JP3189589B2 - Insulated gate type semiconductor device - Google Patents

Insulated gate type semiconductor device

Info

Publication number
JP3189589B2
JP3189589B2 JP22473994A JP22473994A JP3189589B2 JP 3189589 B2 JP3189589 B2 JP 3189589B2 JP 22473994 A JP22473994 A JP 22473994A JP 22473994 A JP22473994 A JP 22473994A JP 3189589 B2 JP3189589 B2 JP 3189589B2
Authority
JP
Japan
Prior art keywords
insulated gate
zener diode
semiconductor device
electrode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22473994A
Other languages
Japanese (ja)
Other versions
JPH0888354A (en
Inventor
安紀 中野
喜輝 清水
恭彦 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22473994A priority Critical patent/JP3189589B2/en
Publication of JPH0888354A publication Critical patent/JPH0888354A/en
Application granted granted Critical
Publication of JP3189589B2 publication Critical patent/JP3189589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は絶縁ゲートバイポーラト
ランジスタ(以下、IGBTと記す)または絶縁ゲート
電界効果トランジスタ(以下、MOSFETと記す)等の絶縁
ゲート型半導体装置に関する。 【0002】 【従来の技術】過電圧保護回路をMOSFETチップ内に内蔵
した半導体装置において、過電圧保護素子をMOSFETと分
離された絶縁膜上に設ける構造は既に特公平5−63949号
公報にて提案されている。図2はその従来例であり、縦
型MOSFETとそれに接続されたゲート保護素子の(a)断
面構造図、(b)等価回路を示す。ここで、1はn型半
導体層、2はMOSFETのゲート絶縁膜、3はフィールド絶
縁膜、4はp型多結晶半導体層であり例えば硼素がドー
プされたものである。5は高濃度不純物をドープしたn
型多結晶半導体層、例えば砒素がドープされたもので、
ソース電極7及び電極17に接続されている。電極17
は絶縁ゲート電極9に接続している。また、10はp型
ベース領域、12はMOSFETのn型ソース領域、14はn
型の半導体基板、13はドレイン電極である。 【0003】以上のように構成された半導体装置の等価
回路は、(b)図に示すように、縦型MOSFETQ2のゲート
・ソース間に、互いに直列に接続された保護ダイオード
31及び32が接続された回路となる。縦型MOSFETQ2
は、ゲート絶縁膜2,n型高濃度不純物のソース領域1
2,p型のベース領域10,多結晶シリコンの絶縁ゲー
ト電極9,半導体基板14(n型高濃度不純物基板)よ
り成っている。ここで、31,32のダイオードはMOSF
ETQ2の絶縁ゲート電極9に過大な外部サージが印加され
ないように動作するものであることから、MOSFETQ2のゲ
ート絶縁膜2の静電破壊防止のために有効なものであ
る。 【0004】また、従来、過電圧保護回路部に過電圧検
知のためのアバランシェダイオードを拡散pウェルによ
り形成したもの(特開平4−332172 号公報)も提案され
ている。 【0005】 【発明が解決しようとする課題】IGBTの適用分野と
して主に、電子レンジやCRTの水平偏向出力回路で用
いられる電圧共振回路があるが、IGBTをこれらの回
路に適用する際にはサージ等の過電圧に対して素子とし
て十分な耐量を確保する必要がある。しかしながら、上
記従来技術(特公平5−63949号公報)にはソース・ドレ
イン間の高耐圧化の保護素子については考慮されておら
ず、IGBTやMOSFETをさらに高耐圧,大電流域で用い
た場合、素子が破壊してしまうという問題がある。 【0006】また、過電圧保護回路部に過電圧検知のた
めのアバランシェダイオードを拡散pウエルにより形成
したもの(特開平4−332172 号公報)については、アバラ
ンシェダイオードの面積がチップ全体の約5%を占める
ことから、IGBTのオン特性に影響を及ぼすという問
題がある。 【0007】本発明は、以上述べた従来技術の問題点を
解決し、高耐圧でかつ信頼性の高い絶縁ゲート型半導体
装置を提供することを目的とする。 【0008】 【課題を解決するための手段】上記の目的を達成するた
めに、本発明の絶縁ゲート型半導体装置では、半導体基
板における電界緩和領域の表面上にツェナーダイオード
を設け、このツェナーダイオードを絶縁ゲート電極とド
レイン電極の間に接続する。 【0009】 【作用】本発明によれば、ソース・ドレイン間にツェナ
ーダイオードの耐圧を超える電圧が加わるとツェナーダ
イオードが降伏し、アバランシェ電流がゲート回路に流
れる。この時のソース・ドレイン間電圧はアバランシェ
時の電圧でクランプされる。このアバランシェ電流がゲ
ート回路のゲート抵抗を流れることによりゲート電位が
上昇し、絶縁ゲートのしきい値電圧以上に達すると、半
導体装置はオン状態となる。すなわち、電流を流すこと
によって半導体装置を過電圧から保護するものである。 【0010】さらに、ツェナーダイオードは電界緩和領
域上に設けるので、ツェナーダイオードに費やす面積ロ
スがなく、半導体装置のオン特性を犠牲にすることがな
い。 【0011】 【実施例】図1は本発明の一実施例を示す。縦型IGB
Tとそれに接続されたゲート保護素子の(a)A−A′
面の断面構造、(b)平面パターンの一部、(c)等価
回路である。ここで1はn型半導体層(例えば比抵抗6
0Ωcm,厚さ60μmのシリコン)、2はIGBTのゲ
ート絶縁膜(SiO2 等、厚さ70nm)、3はターミ
ネーション部のフィールド絶縁膜(SiO2等、厚さ1.
