JPH0120549B2 - - Google Patents

Info

Publication number
JPH0120549B2
JPH0120549B2 JP56041525A JP4152581A JPH0120549B2 JP H0120549 B2 JPH0120549 B2 JP H0120549B2 JP 56041525 A JP56041525 A JP 56041525A JP 4152581 A JP4152581 A JP 4152581A JP H0120549 B2 JPH0120549 B2 JP H0120549B2
Authority
JP
Japan
Prior art keywords
region
electrode
field
guard
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56041525A
Other languages
Japanese (ja)
Other versions
JPS57155773A (en
Inventor
Tadahiko Tanaka
Norihiro Shigeta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4152581A priority Critical patent/JPS57155773A/en
Publication of JPS57155773A publication Critical patent/JPS57155773A/en
Publication of JPH0120549B2 publication Critical patent/JPH0120549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は高耐圧プレーナートランジスタの改良
に関する。従来の高耐圧プレーナートランジスタ
を第1図に示す。1はN+型のコレクタコンタク
ト領域、2はN型のコレクタ領域、3はP型のベ
ース領域、4はN+型のエミツタ領域、5はシリ
コン酸化膜であり、6はベース領域3を囲むP型
のガード領域、7はN+型のアニユラー領域、8
はコレクタ電極、9はベース電極、10はエミツ
タ電極、11はアニユラー領域7にオーミツク接
触し内側に拡がるシールド電極である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in high voltage planar transistors. A conventional high voltage planar transistor is shown in FIG. 1 is an N + type collector contact region, 2 is an N type collector region, 3 is a P type base region, 4 is an N + type emitter region, 5 is a silicon oxide film, and 6 surrounds the base region 3. P-type guard region, 7 is N + type annular region, 8
1 is a collector electrode, 9 is a base electrode, 10 is an emitter electrode, and 11 is a shield electrode that is in ohmic contact with the annular region 7 and extends inward.

斯るプレーナートランジスタではガード領域6
によりコレクタ接合が逆バイアスされたときに空
乏層が拡がり易いので高耐圧を得ることは良く知
られている。しかしながら斯るプレーナートラン
ジスタでも特に外側のガード領域6での空乏層が
十分に拡がらない場合があり表面電界降伏により
十分に高耐圧を得られないときがある。
In such a planar transistor, the guard region 6
It is well known that when the collector junction is reverse biased, the depletion layer expands easily, resulting in a high breakdown voltage. However, even in such a planar transistor, the depletion layer especially in the outer guard region 6 may not expand sufficiently, and a sufficiently high breakdown voltage may not be obtained due to surface electric field breakdown.

本発明は斯点に鑑みてなされ、従来の欠点を完
全に除去した高耐圧プレーナートランジスタを提
供するものであり、以下に第2図乃至第4図を参
照して本発明の一実施例を詳述する。
The present invention has been made in view of the above, and provides a high breakdown voltage planar transistor that completely eliminates the drawbacks of the conventional ones.One embodiment of the present invention will be described in detail below with reference to FIGS. 2 to 4. Describe.

本発明に依る高耐圧プレーナートランジスタは
第2図の如く、N+型のコレクタコンタクト領域
20、N型エピタキシヤル層より成るコレクタ領
域21、P型のベース領域22、N+型のエミツ
タ領域23、ベース領域22を囲みベース領域2
2から一定の間隔で離間された複数本のP型ガー
ド領域24、コレクタ領域21端部に設けられた
N+型のアニユラー領域25、夫々の領域にオー
ミツク接触したコレクタ電極26ベース電極27
およびエミツタ電極28、ガード領域24にオー
ミツク接触しコレクタ領域21上のシリコン酸化
膜29をベース領域22の反対側に延在させたフ
イールド電極30、アニユラー領域25にオーミ
ツク接触し酸化膜29上を内側に延在させたシー
ルド電極31、少くともフイールド電極30を被
覆する付着絶縁膜32より構成される。
As shown in FIG. 2, the high breakdown voltage planar transistor according to the present invention includes an N + type collector contact region 20, a collector region 21 made of an N type epitaxial layer, a P type base region 22, an N + type emitter region 23, Base area 2 surrounding base area 22
2, a plurality of P-type guard regions 24 are provided at the end of the collector region 21 at regular intervals.
N + type annular region 25, collector electrode 26 in ohmic contact with each region, base electrode 27
and an emitter electrode 28, a field electrode 30 which is in ohmic contact with the guard region 24 and extends the silicon oxide film 29 on the collector region 21 to the opposite side of the base region 22, and a field electrode 30 which is in ohmic contact with the annular region 25 and has the oxide film 29 on the inside. It is composed of a shield electrode 31 extending over the area and an attached insulating film 32 covering at least the field electrode 30.

