JPH0230303A - Method for hot rolling steel bar and wire stock - Google Patents

Method for hot rolling steel bar and wire stock

Info

Publication number
JPH0230303A
JPH0230303A JP17679488A JP17679488A JPH0230303A JP H0230303 A JPH0230303 A JP H0230303A JP 17679488 A JP17679488 A JP 17679488A JP 17679488 A JP17679488 A JP 17679488A JP H0230303 A JPH0230303 A JP H0230303A
Authority
JP
Japan
Prior art keywords
rolling mill
driven
rolling
roll
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17679488A
Other languages
Japanese (ja)
Inventor
Yutaka Kano
裕 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17679488A priority Critical patent/JPH0230303A/en
Publication of JPH0230303A publication Critical patent/JPH0230303A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process

Abstract

PURPOSE:To prevent biting defects and to surely hold a sufficient percentage reduction by specifying a friction coefficient of the roll surface in a non-driven vertical rolling mill. CONSTITUTION:A continuous rolling mill 10 is composed of driven horizontal mills 1, 3, 5, 7 and non-driven vertical mills 2, 4, 6. A rolled stock 20 heated to a required temp. by a heating furnace is hot rolled by the mill 10. In that case, by bringing a friction coefficient of the roll surface of the mills 2, 4, 6 to be >=0.45, biting defects of the stock 20 are prevented, and by bringing a biting angle of the stock 20 to be larger, a sufficient percentage reduction is kept even in the mills 2, 4, 6. As the result, the total equipment scale is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、棒鋼および線材の熱間圧延方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for hot rolling steel bars and wire rods.

(従来の技術) 従来の棒鋼および線材の圧延においては、駆動される水
平圧延機を数基タンデムに配置して数ストランドの圧延
をしたり、あるいはそれぞれ駆動する水平圧延機と垂直
圧延機を交互に配置してlストランド圧延を行うものが
主流を占めている。
(Prior art) In conventional rolling of steel bars and wire rods, several driven horizontal rolling mills are arranged in tandem to roll several strands, or each driven horizontal rolling mill and vertical rolling mill are alternately driven. The mainstream is one that performs l-strand rolling.

水平圧延機のみを配置した圧延機群による圧延において
は、圧延機間で圧延材料を長手方向を中心に90°回転
せしめる必要があること、およびロールやガイド替時の
作業性等を考慮して各圧延機間隔は約3〜5−となり、
圧延機群全体としての占有敷地面積が大きくなる。また
圧延材料を90゜捩るために品質面においてヘゲ疵、折
込み等の疵が発生しやすい。
In rolling by a rolling mill group consisting of only horizontal rolling mills, it is necessary to rotate the rolled material by 90° around the longitudinal direction between the rolling mills, and the work efficiency when changing rolls and guides is taken into account. The interval between each rolling mill is approximately 3-5-
The site area occupied by the rolling mill group as a whole increases. In addition, since the rolled material is twisted by 90 degrees, defects such as sagging and folding are likely to occur in terms of quality.

他方、ともに駆動式の水平圧延機および垂直圧延機を交
互に配置した圧延機群による1ストランド圧延方式では
、水平圧延機群だけによる圧延よりも品質の良い棒鋼な
いし線材が得られるが、垂直圧延機の設備費用が水平圧
延機の約3〜4倍と非常に高(、従って圧延機群全体と
しての設備費用も水平圧延機群だけの場合と比較してか
なり高くなる。更に垂直圧延機の駆動装置取付用コラム
自体の占有面積が水平圧延機の駆動装置のそれよりも大
きいこと、また、垂直圧延機のロールやガイド替等の作
業性を考慮すると、この方式の圧延機間隔は水平圧延機
のみの方式よりも長くとる必要がある。
On the other hand, in the one-strand rolling method using a rolling mill group in which horizontal rolling mills and vertical rolling mills, both of which are driven, are arranged alternately, a steel bar or wire rod of better quality can be obtained than rolling with only a horizontal rolling mill group. The equipment cost of the rolling mill is extremely high, about 3 to 4 times that of a horizontal rolling mill (therefore, the equipment cost of the rolling mill group as a whole is also considerably higher than that of the horizontal rolling mill group alone. Considering that the area occupied by the drive device mounting column itself is larger than that of the drive device of the horizontal rolling mill, and considering the ease of work such as changing rolls and guides of the vertical rolling mill, the rolling mill spacing of this method is smaller than that of the horizontal rolling mill drive device. It needs to be longer than the machine-only method.

本出願人は、上述の従来方式の圧延機の問題点に鑑み、
設備費用が比較的低くかつ占有面積の少ないコンパクト
な圧延設備を可能とする棒鋼および線材用の熱間圧延方
法および装置として、特公昭63−1121号公報開示
の技術を提案した。
In view of the problems of the conventional rolling mill mentioned above, the applicant has
We have proposed the technology disclosed in Japanese Patent Publication No. 1121/1983 as a hot rolling method and apparatus for steel bars and wire rods that enables a compact rolling facility with relatively low equipment costs and a small footprint.