5μm)、4はp型多結晶半導体層(厚さ0.5μm の
ポリシリコン)であり例えばp型不純物であるボロンが
低濃度でドープされたもの、5はn型多結晶半導体層
(厚さ0.5μmのポリシリコン)であり例えばn型不純
物である砒素が高濃度でドープされたものである。p型
多結晶半導体層4およびn型多結晶半導体層5は複数個
直列に接続され、両端部となるn型多結晶半導体層5は
電極8および17に接続されている。この電極8はドレ
イン電極と電気的に同電位であり、電極17はアルミ配
線により絶縁ゲート電極9に接続している。10はp型
ベース領域、12はIGBTのn型ソース領域、11はター
ミネーション部の電界緩和領域(p型半導体シリコン
層)で、いわゆるフィールド・リミティング・リング構
造になっている。13はドレイン電極、14は半導体基
板(p型シリコン基板)である。 【0012】以上のように、本実施例の半導体装置は、
(c)図に示したIBGTQ1と多結晶半導体層からなるツェ
ナーダイオード30から構成され、縦型IGBTQ1のゲート
・ドレイン間にツェナーダイオード30が接続された回
路となる。縦型IGBTQ1は、n型ソース領域12,p型ベ
ース領域10、多結晶シリコンの絶縁ゲート電極9,半
導体基板14より成っている。ツェナーダイオードの構
成はn+ p構造ダイオードの直列接続(例えば40個直
列)より成っており、IGBTチップ周辺のターミネー
ション部のフィールド絶縁膜3(酸化膜)上にリング状
に形成する。 【0013】本実施例において、電圧共振回路における
フライバック電圧のように、IGBTのターンオフの際にソ
ース・ドレイン間に過電圧が加わると、IGBTQ1より若干
耐圧を低く設定した直列接続したツェナーダイオード3
0が降伏し、アバランシェ電流がゲート回路に流れる。
この時ソース・ドレイン間電圧はアバランシェ時の電圧
でクランプされる。このアバランシェ電流がゲート回路
のゲート抵抗を流れることによりゲート電位が上昇し、
IGBTQ1のしきい値電圧以上に達すると、瞬間的にIGB
Tはオン状態となり、過電圧から保護される。 【0014】また、ターミネーション上に直列接続した
ツェナーダイオード30を形成するので過電圧保護回路
の付加による面積の増加はなく、その結果IGBTQ1のオン
特性に影響を与えない。 【0015】さらに、本実施例においては、p型多結晶
半導体層4とn型多結晶半導体層5からなる複数のpn
接合が、複数個のフィールド・リミッティング・リング
(11)の配列方向に沿ってほぼ平行に配列される。これに
より、フィールド絶縁膜3の上に形成したツェナーダイ
オード30内の電界の方向とフィールド・リミッティン
グ・リング部のシリコン表面の電界の方向が一致するの
で、フィールド絶縁膜3の厚み方向に過大な電位差がか
からない。従って、フィールド絶縁膜3の劣化が起こら
ないので、ツェナーダイオード30を付加したことによ
るターミネーションへの悪影響がない。また、半導体基
板表面の電位を直列接続したツェナーダイオード30の
電位と一致するように電界制限領域11の位置と不純物
濃度をコントロールすれば、ツェナーダイオードの領域
は半絶縁性のターミネーション保護膜としても有効に働
く。以上のことから信頼性の高い耐圧特性を得ることが
できる。 【0016】図3は本発明の他の実施例を示し、縦型I