本発明の特徴はフイールド電極30と付着絶縁
膜32にある。即ち夫々のガード領域24,24
にオーミツク接触したフイールド電極30,30
はベース領域22と反対側に夫々のガード領域2
4,24のPN接合を越えて酸化膜29上に延在
させ、斯る隣接したフイールド電極30,30を
絶縁するためにプラズマCVD法で形成したシリ
コン窒化膜の付着絶縁物32でフイールド電極3
0,30および必要であればベース電極27エミ
ツタ電極28を被覆する。
The feature of the present invention lies in the field electrode 30 and the attached insulating film 32. That is, the respective guard regions 24, 24
Field electrodes 30, 30 in ohmic contact with
has a respective guard region 2 on the opposite side to the base region 22.
The field electrode 3 is formed by an attached insulator 32 of a silicon nitride film formed by plasma CVD to extend over the oxide film 29 beyond the PN junctions 4 and 24 and insulate the adjacent field electrodes 30 and 30.
0, 30 and, if necessary, the base electrode 27 and the emitter electrode 28.

第1図および第2図に示す従来および本発明の
トランジスタではベース領域22と内外のガード
領域24,24の間隔を約20μに設定すると、こ
の20μの間隔で約300vの耐圧を確保できる。一方
第4図に示すシリコン酸化膜上に設けた電極の間
隔Lと放電電圧Vの関係を示すグラフに依れば、
電極を露出した場合特性Bとなり、約6000Åのプ
ラズマCVD法によるシリコン窒化膜で電極を被
覆した場合特性Aとなる。
In the conventional and inventive transistors shown in FIGS. 1 and 2, if the spacing between the base region 22 and the inner and outer guard regions 24, 24 is set to about 20 μ, a breakdown voltage of about 300 V can be secured with this 20 μ spacing. On the other hand, according to the graph shown in FIG. 4 showing the relationship between the distance L between the electrodes provided on the silicon oxide film and the discharge voltage V,
When the electrode is exposed, characteristic B is obtained, and when the electrode is covered with a silicon nitride film of about 6000 Å by plasma CVD method, characteristic A is obtained.

そこで本発明の如くガード領域24にフイール
ド電極30を形成すると、フイールド電極30,
30の間隔は高々30μ程度しか確保できない。斯
る30μのフイールド電極30,30の間隔では第
4図特性Bから放電電圧は約240vであり、明ら
かにガード領域24自体にかかる耐圧より低いの
でフイールド電極30,30で放電し従来より耐
圧が低下する結果となる。しかし本発明の特徴と
する付着絶縁膜32でフイールド電極を被覆する
と第4図特性Aから放電電圧は約620vに向上で
き、明らかにガード領域24自体にかかる耐圧以
上になる。この結果フイールド電極30での放電
は完全に防止でき且つフイールド電極30により
ガード領域24のベース領域22と反対側の端部
で発生し易い表面電界集中を除去して空乏層を拡
がり易くする。
Therefore, if the field electrode 30 is formed in the guard region 24 as in the present invention, the field electrode 30,
30 can only secure a spacing of about 30μ at most. With such a spacing of 30μ between the field electrodes 30, 30, the discharge voltage is about 240V from characteristic B in Figure 4, which is clearly lower than the withstand voltage applied to the guard region 24 itself, so the field electrodes 30, 30 discharge and the withstand voltage is higher than before. This results in a decrease. However, if the field electrode is covered with the deposited insulating film 32, which is a feature of the present invention, the discharge voltage can be increased to about 620 V from characteristic A in FIG. 4, which is clearly higher than the withstand voltage applied to the guard region 24 itself. As a result, discharge at the field electrode 30 can be completely prevented, and the surface electric field concentration that tends to occur at the end of the guard region 24 opposite to the base region 22 is removed by the field electrode 30, making it easier to spread the depletion layer.