すなわち、水平圧延機、垂直圧延機そして水平圧延機を
経て行う棒鋼および線材の熱間圧延方法において電動機
駆動の水平圧延機により圧延材料を圧延した後、この水
平圧延機の後方に配置された非駆動の垂直ローラからな
る垂直圧延機によって上記圧延材料を圧延し、次いで上
記垂直ローラの後方に更に配置された電動機駆動の水平
圧延機によって再び上記圧延材料を圧延することを特徴
とする棒鋼および線材の熱間圧延方法である。
That is, in the hot rolling method for steel bars and wire rods that involves a horizontal rolling mill, a vertical rolling mill, and a horizontal rolling mill, after rolling the material to be rolled by an electric motor-driven horizontal rolling mill, a Steel bars and wire rods characterized in that the rolled material is rolled by a vertical rolling mill comprising driven vertical rollers, and then the rolled material is rolled again by a horizontal rolling mill driven by an electric motor and further disposed behind the vertical rollers. This is a hot rolling method.

更にまた本出願人は、特開昭61−279301号公報
において、上記駆動水平圧延機と非駆動垂直圧延機間隔
およびスタンド間の圧延材厚みおよび各スタンドのワー
クロール外径の関係を特定することで、圧延材の座屈や
スリップ等のトラブルがなく非駆動垂直圧延機における
減面率を駆動水平圧延機における減面率の83%以上に
維持しながら圧延できることを明らかにした。
Furthermore, in Japanese Patent Application Laid-Open No. 61-279301, the present applicant specifies the relationship between the distance between the driven horizontal rolling mill and the non-driven vertical rolling mill, the thickness of the rolled material between the stands, and the outer diameter of the work roll of each stand. It was revealed that rolling could be carried out without problems such as buckling or slipping of the rolled material, while maintaining the reduction in area in a non-driven vertical rolling mill to 83% or more of the reduction in area in a driven horizontal rolling mill.

(発明が解決しようとする諜B) しかしながら、この特許出願の技術では非駆動垂直圧延
機の材料の噛込み不良を発生することがあった。
(Intelligence B to be Solved by the Invention) However, with the technology of this patent application, there was a possibility that the material of the non-driven vertical rolling mill would be jammed incorrectly.

また、特開昭61−165021号公報があるが、この
技術は駆動水平圧延機のロールの表面摩擦係数を大きく
するとともに、一方非駆動垂直圧延機のロールと圧延材
との摩擦係数を小さくすることによって、非駆動垂直圧
延における断面縮少率を太きくすることができることを
開示しているが、この技術では非駆動垂直ロールへの材
料噛込み性の観点から問題があった。
Additionally, there is Japanese Patent Application Laid-Open No. 61-165021, which discloses that this technology increases the surface friction coefficient of the rolls of a driven horizontal rolling mill, while decreasing the friction coefficient between the rolls of a non-driven vertical rolling mill and the rolled material. Although it is disclosed that the cross-sectional reduction ratio in non-driven vertical rolling can be increased by this technique, there is a problem with this technique from the viewpoint of material biting into the non-driven vertical rolls.

ここに、本発明の目的は、上述のような従来技術の問題
点を解消し、非駆動垂直圧延機での十分な減面率を確保
できる圧延方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rolling method that solves the problems of the prior art as described above and can ensure a sufficient area reduction rate in a non-driven vertical rolling mill.

(課題を解決するための手段) 本発明者等は、特公昭63−1121号公報で提案され
ている棒鋼・線材用の熱間圧延方法に関して、モデル圧
延機を使用した数々の熱間圧延実験を通じ、次のような
問題点を明らかにした。
(Means for Solving the Problems) The present inventors conducted a number of hot rolling experiments using a model rolling mill regarding the hot rolling method for steel bars and wire rods proposed in Japanese Patent Publication No. 63-1121. Through this, the following issues were clarified.

まず、圧延材の最先端が駆動水平圧延機で圧延され、後
方に位置する非駆動垂直圧延機に押し込まれる際に、該
非駆動垂直圧延機の垂直ロールの表面状態によっては圧
延材が噛込まず圧延不能となる場合が見られることが判
明した。すなわち、非駆動垂直圧延機における材料の圧
下量が同一であうでも、垂直ロールの表面が粗い場合(
摩擦係数μが大の場合)はスムーズに圧延材が噛込むが
、垂直ロール表面が滑らかな場合(摩擦係数μが小の場
合)には圧延材が全く噛込まないか、もしくは噛込み直
後に垂直ロールのバイト内にて材料の先端が停止してし
まう現象が見られた。このような場合には、駆動水平圧
延機と非駆動垂直圧延機の間で材料が変形し座屈するか
、またはバルジング現象を起こして、圧延の続行が不可
能なトラブルになるのが常であった。
First, when the leading edge of the rolled material is rolled by a driven horizontal rolling mill and pushed into a non-driven vertical rolling mill located at the rear, the rolled material may not be bitten depending on the surface condition of the vertical rolls of the non-driven vertical rolling mill. It has been found that there are cases where rolling becomes impossible. In other words, even if the reduction amount of the material in the non-driven vertical rolling mill is the same, if the surface of the vertical roll is rough (
If the friction coefficient μ is large), the rolled material will bite smoothly, but if the vertical roll surface is smooth (if the friction coefficient μ is small), the rolled material will not bite at all, or it will bite immediately after it bites. A phenomenon was observed in which the leading edge of the material stopped within the bite of the vertical roll. In such cases, the material is often deformed and buckled between the driven horizontal rolling mill and the non-driven vertical rolling mill, or a bulging phenomenon occurs, making it impossible to continue rolling. Ta.