GBTとそれに接続された過電圧保護素子の(a)断面
構造図,(b)等価回路、及び(c)平面パターンの一
部である。この実施例では、保護素子が過電圧検知のた
めの高耐圧ツェナーダイオード30と逆流防止およびゲ
ート保護のための低耐圧ツェナーダイオード31で構成
される。ゲート・ドレイン間に設けられた高耐圧ツェナ
ーダイオード30は前記実施例と同様、n+ p構造のツ
ェナーダイオードを直列接続したものである。直列接続
する個数は、過電圧印加時にIGBTQ1よりも先にアバラン
シェ降伏させ、過電圧検知機能を動作させるようIGBTQ1
の素子耐圧より若干低く設定する。また、ゲート・ソー
ス間に設けられた低耐圧ツェナーダイオード31も前記
高耐圧ツェナーダイオード30と同様にn+ p構造のツ
ェナーダイオードを数個直列接続し、IGBTQ1のゲート絶
縁膜2の静電破壊防止に用いる。高耐圧ツェナーダイオ
ード30と低耐圧ツェナーダイオード31のゲート側は
共通であるので電極17により接続し、低耐圧ツェナー
ダイオード31の下部にはIGBTQ1のp型ベース領域10
を伸ばし、IGBTQ1のラッチアップ防止を図る。上記低耐
圧ツェナーダイオード31がチップ全体に占める面積は
IGBTQ1の損失のトレードオフに影響を及ぼさない程度の
ものであり、問題はない。 【0017】図4は本発明の更に他の実施例であり、縦
型IGBTとそれに接続された過電圧保護素子の断面図
を示す。この実施例の特徴は、高耐圧化技術として知ら
れているジャンクション・ターミネーション・エクステ
ンション構造に直列接続したツェナーダイオードを適用
した点にあり、図1中の電界緩和領域11を設ける代わ
りに、p型ベース領域10に接してn+ 型リング領域1
6側に伸びるp- 型半導体層40を設けた点にある。ジ
ャンクション・ターミネーション・エクステンション構
造の場合も電界緩和領域11を設ける場合と同様、ツェ
ナーダイオード中の電位分布が半導体基板表面の電位分
布と一致するようにp- 型半導体層40の位置および不
純物濃度を設定することにより、ツェナーダイオード領
域は半絶縁性のターミネーション用保護膜としても有効
に働き、信頼性の高い耐圧特性を得ることができる。 【0018】次に、図1に示した半導体装置の製造方法
を図5を用いて説明する。図において、(a),(b),
(c),(d)はそれぞれ図1に示した高耐圧半導体集
積回路装置の製造方法の各工程を示している。 【0019】(a);n型半導体層1の主表面にイオン
打ち込み法および熱拡散によってp型ベース領域10お
よび電界緩和領域11を選択的に形成する。ここで、p
型ベース領域10と電界緩和領域11のイオン打ち込み
は所望の接合深さと不純物濃度を得るため、各々硼素ド
ーズ量および拡散時間を設定する。p型ベース領域10
は電界緩和領域11に比べ、接合深さが浅く、且つ不純
物濃度が低い。その後、熱酸化によりn型半導体層1の
主表面を例えば1.5μm 酸化し、部分的にホトエッチ
ングで除去する。以上によりIGBTQ1のターミネーション
部の第1の絶縁膜3(フィールド酸化膜)と電界緩和領
域11およびIGBTのp型ベース領域10を形成す
る。 【0020】(b);n型半導体層1の主表面に熱酸化
によりIGBTQ1のゲート絶縁膜2を例えば700Å形成す
る。次に、CVD法により多結晶シリコンを例えば0.