斯る本発明の構造に依れば、第3図に示す耐圧
特性(VCBO―IC)から明らかな様に従来の構造で
発生していた表面電界降伏による点線で示す傾斜
部分を有するブレークダウン特性が、実線で示す
如く理想的なブレークダウン特性に改善される。
この結果3.6mm角のチツプサイズで第1図の従来
構造ではVCBOが900v以上のチツプの歩留が65%
であつたものが、本発明の構造では85%以上に向
上できた。
According to the structure of the present invention, as is clear from the withstand voltage characteristics (V CBO - I C ) shown in FIG. The breakdown characteristics are improved to ideal breakdown characteristics as shown by the solid line.
As a result, with a chip size of 3.6 mm square and the conventional structure shown in Figure 1, the yield of chips with V CBO of 900 V or more is 65%.
However, the structure of the present invention was able to improve this by more than 85%.

以上詳述した様に本発明に依れば付着絶縁膜3
2を設けることによつてフイールド電極30,3
0間の放電電圧を大巾に向上させることによつて
従来では配置できなかつたフイールド電極30,
30の配置を実現し、表面電界降伏による耐圧不
良を大巾に改善する有益なものである。
As described in detail above, according to the present invention, the deposited insulating film 3
By providing field electrodes 30, 3
By greatly improving the discharge voltage between 0 and 0, the field electrode 30, which could not be arranged conventionally,
This arrangement is advantageous in that it greatly improves breakdown voltage defects due to surface electric field breakdown.

また斯る付着絶縁膜32はトランジスタの表面
保護膜としても機能し、更には多層配線の絶縁膜
としても利用できる。
The attached insulating film 32 also functions as a surface protection film for transistors, and can also be used as an insulating film for multilayer wiring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を説明する断面図、第2図は本
発明を説明する断面図、第3図は本発明による高
耐圧プレーナートランジスタの耐圧特性を説明す
る特性図、第4図はシリコン酸化膜上に設けられ
た電極の間隔と放電電圧の特性を説明する特性図
である。 主な図番の説明 21はコレクタ領域、22は
ベース領域、23はエミツタ領域、24はガード
領域、29は酸化膜、30はフイールド電極、3
2は付着絶縁膜である。
FIG. 1 is a cross-sectional view explaining a conventional example, FIG. 2 is a cross-sectional view explaining the present invention, FIG. 3 is a characteristic diagram explaining the breakdown voltage characteristics of a high voltage planar transistor according to the present invention, and FIG. 4 is a silicon oxide FIG. 2 is a characteristic diagram illustrating the characteristics of the distance between electrodes provided on the film and the discharge voltage. Explanation of main figure numbers 21 is the collector region, 22 is the base region, 23 is the emitter region, 24 is the guard region, 29 is the oxide film, 30 is the field electrode, 3
2 is an attached insulating film.

Claims (1)