従って、非駆動垂直ロールの表面状態によっては、材料
の噛込み不良を防止するために非駆動垂直圧延機におけ
る減面率を駆動水平圧延機における減面率の83%未満
にせざるを得なくなるなどの問題点があった。
Therefore, depending on the surface condition of the non-driven vertical rolls, the area reduction rate in the non-driven vertical rolling mill may have to be less than 83% of the area reduction rate in the driven horizontal rolling mill in order to prevent material biting failure. There was a problem.

本発明者らは、垂直圧延機を非駆動とし、しかも駆動型
の場合と同様の減面率を得るために、非駆動垂直圧延機
のロール表面摩擦係数を大きくすることにより、非駆動
垂直圧延機のロールへの限界噛込み角が大きくなり噛込
み不良が発生しにくくなるなどの知見にもとづいて本発
明を完成したものである。
The present inventors made the vertical rolling mill non-driven, and in order to obtain the same area reduction rate as in the case of a driven type, the inventors developed a method for rolling the non-driven vertical rolling mill by increasing the roll surface friction coefficient of the non-driven vertical rolling mill. The present invention was completed based on the knowledge that the critical biting angle of the machine into the roll becomes larger, making it less likely that defective biting will occur.

本発明の要旨は、1基の非駆動垂直圧延機とその前後に
駆動水平圧延機を配置して組となした圧延機列において
、非駆動垂直圧延機のロール表面の摩擦係数を0.45
以上としたことを特徴とする棒鋼および線材の熱間圧延
方法である。
The gist of the present invention is to reduce the coefficient of friction of the roll surface of the non-driven vertical rolling mill to 0.45 in a rolling mill row consisting of one non-driven vertical rolling mill and driven horizontal rolling mills arranged before and after the non-driven vertical rolling mill.
This is a method for hot rolling steel bars and wire rods characterized by the above.

ここに、上記した非駆動垂直圧延機のロール表面の摩擦
係数を上げる手段としてはそのロール表面をナーリング
加工、シッットブラスト加工等の機械加工や酸洗等によ
る化学処理を施しロール表面の摩擦係数を大きくする方
法や、ロール表面に溶接肉盛を施し凹凸を形成する方法
などによってロール表面の摩擦係数を大きくする方法な
どが挙げられる。
Here, as a means of increasing the friction coefficient of the roll surface of the above-mentioned non-driven vertical rolling mill, the roll surface is subjected to mechanical processing such as knurling processing or shit blasting processing, or chemical treatment such as pickling, to increase the friction coefficient of the roll surface. Examples include a method of increasing the coefficient of friction on the roll surface by applying weld overlay to the roll surface to form irregularities.

かくして、本発明によれば非駆動垂直ロールの表面摩擦
係数を増大させることにより、材料の噛込み不良を防止
するとともに、材料の噛込み角を大きくすることによっ
て、非駆動垂直圧延機による減面率も大きくなり、駆動
水平圧延機による断面減少率と同等またはそれ以上の減
面減少率を得ることができる。
Thus, according to the present invention, by increasing the surface friction coefficient of the non-driven vertical roll, defective biting of the material is prevented, and by increasing the biting angle of the material, area reduction caused by the non-driving vertical rolling mill is prevented. The area reduction rate also increases, and it is possible to obtain an area reduction rate that is equal to or greater than the area reduction rate obtained by a driven horizontal rolling mill.

ところで、従来は摩擦係数のことは一般にほとんど考慮
しなかったが、本発明によれば圧延用ロールの管理指標
として摩擦係数μを採用し、常にμ≧0.45に調整し
ているため、圧延トラブルも発生せず常に安定した圧延
が可能となる。
By the way, in the past, the friction coefficient was generally not considered much, but according to the present invention, the friction coefficient μ is adopted as a management index for rolling rolls, and it is always adjusted to μ≧0.45, so that the rolling Stable rolling is always possible without any trouble.

したがって、本発明は、別の面からは、−基の非駆動垂
直圧延機の前後に駆動水平圧延機を配置して組となした
圧延機列を、一組以上含む棒鋼、線材の連続熱間圧延方
法において、非駆動垂直圧延機のロール表面の摩擦係数
を0.45以上に維持しながら熱間圧延を継続すること
を特徴とする棒鋼および線材の熱間圧延方法と云うこと
ができる。
Therefore, from another aspect, the present invention provides continuous heating of steel bars and wire rods, including one or more rolling mill rows in which driven horizontal rolling mills are arranged before and after a non-driven vertical rolling mill. This hot rolling method for steel bars and wire rods is characterized in that hot rolling is continued while maintaining the friction coefficient of the roll surface of a non-driven vertical rolling mill at 0.45 or more.

(作用) 次に、添付図面を参照しながら本発明をさらに具体的に
説明する。
(Operation) Next, the present invention will be described in more detail with reference to the accompanying drawings.

第1図は本発明を実施するための実験用モデル圧延機の
概念説明図である。
FIG. 1 is a conceptual explanatory diagram of an experimental model rolling mill for carrying out the present invention.

Hl、IIsは駆動水平圧延機、ν2は非駆動垂直圧延
機で11は水平ロール、12は垂直ロールである。
Hl and IIs are driven horizontal rolling mills, ν2 is a non-driven vertical rolling mill, 11 is a horizontal roll, and 12 is a vertical roll.

