final drive horizontal roll H3 reduced the thickness to 70 mm.

この実験ではH1ミル・1パス圧延における人工ポロシテ
ィ圧着状態を、各圧縮応力について調査した。第3図
は、H1圧延前後の圧延長手方向の材料断面を模式的に示
したもので、材料厚がt0=100mmからt1=80mmに圧下さ
れたのに伴い人工ポロシティ1aの円形断面が楕円に潰れ
て断面積がS0からS1に変化した状態を図示する。圧延に
伴いポロシティの断面積がS0からS1に減少するのである
から、ポロシティ圧着率の指標としては空孔減面率γ=
(S0−S1)/S0×100(%)を用いる。γ=100%はポロ
シティが完全に圧着されたことを意味する。一方、圧延
時の材料の塑性変形は、材料内部の応力と材料の熱間変
形抵抗kfの関係に決まるものであるから、内部欠陥(ポ
ロシティ)圧着に効果的な圧縮応力σの大きさの指標と
しては、σ/kfを用いることが有効である。
In this experiment, the compression state of artificial porosity in H1 mil and 1 pass rolling was investigated for each compressive stress. Fig. 3 schematically shows the material cross section in the rolling longitudinal direction before and after H1 rolling, and the circular cross section of artificial porosity 1a as the material thickness was reduced from t 0 = 100 mm to t 1 = 80 mm. Shows a state in which the cross section changes from S 0 to S 1 due to crushing into an ellipse. Since the cross-sectional area of porosity decreases from S 0 to S 1 with rolling, the porosity reduction rate γ =
(S 0 −S 1 ) / S 0 × 100 (%) is used. γ = 100% means that the porosity is completely crimped. On the other hand, the plastic deformation of a material during rolling is determined by the relationship between the stress inside the material and the hot deformation resistance k f of the material. Therefore, the magnitude of the compressive stress σ effective for internal defect (porosity) crimping is It is effective to use σ / k f as an index.

次にこの実験の条件および結果をまとめて第1表に示
す。この表において、γ、γ(%)はそれぞれ厚み
方向・幅方向ともに中央部に位置する穴1a、および厚み
方向中央部・幅方向エッジ部表層近くの穴1bの空孔減面
率を示す。なおSS41材の熱間変形抵抗kfは6.0kg/mm2
一定である。
Next, the conditions and results of this experiment are summarized in Table 1. In this table, γ c and γ s (%) are the hole reduction ratios of the hole 1a located in the center in both the thickness direction and the width direction, and the hole 1b near the surface layer in the thickness direction center part and the width direction edge part, respectively. Show. The hot deformation resistance k f of SS41 material is constant at 6.0 kg / mm 2 .

第4図は、この第1表の結果をグラフで示したものであ
る。
FIG. 4 is a graph showing the results of Table 1.

この第1表および第4図の結果から次のように結論され
る。σ/kfが0.2から0.3にかけて空孔減面率が急激に増
加してポロシティ圧着効果が顕著になり、σ/kf=0.4で
は中心部の穴1aは完全に圧着する(γ=100%)。さ
らにσ/kf=0.6ではγ=γ=100%となり、最も圧
着効果の小さい厚み方向中央部・幅方向端部表層近傍の
表層ポロシティ1bを含め、全てのポロシティが圧着され
る。
From the results shown in Table 1 and FIG. 4, it is concluded as follows. When σ / k f is from 0.2 to 0.3, the porosity reduction effect becomes remarkable and the porosity compression effect becomes remarkable, and when σ / k f = 0.4, the central hole 1a is completely pressure-bonded (γ c = 100 %). Further, when σ / k f = 0.6, γ c = γ s = 100%, and all the porosities including the surface layer porosity 1b in the vicinity of the surface layer in the central portion in the thickness direction and the end portion in the width direction where the pressure bonding effect is the smallest are pressure bonded.