5 μm積層する。その後、イオン打ち込み法により多
結晶シリコン全面にp型不純物である例えば硼素を低ド
ーズ量(例えば6×1013cm-2)で打ち込み保護素子とな
るツェナーダイオード30の低濃度p型領域4(例えば
幅4.5μm)を形成する。次にツェナーダイオード30
の高濃度のn型多結晶半導体層5(例えば幅2.0μm)
を形成するため、ホトリソグラフィにてツェナーダイオ
ード30の低濃度p型領域となる部分にホトレジストを
残し、n型不純物である例えば砒素を高ドーズ量(例え
ば1×1016cm-2)で打ち込む。この砒素の打ち込みはI
GBTQ1の絶縁ゲート電極9およびゲート配線の低抵抗化
を兼ねている。以上により、IGBTQ1の過電圧保護素子で
あるツェナーダイオード30を形成する。なお、1個当
たりのツェナー電圧が8Vのツェナーダイオードを40
個直列接続した場合、320Vの耐圧を得た。 【0021】(c);(b)で形成した多結晶シリコン
をホトリソグラフィにてパターニング後、ドライエッチ
ングにより部分的に除去する。次に、加工した多結晶シ
リコンおよびホトレジストをマスクとし、イオン打ち込
み法により砒素を高ドーズ量で打ち込み、熱処理を施す
ことにより、IGBTQ1のn型ソース領域とチップ端部のチ
ャネルストッパーとなるn+ 型リング領域16を形成す
る。 【0022】(d);主表面にCVD法により第2絶縁
膜15となるPSG膜を積層し、コンタクト部の開口の
ためのホトエッチングを施す。その後、AL−Siを電
子ビーム蒸着やスパッタリング法によって例えば5μm
積層し、選択的にホトエッチングする。これにより、IG
BTQ1のソース電極7,ツェナーダイオード30の両端の
IGBTQ1の絶縁ゲート電極9と接続する電極17およびド
レイン電極13と電気的に接続する電極8が形成され
る。次にパッシベーション膜として応力を緩和でき、且
つ外部からの湿気に対して有効な耐湿性の高い材料、例
えば、PIQやPSGを形成し、最後にドレイン電極を
主表面の裏面に形成する。 【0023】本製法によれば、過電圧検知部はn型半導
体基板1内の拡散pウエル層ではなく、多結晶シリコン
にイオン打ち込みを施して形成するツェナーダイオード
30を用いるため加工精度が良好であり、その結果アバ
ランシェ電圧の絶対値を規定し易い。 【0024】以上、本発明の実施したIGBTについて
述べたが、本発明はIGBTのみならずMOSFETなどの絶
縁ゲートを有する半導体装置に対して適用できる。ま
た、上述した実施例において導電型を逆極性にしても、
同様の効果がある。さらに、本実施例においては保護素
子はツェナーダイオードのみであるが、ツェナーダイオ
ードと他の回路素子からなる保護回路を形成しても良
い。 【0025】 【発明の効果】本発明によれば、チップ面積を増大させ
ることなく保護素子としてのツェナーダイオードを絶縁
ゲート型半導体装置に内蔵できるので、半導体装置のオ
ン特性を犠牲にすることなく信頼性の向上が可能とな
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate semiconductor such as an insulated gate bipolar transistor (hereinafter referred to as IGBT) or an insulated gate field effect transistor (hereinafter referred to as MOSFET). Related to the device. 2. Description of the Related Art In a semiconductor device having an overvoltage protection circuit built in a MOSFET chip, a structure in which an overvoltage protection element is provided on an insulating film separated from a MOSFET has already been proposed in Japanese Patent Publication No. 5-63949. ing. FIG. 2 shows a conventional example thereof, and shows (a) a sectional structural view and (b) an equivalent circuit of a vertical MOSFET and a gate protection element connected thereto. Here, 1 is an n-type semiconductor layer, 2 is a gate insulating film of a MOSFET, 3 is a field insulating film, and 4 is a p-type polycrystalline semiconductor layer, for example, doped with boron. 5 is n doped with high concentration impurities
Type polycrystalline semiconductor layer, for example, doped with arsenic,
It is connected to the source electrode 7 and the electrode 17. Electrode 17
Is connected to the insulated gate electrode 9. 10 is a p-type base region, 12 is an n-type source region of the MOSFET, and 14 is an n-type source region.
The semiconductor substrate 13 is a drain electrode. As shown in FIG. 1B, the equivalent circuit of the semiconductor device configured as described above has protection diodes 31 and 32 connected in series with each other between the gate and source of the vertical MOSFET Q2. Circuit. Vertical MOSFET Q2
Are a gate insulating film 2 and a source region 1 of an n-type high concentration impurity.