第2図は本発明法による連続圧延機を棒鋼工場に配置し
た略式平面図である0本発明で用いる連続圧延機10は
駆動水平圧延機1.3.5.7および非駆動垂直圧延機
2.4.6から構成され、符号20は圧延材、30は中
間列タンデム圧延機をそれぞれ示す。
FIG. 2 is a schematic plan view of a continuous rolling mill according to the present invention arranged in a steel bar factory.The continuous rolling mill 10 used in the present invention is a driven horizontal rolling mill 1.3.5.7 and a non-driven vertical rolling mill 2. .4.6, the reference numeral 20 indicates a rolled material, and 30 indicates an intermediate row tandem rolling mill.

加熱炉で所要温度に加熱された圧延材20は、駆動水平
圧延機l、3.5.7および非駆動垂直圧延機2.4.
6から成る圧延機群により熱間圧延が行われる。その場
合、非駆動垂直ロールの摩擦係数は0.45以上に調整
されるため、非駆動垂直圧延機2.4.6にあっても十
分な減面率を確保でき、材質も改善され、非駆動垂直圧
延機を組込んだ圧延機本来の特性が活かされる。摩擦係
数を0.45以上に調整するのは少なくとも1の非駆動
垂直圧延ロールであればその効果はみられる。好ましく
はすべてのものについて摩擦係数を調整する。
The rolled material 20 heated to the required temperature in the heating furnace is passed through a driven horizontal rolling mill 1, 3.5.7 and a non-driven vertical rolling mill 2.4.
Hot rolling is performed by a rolling mill group consisting of 6 rolling mills. In that case, the friction coefficient of the non-driven vertical rolls is adjusted to 0.45 or more, so even in the non-driven vertical rolling mill 2.4.6, a sufficient area reduction rate can be ensured, the material quality is improved, and the The inherent characteristics of a rolling mill incorporating a driven vertical rolling mill are utilized. The effect can be seen if at least one non-driven vertical rolling roll is used to adjust the friction coefficient to 0.45 or more. Preferably all the friction coefficients are adjusted.

なお、中間列タンデム圧延機は、上記粗圧延機で圧延さ
れた材料を、さらに製品に近い形状にまで減面・延伸す
る作用を行う。
Note that the intermediate row tandem rolling mill functions to reduce the area and stretch the material rolled by the rough rolling mill to a shape that is closer to the product.

本発明者等は、第1図に示す駆動水平圧延機2基とその
間に非駆動垂直圧延機1基を互に接近して配置させたモ
デル圧延機を用いて数々の条件下で熱間での圧延実験行
った結果以下の知見を得た。
The present inventors used a model rolling mill in which two driven horizontal rolling mills and one non-driven vertical rolling mill were arranged close to each other as shown in Fig. 1 to conduct hot rolling under various conditions. As a result of conducting rolling experiments, the following findings were obtained.

実験条件は、圧延材寸法96wm X 96m−角、水
平ロー/l/(Hl)径250mm φ、垂直o −/
l/ (Vt)径250mm p、水平ロール(H9)
と垂直ロール(Vオ)のロール軸心間圧!(Ll)は3
50m5 、水平ロール(Hl)出側厚80Ill+で
あった。
The experimental conditions were: rolled material dimensions 96wm x 96m-square, horizontal row/l/(Hl) diameter 250mmφ, vertical o-/
l/ (Vt) diameter 250mm p, horizontal roll (H9)
and the pressure between the roll axes of the vertical roll (Vo)! (Ll) is 3
The horizontal roll (Hl) exit side thickness was 80Ill+.

(1)非駆動垂直ロール表面の摩擦係数μを3種類に設
定したブライドロール(摩擦係数0.4) 、シッット
加工ロール(摩擦係数0.5)、ナーリング加工ロール
(摩擦係数0.65)であった、それぞれのロールを用
いた非駆動垂直ロールにおける圧下限界(噛込み限界)
を調べた結果、第3図に示すように摩擦係数μが大きく
なるに従い噛込み不良は発生しにくくなり、非駆動ロー
ル圧下限界は大きくなることが判った。
(1) Three types of friction coefficient μ on the surface of the non-driven vertical roll are set: bride roll (friction coefficient 0.4), sit processing roll (friction coefficient 0.5), and knurling processing roll (friction coefficient 0.65). The rolling reduction limit (biting limit) of the non-driven vertical roll using each roll.
As a result of the investigation, it was found that as the friction coefficient μ increases, as shown in FIG. 3, the occurrence of poor biting becomes less likely, and the rolling limit of the non-driven roll increases.

(2) +11の実験結果にもとすいて非駆動垂直ロー
ルの表面摩擦係数μと材料の非駆動垂直ロールへの噛込
み角θとの関係を示したのが第4図であるが、同図から
も摩擦係数μが大きくなるにつれて限界噛込み角が大き
くなり、噛込み不良が発生しにくくなることが判る。な
お、第4図中の一点鎖線で示す曲線はθ=jan”μで
表わされる関係であり、第5図に示すように非駆動垂直
ロールへの材料を押込む場合に理論的に得られる摩擦係
゛数ど墳込み角θの関係に他ならない、ロール摩擦係数
μのとき圧延材の噛込み条件はμPcosθ>Psin
θであるから、μ> tan θまたはθ< tan″
1μとなる。ここに、Pは面圧力である。
(2) Based on the experimental results of It can also be seen from the figure that as the friction coefficient μ increases, the critical engagement angle increases, making it difficult for defective engagement to occur. The curve shown by the dashed line in Fig. 4 is the relationship expressed by θ = jan''μ, and as shown in Fig. 5, it is the friction that can be theoretically obtained when pushing the material into the non-driven vertical roll. The relationship between the coefficient and the embedding angle θ is the following: When the roll friction coefficient μ is, the condition for biting of the rolled material is μPcosθ>Psin
Since θ, μ> tan θ or θ< tan″
It becomes 1μ. Here, P is the surface pressure.