従ってσ/kf=0.6以上の圧延をくり返すことにより、中
心部および表層近傍にあるポロシティを完全に圧着消滅
できる。またこの実験においてスタンド間圧縮力の効果
があらわれ出すのは、σ/kfが0.25以上であり、この値
が25%以上であれば直径2mm程度のかなり大きいポロシ
ティについても全断面について完全に圧着することが期
待できる。また、60%以上とすることによりポロシティ
の圧着が完全となる。
Therefore, by repeating rolling of σ / k f = 0.6 or more, the porosity in the central portion and near the surface layer can be completely eliminated by pressure bonding. In this experiment, the effect of the compression force between the stands appears that σ / k f is 0.25 or more, and if this value is 25% or more, even if the porosity of a fairly large diameter of about 2 mm is completely crimped on all sections. Can be expected to do. In addition, when the porosity is 60% or more, the pressure bonding of porosity is completed.

よって本発明を実施する際のスタンド間の圧縮力は、上
述の実験結果および材料内のポロシティの大きさ等を考
慮し、材料の座屈を生じない範囲でσ/kfがポロシティ
圧着に十分な効果を有する値となるように選択するべき
である。
Therefore, the compressive force between the stands when carrying out the present invention is σ / k f sufficient for porosity crimping in the range where buckling of the material does not occur, considering the above-mentioned experimental results and the magnitude of porosity in the material, etc. It should be selected to have a value that has a certain effect.

(実施例) 実施例1 この実施例は、粗列6スタンド、中間列10スタンド、仕
上列6スタンド、合計22スタンドのVH配列の連続ミルに
おいて、一辺180mmの連続鋳造ビレットから一辺20mmの
棒鋼を製造する棒鋼ミルに本発明の方法を適用した例で
あり、第5図は、この実施例のミルレイアウトを示す。
(Example) Example 1 In this example, in a continuous mill having a VH arrangement of 6 stands for coarse row, 10 stands for intermediate row, 6 stands for finishing row and a total of 22 stands, a steel bar having a side length of 20 mm and a steel bar having a side length of 20 mm was produced. This is an example in which the method of the present invention is applied to a steel bar mill to be manufactured, and FIG. 5 shows a mill layout of this example.

この実施例のミルは全スタンドで個別駆動であり、H2−
V3間においてスタンド間の圧延材の熱間変形抵抗の50%
に当たる2kg/mm2のスタンド間圧縮力が働くように各モ
ータの回転数、出力を設定している。この実施例の粗列
のパススケジュールを第2表に示す。
The mill of this embodiment is driven individually on all stands,
50% of hot deformation resistance of rolled material between stands between V3
The rotation speed and output of each motor are set so that a compression force of 2 kg / mm 2 between the stands will be applied. The coarse row pass schedule for this example is shown in Table 2.

なお、スタンド間の圧縮力は、全長にわたる寸法変動を
増大させる傾向があるがこの実施例においては粗列の上
流のみで圧縮力を作用させており、H2−V3間で発生する
寸法変動は、下流の19スタンドの圧延において十分吸収
され、無張力の場合と寸法に大きな差を生じない。
The compressive force between the stands tends to increase the dimensional variation over the entire length, but in this embodiment, the compressive force is applied only upstream of the coarse row, and the dimensional variation occurring between H2 and V3 is: It is well absorbed in the rolling of 19 stands downstream, and does not make much difference in size from the case of no tension.

実施例2 この実施例は、粗列7スタンド、中間列水平10スタン
ド、仕上列水平4スタンドのツイストによる水平タンデ
ムミルを用いて、一辺125mm連続鋳造ビレットから一辺1
0mmの線材を製造する工程に本発明の方法を適用した例
であり、第6図は、このミルのミルレイアウトを示す。
Example 2 In this example, a horizontal tandem mill with a twist of 7 rows of coarse rows, 10 horizontal rows of intermediate rows, and 4 horizontal stands of finishing rows was used, and one side was formed from a 125 mm continuous casting billet.
This is an example in which the method of the present invention is applied to the step of producing a wire rod of 0 mm, and FIG. 6 shows a mill layout of this mill.