【特許請求の範囲】 1 コレクタ領域、ベース領域およびエミツタ領
域を備え該ベース領域を囲み前記コレクタ領域に
複数本のガード領域、該ガード領域を囲み前記コ
レクタ領域にアニユラ領域、該アニユラ領域にオ
ーミツク接触し且つ前記ベース領域の方向へ絶縁
膜上を延在されたシールド電極を設けた高耐圧プ
レーナートランジスタに於いて、 前記ガード領域に夫々オーミツク接触し且つ前
記ベース領域と反対側に前記ガード領域のPN接
合を越えて絶縁膜上を延在されたフイールド電極
を設け、前記フイールド電極を前記フイールド電
極間及び前記フイールド電極と前記シールド電極
との間の放電を防止するプラズマCVDによるシ
リコン窒化膜で覆い、且つ前記シリコン窒化膜は
前記フイールド電極間及び前記フイールド電極と
前記シールド電極との間の前記絶縁膜上をも覆う
ことを特徴とした高耐圧プレーナートランジス
タ。
[Scope of Claims] 1. A collector region, a base region, and an emitter region, a plurality of guard regions surrounding the base region and the collector region, an annular region surrounding the guard region and the collector region, and an ohmic contact with the annular region. In a high voltage planar transistor provided with a shield electrode extending on an insulating film in the direction of the base region, the PN of the guard region is in ohmic contact with each of the guard regions and on the opposite side of the base region. providing a field electrode extending over the insulating film beyond the junction, covering the field electrode with a silicon nitride film formed by plasma CVD to prevent discharge between the field electrodes and between the field electrode and the shield electrode; The silicon nitride film also covers the insulating film between the field electrodes and between the field electrode and the shield electrode.
JP4152581A 1981-03-20 1981-03-20 High pressure-resistant planar transistor Granted JPS57155773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152581A JPS57155773A (en) 1981-03-20 1981-03-20 High pressure-resistant planar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152581A JPS57155773A (en) 1981-03-20 1981-03-20 High pressure-resistant planar transistor

Publications (2)

Publication Number Publication Date
JPS57155773A JPS57155773A (en) 1982-09-25
JPH0120549B2 true JPH0120549B2 (en) 1989-04-17

Family

ID=12610803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152581A Granted JPS57155773A (en) 1981-03-20 1981-03-20 High pressure-resistant planar transistor

Country Status (1)

Country Link
JP (1) JPS57155773A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114434A (en) * 1981-12-28 1983-07-07 Fujitsu Ltd High withstand voltage semiconductor device
JPS60153164A (en) * 1984-01-20 1985-08-12 Nec Corp Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968669A (en) * 1972-11-06 1974-07-03
JPS5269275A (en) * 1975-12-08 1977-06-08 Hitachi Ltd Transistor
JPS5318382A (en) * 1976-08-02 1978-02-20 Rca Corp Method of manufacturing crt screen structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968669A (en) * 1972-11-06 1974-07-03
JPS5269275A (en) * 1975-12-08 1977-06-08 Hitachi Ltd Transistor
JPS5318382A (en) * 1976-08-02 1978-02-20 Rca Corp Method of manufacturing crt screen structure

Also Published As

Publication number Publication date
JPS57155773A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
US6407413B1 (en) Semiconductor device with guard ring and Zener diode layer thereover
CA1175953A (en) Planar structure for high voltage semiconductor devices with gaps in glassy layer over high field regions
JPH0582070B2 (en)
CA1037160A (en) Semiconductor device having at least one pn junction and channel stopper surrounded by a protective conducting layer
US5686750A (en) Power semiconductor device having improved reverse recovery voltage
JPS6410105B2 (en)
GB2137811A (en) High power mosfet with direct connection from connection pads to underlying silicon
JPH05136436A (en) High breakdown-strength semiconductor element
JP2003174169A (en) Semiconductor device
JP3189589B2 (en) Insulated gate type semiconductor device
US5323041A (en) High-breakdown-voltage semiconductor element
JP3590207B2 (en) MOS capacitor
JPH0120549B2 (en)
JP3297087B2 (en) High voltage semiconductor device
JPH08116049A (en) Insulated-gate semiconductor device
JPH05190662A (en) Semiconductor device
JPH0516196B2 (en)
JP2932308B2 (en) Semiconductor device
JP3217484B2 (en) High voltage semiconductor device
US4739387A (en) Amplifying gate thyristor having high gate sensitivity and high dv/dt rating
JPH10135489A (en) Diode
JP2629426B2 (en) Semiconductor device having double diffusion type MISFET and method of manufacturing the same
JP2852557B2 (en) Semiconductor device
JPS6146062A (en) Semiconductor device
JPH0677262U (en) Semiconductor device