なお、特開昭61−165201号公報において、非駆
動垂直圧延機のロール表面の摩擦係数を小さくすること
により、該非駆動垂直圧延機における断面減少率を大き
くすることが可能となる旨の開示が有る。すなわち、非
駆動垂直圧延機のロール表面摩擦係数が小さいほど、材
料の押込み圧延に要する押込み力が減少し、それによっ
て非駆動垂直ロールにおける圧下量が大きくとれると言
うものである。
In addition, JP-A-61-165201 discloses that by reducing the friction coefficient of the roll surface of a non-driven vertical rolling mill, it is possible to increase the area reduction rate in the non-driven vertical rolling mill. Yes. In other words, the smaller the roll surface friction coefficient of the non-driven vertical rolling mill, the lower the pushing force required for indentation rolling of the material, and the greater the reduction amount in the non-driven vertical rolls.

そこで、本発明者等は前記モデル圧延機による熱間鋼の
圧延実験を行った結果、第6図に示すような非駆動垂直
ロールの表面の摩擦係数μと駆動水平圧延機と非駆動垂
直圧延機間の圧縮力(押込み力)、および非駆動垂直ロ
ール圧延荷重の関係を得た0図には実験値の他に0ro
vanの一般理論より導いた計算式による計算値も一点
鎖線で併記しである。同図から駆動水平圧延機と非駆動
垂直圧延機間の圧縮力すなわち非駆動垂直ロールに対す
る押込み力は摩擦係数を小さくすることで若干の低減が
見られるが、この押込み力の低減による非駆動垂直ロー
ルにおける断面減少率の増加効果はご(僅かと判断する
のが妥当であり、むしろ本発明者等が得た前述の第3図
および第4図の関係に示す通り、摩擦係数μを小さくす
ることは噛込み性の観点から言って極めて不利な条件を
作り出すことになると判断される。
Therefore, as a result of conducting a hot steel rolling experiment using the model rolling mill, the present inventors found that the friction coefficient μ of the surface of a non-driven vertical roll and the difference between a driven horizontal rolling mill and a non-driven vertical rolling mill are shown in FIG. In addition to the experimental values, the 0ro diagram shows the relationship between the compressive force (pushing force) between machines and the non-driven vertical roll rolling load.
Values calculated using the calculation formula derived from Van's general theory are also shown in dashed lines. From the same figure, it can be seen that the compressive force between the driven horizontal rolling mill and the non-driven vertical rolling mill, that is, the pushing force against the non-driven vertical rolls, is slightly reduced by reducing the friction coefficient. It is reasonable to judge that the effect of increasing the cross-sectional reduction rate in the roll is small (it is reasonable to judge that it is small, but rather, as shown in the relationships in Figures 3 and 4 above obtained by the present inventors, it is necessary to reduce the coefficient of friction μ) It is judged that this will create extremely disadvantageous conditions from the viewpoint of biting property.

一方、噛込み性をよくする別の方法として、非駆動垂直
ロール径を大きくし噛込み角θを小さくする方法が考え
られるが、垂直ロール径を大きくしていくに従って、水
平圧延機と垂直圧延機のロール軸心間距離を大きくせざ
るを得なくなり、材料の座屈を招くほか、圧延機全体が
小型化できな(なり設備費の増加につながり不利である
On the other hand, another method to improve the biting property is to increase the diameter of the non-driven vertical rolls and reduce the biting angle θ, but as the diameter of the vertical rolls increases, It is necessary to increase the distance between the roll axes of the machine, which causes buckling of the material, and also makes it impossible to downsize the entire rolling mill (which is disadvantageous as it increases equipment costs).

本発明によれば、1基の非駆動垂直圧延の前後に駆動水
平圧延機を配置して組となした圧延機列を使用すること
により、圧延機全体を小型化できるとともに、非駆動垂
直圧延機のロール表面を摩擦係数0.45以上とするこ
とによって材料の噛込み性を向上させ、更に減面率を大
きくして圧延効率の向上を計ることができるのである。
According to the present invention, by using a rolling mill row in which driving horizontal rolling mills are arranged before and after a single non-driven vertical rolling mill, the entire rolling mill can be downsized, and the rolling mill can be reduced in size. By making the roll surface of the machine have a coefficient of friction of 0.45 or more, it is possible to improve the material biting property, and further increase the area reduction rate to improve rolling efficiency.

次に、非駆動垂直圧延機(V、)のロール表面の摩擦係
数を0.45以上とした限定理由について述べる。
Next, the reason for limiting the friction coefficient of the roll surface of the non-driven vertical rolling mill (V) to 0.45 or more will be described.

限定理由は、本発明者等の研究、実験結果によるもので
ある。
The reason for the limitation is based on the research and experimental results of the present inventors.

第1図に示したモデル圧延機で行った熱間鋼の圧延実験
結果を、縦軸に非駆動垂直圧延機ロールにおける材料減
面率rwと駆動水平圧延機ロールにおける材料減面率r
Hとの比rv/7*をとり、横軸に非駆動垂直圧延機の
垂直ロールにおける材料と該ロールの間の摩擦係数μを
とり、グラフにまとめ第7図に示す。
The results of a hot steel rolling experiment conducted in the model rolling mill shown in Figure 1 are plotted on the vertical axis, the material area reduction rate rw in the non-driven vertical rolling mill rolls and the material area reduction rate r in the driven horizontal rolling mill rolls.
The ratio rv/7* to H is taken, and the friction coefficient μ between the material and the vertical roll of a non-driven vertical rolling mill is taken on the horizontal axis, and the results are summarized in a graph and shown in FIG.