2, a p-type base region 10, a polycrystalline silicon insulated gate electrode 9, and a semiconductor substrate 14 (n-type high-concentration impurity substrate). Here, the diodes 31 and 32 are MOSF
Since it operates so that an excessive external surge is not applied to the insulated gate electrode 9 of the ETQ2, it is effective for preventing electrostatic breakdown of the gate insulating film 2 of the MOSFET Q2. [0004] Conventionally, a device in which an avalanche diode for detecting an overvoltage is formed by a diffusion p-well in an overvoltage protection circuit (Japanese Patent Laid-Open No. 4-332172) has also been proposed. [0005] As an application field of the IGBT, there is mainly a voltage resonance circuit used in a horizontal deflection output circuit of a microwave oven or a CRT. When the IGBT is applied to these circuits, It is necessary to ensure a sufficient resistance as an element against an overvoltage such as a surge. However, the above-mentioned prior art (Japanese Patent Publication No. 5-63949) does not consider a protection element having a high withstand voltage between a source and a drain. However, there is a problem that the element is destroyed. In the overvoltage protection circuit section in which an avalanche diode for detecting overvoltage is formed by a diffusion p-well (Japanese Patent Laid-Open No. 4-332172), the area of the avalanche diode occupies about 5% of the entire chip. Therefore, there is a problem that the ON characteristics of the IGBT are affected. An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an insulated gate semiconductor device having high withstand voltage and high reliability. In order to achieve the above object, in the insulated gate semiconductor device of the present invention, a Zener diode is provided on a surface of an electric field relaxation region in a semiconductor substrate, and the Zener diode is provided. Connected between the insulated gate electrode and drain electrode. According to the present invention, when a voltage exceeding the breakdown voltage of the Zener diode is applied between the source and the drain, the Zener diode breaks down and an avalanche current flows through the gate circuit. The source-drain voltage at this time is clamped by the avalanche voltage. When the avalanche current flows through the gate resistance of the gate circuit, the gate potential increases. When the gate potential reaches or exceeds the threshold voltage of the insulated gate, the semiconductor device is turned on. That is, the semiconductor device is protected from overvoltage by flowing a current. Further, since the Zener diode is provided on the electric field relaxation region, there is no area loss consumed for the Zener diode, and the ON characteristics of the semiconductor device are not sacrificed. FIG. 1 shows an embodiment of the present invention. Vertical IGB
T and (a) AA 'of the gate protection element connected thereto.
FIG. 3B is a sectional structure of a plane, (b) a part of a plane pattern, and (c) an equivalent circuit. Here, 1 is an n-type semiconductor layer (for example, a
0 Ωcm, silicon having a thickness of 60 μm), 2 is an IGBT gate insulating film (SiO 2 or the like, 70 nm thick), 3 is a field insulating film of a termination portion (SiO 2 or the like, 1.
5 μm), 4 is a p-type polycrystalline semiconductor layer (polysilicon having a thickness of 0.5 μm), for example, doped with boron, which is a p-type impurity, at a low concentration.
(Polysilicon having a thickness of 0.5 μm), for example, doped with arsenic, which is an n-type impurity, at a high concentration. A plurality of p-type polycrystalline semiconductor layers 4 and n-type polycrystalline semiconductor layers 5 are connected in series, and n-type polycrystalline semiconductor layers 5 at both ends are connected to electrodes 8 and 17. The electrode 8 has the same electric potential as the drain electrode, and the electrode 17 is connected to the insulated gate electrode 9 by aluminum wiring. Reference numeral 10 denotes a p-type base region, 12 denotes an n-type source region of the IGBT, and 11 denotes an electric field relaxation region (p-type semiconductor silicon layer) of a termination portion, which has a so-called field limiting ring structure. 13, a drain electrode; and 14, a semiconductor substrate (p-type silicon substrate). As described above, the semiconductor device of this embodiment is
(C) A circuit composed of the IBGTQ1 shown in the figure and a Zener diode 30 composed of a polycrystalline semiconductor layer, and having the Zener diode 30 connected between the gate and the drain of the vertical IGBTQ1. The vertical IGBT Q1 comprises an n-type source region 12, a p-type base region 10, an insulated gate electrode 9 of polycrystalline silicon, and a semiconductor substrate 14. The structure of the Zener diode is composed of a series connection (for example, 40 in series) of n + p type diodes, and is formed in a ring shape on the field insulating film 3 (oxide film) in the termination portion around the IGBT chip. In this embodiment, when an overvoltage is applied between the source and the drain when the IGBT is turned off, such as a flyback voltage in a voltage resonance circuit, a series-connected zener diode 3 having a withstand voltage slightly lower than that of the IGBT Q1 is used.
0 breaks down and avalanche current flows to the gate circuit.