この実施例では、一番スタンドH1と二番スタンドH2の間
で圧延材の熱間変形抵抗の60%に当たる2.2kg/mm2のス
タンド間圧縮応力を与え、H2スタンド出側で材料を90゜
ツイストしてH3スタンドに導入する。この実施例の粗列
パススケジュールを第3表に示す。
In this example, between the first stand H1 and the second stand H2, a compressive stress between the stands of 2.2 kg / mm 2 , which corresponds to 60% of the hot deformation resistance of the rolled material, is applied, and the material is heated to 90 ° at the outlet side of the H2 stand. Twist and install on the H3 stand. The coarse row pass schedule for this example is shown in Table 3.

実施例3 この実施例は、HVの8スタンドから成る鋼片連続ミルを
用い、300mm厚×300mm幅の連続鋳造ブルームから一辺18
0mmのビレットを圧延する分塊工場に本発明の方法を適
用した例であって、第7図にスタンドの配置を示す。
Example 3 In this example, an HV 8-stand steel billet continuous mill was used, and a side of a continuous casting bloom having a thickness of 300 mm and a width of 300 mm was used.
This is an example in which the method of the present invention is applied to a slab for rolling a 0 mm billet, and the arrangement of stands is shown in FIG. 7.

このミルにおいてはV2を非駆動とし、H1−V2間、V4−H5
間の2回において、材料変形抵抗の40%にあたるスタン
ド間圧縮応力を与えている。さらにこの2回の圧縮圧延
によて発生する寸法変動をV8で軽圧下することにより軽
減している。この実施例のパススケジュールは第4表に
示す通りである。なおこの実施例の場合、従来法に較べ
ビレットの寸法精度は数%ほど悪化するが、圧縮力の作
用により特に表層下のミクロポロシティの大部分が圧着
・消滅し、次工程の線材工場に手入れなしに直接ホット
チャージできる。
In this mill, V2 is not driven, H1-V2, V4-H5
Two times during this period, a compressive stress between the stands, which is 40% of the material deformation resistance, is applied. Furthermore, the dimensional fluctuation caused by these two compression rolling operations is reduced by lightly reducing with V8. The pass schedule of this embodiment is shown in Table 4. In the case of this embodiment, the dimensional accuracy of the billet is deteriorated by about several percent as compared with the conventional method, but due to the action of the compressive force, most of the microporosity under the surface layer is crimped / disappeared, and the billet for the next step is treated. Can be directly hot-charged without.

(発明の効果) 本発明は、以上のように、連続鋳造ブルーム・ビレット
の連続圧延において任意のスタンド間で圧延材の変形抵
抗の25%以上の値の圧縮応力を与え、これにより圧延材
内部のミクロポロシティを圧着させる。従って大断面の
連続鋳造ブルームを用いても2ヒート・ホットチャージ
で棒鋼・線材を圧延でき、また小断面の連続鋳造ビレッ
トからは1ヒートで圧延できる。この結果製造コストお
よび製造に要する時間を大幅に削減できる。
(Effect of the invention) As described above, the present invention provides a compressive stress of 25% or more of the deformation resistance of a rolled material between arbitrary stands in the continuous rolling of a continuously cast bloom billet, whereby the inside of the rolled material is provided. Press the microporosity of. Therefore, even if a large-section continuously cast bloom is used, a steel bar / wire can be rolled by two-heat hot charging, and a small-section continuously cast billet can be rolled in one heat. As a result, the manufacturing cost and the time required for manufacturing can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明におけるスタンド間の圧縮力の大きさ
とポロシティ圧着効率の関係を調べる実験に用いた圧延
機の配置を示す図; 第2図は、第1図の装置を使った実験において用いた圧
延材料断面を示す斜視図; 第3図は、第2図の圧延材料の第1回水平圧延前後の圧
延長手方向断面を模式的に示す断面図; 第4図は、圧縮応力とポロシティ圧着効率の関係を示す
グラフ;および 第5図〜第7図は、それぞれ、本発明の第1〜第3の実
施例における圧延機の配置を示す平面図である。 1:圧延材料 1a,1b,1c:穴(人工ポロシティ)
FIG. 1 is a diagram showing the arrangement of rolling mills used in an experiment for investigating the relationship between the magnitude of the compressive force between stands and the porosity pressure bonding efficiency in the present invention; FIG. 2 is an experiment using the apparatus of FIG. FIG. 3 is a perspective view showing a cross section of the rolled material used; FIG. 3 is a sectional view schematically showing a longitudinal cross section of the rolled material before and after the first horizontal rolling of the rolled material of FIG. 2; Graphs showing the relationship of porosity pressure bonding efficiency; and FIGS. 5 to 7 are plan views showing the arrangement of rolling mills in the first to third embodiments of the present invention, respectively. 1: Rolled material 1a, 1b, 1c: Hole (artificial porosity)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造材の熱間連続圧延において、分塊
圧延または粗圧延の段階で少なくとも1組以上のスタン
ド間において、圧延されている材料の熱間変形抵抗の値
の25%以上のスタンド間圧縮応力を与えることを特徴と
する棒鋼および線材圧延用の連続鋳造材の内部欠陥圧着
圧延法。
1. In the hot continuous rolling of a continuously cast material, at least one set of at least one pair of stands at the stage of slabbing or rough rolling has a value of 25% or more of the value of hot deformation resistance of the material being rolled. Internal defect pressure-bonding rolling method for continuous steel bar and wire rod rolling, which is characterized by applying compressive stress between stands.
JP63032049A 1988-02-15 1988-02-15 Internal defect pressure bonding rolling method of continuous cast material Expired - Lifetime JPH07110362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032049A JPH07110362B2 (en) 1988-02-15 1988-02-15 Internal defect pressure bonding rolling method of continuous cast material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032049A JPH07110362B2 (en) 1988-02-15 1988-02-15 Internal defect pressure bonding rolling method of continuous cast material