図中の実線で示す曲線は実験値から求めた圧延材料の非
駆動垂直圧延機の垂直ロールへの噛込み限界線である。
The curve shown by the solid line in the figure is the limit line of the biting of the rolled material into the vertical rolls of the non-driven vertical rolling mill, determined from experimental values.

第7図より判るようにブライドロールのようにロールの
機械加工後表面摩擦係数を高める処理あるいは加工を施
さない場合の熱間圧延時のロールと圧延材間の摩擦係数
μは一般に0.35以上0.45未満であり、このよう
な場合の噛込み不良をおこさせない範囲での非駆動垂直
圧延ロールの圧延減面率と駆動水平圧延ロールの圧延材
減面率の比γw/T、Iはせいぜい0.83未満となる
As can be seen from Figure 7, the friction coefficient μ between the roll and the rolled material during hot rolling is generally 0.35 or more when the roll is not processed or processed to increase the surface friction coefficient after machining, such as a bride roll. The ratio γw/T,I of the rolling area reduction rate of the non-driven vertical rolling roll and the rolling material reduction rate of the driven horizontal rolling roll is less than 0.45 and within a range that does not cause a biting defect in such a case. At most, it will be less than 0.83.

一方、非駆動垂直圧延機のロール表面にショツトブラス
ト加工やナーリング加工等のロール表面摩擦係数を高め
る処理加工を施し、ロール表面の摩擦係数を0.45以
上にすれば噛込み不良をおこさせない範囲で非駆動垂直
圧延機ロールでの圧延材料減面率γVを駆動水平圧延機
ロールでの圧延材料減面率TIIの83%以上にとるこ
とが可能となる。
On the other hand, if the roll surface of a non-driven vertical rolling mill is processed to increase the friction coefficient of the roll surface, such as shot blasting or knurling, and the friction coefficient of the roll surface is set to 0.45 or more, it is within the range that does not cause defective biting. This makes it possible to set the area reduction rate γV of the rolled material on the non-driven vertical rolling mill rolls to 83% or more of the area reduction rate TII of the rolled material on the driven horizontal rolling mill rolls.

さらに摩擦係数μが大きくなればなるほどγV/γ9の
限界値は大きくなることが確認された。従って、以上の
結果より、本発明にあっては非駆動垂直圧延機のロール
表面の摩擦係数を0.45以上に限定した。好ましくは
摩擦係数は0.5以上であって、いずれの非駆動垂直圧
延ロールについてもその表面摩擦係数をそのように調整
する。
Furthermore, it was confirmed that the larger the friction coefficient μ becomes, the larger the limit value of γV/γ9 becomes. Therefore, based on the above results, in the present invention, the friction coefficient of the roll surface of the non-driven vertical rolling mill is limited to 0.45 or more. Preferably, the coefficient of friction is greater than or equal to 0.5, and the surface friction coefficient of any non-driven vertical mill rolls is adjusted accordingly.

次に、実施例を示す。Next, examples will be shown.

実施例 第2図に示すような駆動水平圧延機4スタンド(l、3
.5.7)と非駆動垂直圧延機3スタンド(2,4,6
)とを交互に配置した7スタンドからなる連続圧延機1
0に本発明を通用し、下流側に全スタンド駆動の中間列
タンデムミル30を配置して棒鋼圧延を実施した。連続
圧延機1oの概要は次の通りであった。
Embodiment A drive horizontal rolling mill with four stands (l, 3) as shown in FIG.
.. 5.7) and non-driven vertical rolling mill 3 stands (2, 4, 6
) Continuous rolling mill 1 consisting of 7 stands arranged alternately.
The present invention was applied to No. 0, and an intermediate row tandem mill 30 with all stands driven was disposed on the downstream side to carry out steel bar rolling. The outline of the continuous rolling mill 1o was as follows.

スタンド数= 7スタンド 第1、第3、第5、第7スタンド:駆動水平圧延機第2
.第4、第6スタンド :非駆動垂直圧延機ワークロー
ル軸心開路1llL! : 0.h連続圧延機会長: 
5.4m 水平、垂直ワークロール外径Di : 550m5+ビ
レフト (素材) : 18(ls+sX180m−角
棒鋼(成品) : 755mX75■−角ロール表面状
況: 水平ワークロール、垂直ワークロールともナーリ
ング 機械加工(ナンバー20仕上げ) パススケジュールは第1表に示した。
Number of stands = 7 stands 1st, 3rd, 5th, 7th stands: drive horizontal rolling machine 2nd
.. 4th and 6th stands: Non-driven vertical rolling mill work roll axis open circuit 1llL! : 0. h Continuous rolling mill length:
5.4m Horizontal and vertical work roll outer diameter Di: 550m5+beleft (material): 18 (ls+s Finishing) The pass schedule is shown in Table 1.

第1表より判る如く、本発明法、すなわち、ロール表面
を駆動水平圧延機ロール、非駆動垂直圧延機ロールとも
にロール表面をナーリング機械加工して、摩擦係数を0
.65と大きくして圧延を行った結果、圧延トラブルも
なく、非駆動垂直圧延機での減面率は駆動水平圧延機の
減面率の90〜98%と効率の良い圧延スケジュールの
優れた効率を得るとかできた。
As can be seen from Table 1, the method of the present invention involves knurling-machining the roll surfaces of both the driven horizontal rolling mill roll and the non-driven vertical rolling mill roll to reduce the coefficient of friction to 0.
.. As a result of rolling with a larger size of 65, there was no rolling trouble, and the area reduction rate in the non-drive vertical rolling mill was 90 to 98% of the area reduction rate in the driven horizontal rolling mill, resulting in an excellent and efficient rolling schedule. I was able to get it.

比較例として、本発明を通用しない場合、すなわち同一
連続圧延機10において各非駆動垂直圧延機のロール表
面のみブライト (切削加工まま)仕上として棒鋼の圧
延を第1表に示すパススケジュールで行った。このとき
の各非駆動垂直圧延機のロール表面摩擦係数は0.40
であった。結果は非駆動垂直圧延機への圧延材先端部噛
込み時の上流側水平圧延機での材料のスリップおよび駆
動水平圧延機と非駆動垂直圧延機との間での材料の座屈
を招き、連続圧延が不可能であった。
As a comparative example, a steel bar was rolled according to the pass schedule shown in Table 1 in a case where the present invention was not applicable, that is, in the same continuous rolling mill 10, only the roll surface of each non-driven vertical rolling mill was given a bright (as-cut) finish. . At this time, the roll surface friction coefficient of each non-driven vertical rolling mill was 0.40.
Met. The result is slippage of the material in the upstream horizontal rolling mill when the tip of the rolled material gets caught in the non-driven vertical rolling mill, and buckling of the material between the driven horizontal rolling mill and the non-driven vertical rolling mill. Continuous rolling was impossible.

そこで、上記のような圧延トラブルを生じさせずに連続
圧延が可能となるように非駆動垂直圧延機の各スタンド
のロール開度を調整したところ第2表に示すパススケジ
ュールとなった。
Therefore, the roll opening degree of each stand of the non-driven vertical rolling mill was adjusted to enable continuous rolling without causing the above-mentioned rolling troubles, resulting in the pass schedule shown in Table 2.

第2表から判るように非駆動垂直圧延機における減面率
は駆動水平圧延機の減面率の83%を大きく下回ってお
り、本発明を実施した場合の90%以上に比べて圧延効
率の極めて悪いスケジュールとなった。
As can be seen from Table 2, the area reduction rate in the non-driven vertical rolling mill is much lower than 83% of the area reduction rate in the driven horizontal rolling mill, and the rolling efficiency is much lower than 90% when the present invention is implemented. It was a very bad schedule.

本発明は上記実施例の如く、圧延開始前の新品ロールに
対して適用できるのみでなく、連続圧延を相当量行った
後の中古ロールに対しても適用しても効果が大である。
The present invention is not only applicable to new rolls before the start of rolling as in the above embodiments, but also has great effects when applied to used rolls that have been subjected to a considerable amount of continuous rolling.

すなわち、熱間鋼の連続圧延を長時間行うとロール表面
は摩耗し、新品時のナーリング加工も次第に摩滅し効果
を失うのが常であり、この場合に、使用中途で垂直ロー
ル表面に肉盛溶接を行い凹凸を付与する等の摩擦係数を
高める処置を施すとよい、すなわち、圧延ロールの管理
指標として摩擦係数を用い、それを0.45以上に維持
しながら圧延操業を行うのである。
In other words, when hot steel is continuously rolled for a long time, the roll surface wears out, and the knurling process when new is gradually worn out and loses its effectiveness. It is advisable to take measures to increase the friction coefficient, such as welding and providing unevenness. In other words, the friction coefficient is used as a control index for the rolling rolls, and rolling operations are carried out while maintaining it at 0.45 or higher.

第1表 第2表 (発明の効果) 本発明によれば、垂直圧延機が非駆動型であるので設備
全体が小型化し、費用も低減し、しかも駆動型の場合と
実質的に同等の圧下パターンが実現でき、かつ非駆動ロ
ールゆえの圧延トラブルも生じなくなる。
Table 1 Table 2 (Effects of the Invention) According to the present invention, since the vertical rolling mill is a non-drive type, the entire equipment can be downsized and costs can be reduced, and the rolling reduction is substantially the same as in the case of a drive type. A pattern can be realized, and rolling troubles due to non-driven rolls will not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施するためのモデル圧延機の概念
説明図; 第2図は、本発明方法を適用する連続圧延機を棒鋼工場
に配置したときの圧延ラインの平面説明図; 第3図および第4図は、駆動水平圧延機と非駆動垂直圧
延機とを組合せて行ったモデル圧延実験の結果をまとめ
て示すグラフ; 第5図は、非駆動垂直圧延機の噛込み限界の説明図; 第6図は、駆動水平圧延機と非駆動垂直圧延機との組合
せモデル圧延実験の結果と理論曲線とを示すグラフ;お
よび 第7図は、非駆動垂直圧延機における材料減面率と駆動
水平圧延機における材料の減面率との比と摩擦係数μと
の関係を示すグラフである。 1、3.5.7 :  駆動水平圧延機2、4.6 :
  駆動垂直圧延機 lO二  連続圧延機 20:  圧延材 30:  中間列タンデムミル 11 j  水平ロール 12:  垂直ロール H+、Hs :  駆動水平圧延機 v8:  非駆動垂直圧延機 Ll:  駆動水平圧延機ロール軸心と非駆動垂直圧延
機ロール軸心間距離
Fig. 1 is a conceptual explanatory diagram of a model rolling mill for implementing the present invention; Fig. 2 is a plan explanatory diagram of a rolling line when a continuous rolling mill to which the method of the present invention is applied is arranged in a steel bar factory; Figures 3 and 4 are graphs summarizing the results of model rolling experiments conducted using a combination of a driven horizontal rolling mill and a non-driven vertical rolling mill; Figure 5 is a graph showing the bite limit of the non-driven vertical rolling mill. Explanatory diagram; FIG. 6 is a graph showing the results and theoretical curves of a combined model rolling experiment of a driven horizontal rolling mill and a non-driven vertical rolling mill; and FIG. 7 is a graph showing the material area reduction rate in the non-driven vertical rolling mill. It is a graph showing the relationship between the ratio of the area reduction rate of the material in the drive horizontal rolling mill and the friction coefficient μ. 1, 3.5.7: Drive horizontal rolling mill 2, 4.6:
Drive vertical rolling mill lO2 Continuous rolling mill 20: Rolling material 30: Intermediate row tandem mill 11 j Horizontal roll 12: Vertical rolls H+, Hs: Drive horizontal rolling mill v8: Non-drive vertical rolling mill Ll: Drive horizontal rolling mill roll shaft Distance between center and non-driven vertical rolling mill roll axis