Publications (2)

Publication Number Publication Date
JPH01205802A JPH01205802A (en) 1989-08-18
JPH07110362B2 true JPH07110362B2 (en) 1995-11-29

Family

ID=12348009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032049A Expired - Lifetime JPH07110362B2 (en) 1988-02-15 1988-02-15 Internal defect pressure bonding rolling method of continuous cast material

Country Status (1)

Country Link
JP (1) JPH07110362B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837012B2 (en) * 1976-08-16 1983-08-13 松下電器産業株式会社 Powder mixed liquid supply device

Also Published As

Publication number Publication date
JPH01205802A (en) 1989-08-18

Similar Documents

Publication Publication Date Title
KR101214146B1 (en) Process and related plant for manufacturing steel long products without interruption
DE4402402A1 (en) Process and plant for the production of hot-rolled steel strip from continuously cast starting material
WO2007010564A1 (en) Process and plant for manufacturing steel plates without interruption
JPH07110362B2 (en) Internal defect pressure bonding rolling method of continuous cast material
JP3287076B2 (en) One-series rolling method
WO2002068136A1 (en) Improved aluminium foil rolling method
JPH07110361B2 (en) Internal defect pressure bonding rolling method of continuous cast material
JP3528504B2 (en) Manufacturing method of extra thick steel plate
US5983481A (en) Method of making forged steel bar
KR100370578B1 (en) Cold rolling system to prevent overlapping flaws on wire rod surface
JPS61229402A (en) Simultaneous rolling device for plural rods from plate material
JPH0810804A (en) Method for rolling plate
JPS62173002A (en) Manufacture of wire rod steel and round bar steel
JP2529846B2 (en) Cavity rolling method for clad wire rod
JP3649054B2 (en) Rolling method to prevent rolling cracks in continuously cast billet slabs
JP3356024B2 (en) Hot rolled steel strip manufacturing method
JP3629120B2 (en) Rolling fracture prevention method for different width bonded plates
GB1569196A (en) Slitting a multi-stranded bar
JPH0230303A (en) Method for hot rolling steel bar and wire stock
GB1571752A (en) Method of rolling billets adapted to be rolled into bar sections
JP2002254101A (en) Method and apparatus for precisely wire
JP2000254703A (en) Production of hot-rolled steel sheet through plate thickness press
JP3126875B2 (en) Continuous hot rolling of billets
KR101522785B1 (en) Method and apparatus for cold rolling of titanium plate
JP2000254704A (en) Method and device for producing hot-rolled steel sheet with plate thickness press