Claims (1)

【特許請求の範囲】[Claims] 一基の非駆動垂直圧延機の前後に駆動水平圧延機を配置
して組となした圧延機列を、一組以上含む棒鋼、線材の
連続熱間圧延方法において、非駆動垂直圧延機のロール
表面の摩擦係数を0.45以上にすることを特徴とする
棒鋼および線材の熱間圧延方法。
In a method for continuous hot rolling of steel bars and wire rods, which includes one or more sets of rolling mill rows with drive horizontal rolling mills arranged before and after a non-drive vertical rolling mill, the rolls of the non-drive vertical rolling mill are A method for hot rolling steel bars and wire rods, characterized by making the surface friction coefficient 0.45 or more.
JP17679488A 1988-07-15 1988-07-15 Method for hot rolling steel bar and wire stock Pending JPH0230303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17679488A JPH0230303A (en) 1988-07-15 1988-07-15 Method for hot rolling steel bar and wire stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17679488A JPH0230303A (en) 1988-07-15 1988-07-15 Method for hot rolling steel bar and wire stock

Publications (1)

Publication Number Publication Date
JPH0230303A true JPH0230303A (en) 1990-01-31

Family

ID=16019959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17679488A Pending JPH0230303A (en) 1988-07-15 1988-07-15 Method for hot rolling steel bar and wire stock

Country Status (1)

Country Link
JP (1) JPH0230303A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111166A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
JP2008111165A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
CN110773575A (en) * 2019-11-01 2020-02-11 广东韶钢松山股份有限公司 Control method for surface defects of wire rod
CN112203781A (en) * 2018-04-06 2021-01-08 纽科尔公司 High friction rolling of thin metal strip

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111166A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
JP2008111165A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
CN112203781A (en) * 2018-04-06 2021-01-08 纽科尔公司 High friction rolling of thin metal strip
CN112203781B (en) * 2018-04-06 2023-10-31 纽科尔公司 High friction rolling of thin metal strips
CN110773575A (en) * 2019-11-01 2020-02-11 广东韶钢松山股份有限公司 Control method for surface defects of wire rod
CN110773575B (en) * 2019-11-01 2021-08-13 广东韶钢松山股份有限公司 Control method for surface defects of wire rod

Similar Documents

Publication Publication Date Title
EP0195385B1 (en) Method and apparatus for manufacturing cold-rolled steel strip
CA2139522C (en) Continuous method for producing final gauge stainless steel product
JPH0230303A (en) Method for hot rolling steel bar and wire stock
JP3573177B2 (en) Method and apparatus for hot rolling wire
WO2002068136A1 (en) Improved aluminium foil rolling method
JP2639001B2 (en) Rolling equipment
JP2722926B2 (en) Method and apparatus for manufacturing welded pipe
JP3605971B2 (en) Diameter reduction method for SUS303 wire rod
JPS63168202A (en) Method and device for producing fine wire rod
JP5087759B2 (en) Manufacturing method of hot rolled stainless steel strip for continuous annealing pickling line
JPH0646570Y2 (en) Equipment for changing the traveling direction of strips
JPH1099902A (en) Method for rolling fine wire rod and apparatus for rolling fine wire rod
JP4724982B2 (en) Roll gap control method and apparatus for rolling roll
JP3351893B2 (en) Wire rod rolling method
JP4172084B2 (en) Manufacturing method of hot-rolled steel sheet by sheet thickness press
JP2000254704A (en) Method and device for producing hot-rolled steel sheet with plate thickness press
JP3443286B2 (en) Pickling equipment
JPH01258802A (en) Method for hot finish rolling
JPS6117327A (en) Method and device for tension generation of strip
JPH07328715A (en) Manufacture of square steel pipe
JP2000190013A (en) Tension bridle equipment
JPH0247282B2 (en)
JPH01205802A (en) Method for rolling to press weld internal defect of continuously cast stock
JPS63177904A (en) Continuous hot finish rolling equipment
JPH09150201A (en) Continuous sheet processing facility