At this time, the source-drain voltage is clamped by the avalanche voltage. When this avalanche current flows through the gate resistance of the gate circuit, the gate potential rises,
When the voltage exceeds the threshold voltage of IGBTQ1, IGB
T turns on and is protected from overvoltage. Further, since the zener diode 30 connected in series on the termination is formed, there is no increase in area due to the addition of the overvoltage protection circuit, and as a result, the ON characteristics of the IGBTQ1 are not affected. Further, in the present embodiment, a plurality of pns composed of a p-type polycrystalline semiconductor layer 4 and an n-type polycrystalline semiconductor layer 5 are formed.
Joints with multiple field limiting rings
They are arranged almost in parallel along the arrangement direction of (11). As a result, the direction of the electric field in the Zener diode 30 formed on the field insulating film 3 matches the direction of the electric field on the silicon surface of the field limiting ring portion, so that the direction of the electric field becomes excessively large in the thickness direction of the field insulating film 3. No potential difference is applied. Therefore, since the field insulating film 3 does not deteriorate, the addition of the zener diode 30 does not adversely affect the termination. If the position of the electric field limiting region 11 and the impurity concentration are controlled so that the potential on the surface of the semiconductor substrate matches the potential of the Zener diode 30 connected in series, the Zener diode region is also effective as a semi-insulating termination protection film. Work on. From the above, highly reliable breakdown voltage characteristics can be obtained. FIG. 3 shows another embodiment of the present invention.
It is (a) sectional structure drawing of GBT and the overvoltage protection element connected to it, (b) equivalent circuit, and (c) a part of plane pattern. In this embodiment, the protection element is composed of a high-voltage Zener diode 30 for detecting overvoltage and a low-voltage Zener diode 31 for backflow prevention and gate protection. The high voltage Zener diode 30 provided between the gate and the drain is formed by connecting in series a Zener diode having an n + p structure, as in the above embodiment. The number of IGBTQ1s connected in series is set so that the avalanche breakdown occurs before the IGBTQ1 when overvoltage is applied and the overvoltage detection function is activated.
Is set slightly lower than the element breakdown voltage. Also, similarly to the high-voltage Zener diode 30, a low-voltage Zener diode 31 provided between the gate and the source is connected in series with several Zener diodes having an n + p structure to prevent electrostatic breakdown of the gate insulating film 2 of the IGBTQ1. Used for Since the gate sides of the high-voltage Zener diode 30 and the low-voltage Zener diode 31 are common, they are connected by the electrode 17, and below the low-voltage Zener diode 31, the p-type base region 10 of the IGBT Q1 is formed.
To prevent latch-up of IGBTQ1. The area occupied by the low voltage Zener diode 31 in the whole chip is
It does not affect the IGBTQ1 loss trade-off, so there is no problem. FIG. 4 shows still another embodiment of the present invention, and is a sectional view of a vertical IGBT and an overvoltage protection element connected thereto. The feature of this embodiment lies in that a zener diode connected in series is applied to a junction termination extension structure known as a high withstand voltage technology. Instead of providing the electric field relaxation region 11 in FIG. N + type ring region 1 in contact with base region 10
The point is that ap − type semiconductor layer 40 extending to the sixth side is provided. Also in the case of the junction termination extension structure, the position and impurity concentration of the p − type semiconductor layer 40 are set so that the potential distribution in the Zener diode matches the potential distribution on the surface of the semiconductor substrate, similarly to the case where the electric field relaxation region 11 is provided. By doing so, the Zener diode region effectively functions as a semi-insulating termination protection film, and a highly reliable breakdown voltage characteristic can be obtained. Next, a method of manufacturing the semiconductor device shown in FIG. 1 will be described with reference to FIG. In the figure, (a), (b),
(C) and (d) show respective steps of the method of manufacturing the high withstand voltage semiconductor integrated circuit device shown in FIG. (A); A p-type base region 10 and an electric field relaxation region 11 are selectively formed on the main surface of the n-type semiconductor layer 1 by ion implantation and thermal diffusion. Where p
In the ion implantation of the mold base region 10 and the electric field relaxation region 11, the boron dose and the diffusion time are set in order to obtain a desired junction depth and impurity concentration. p-type base region 10
Has a shallower junction depth and a lower impurity concentration than the electric field relaxation region 11. Thereafter, the main surface of the n-type semiconductor layer 1 is oxidized by, for example, 1.5 μm by thermal oxidation and partially removed by photoetching. As described above, the first insulating film 3 (field oxide film) of the termination portion of the IGBT Q1, the electric field relaxation region 11, and the p-type base region 10 of the IGBT are formed. (B): A gate insulating film 2 of IGBTQ1 is formed on the main surface of the n-type semiconductor layer 1 by thermal oxidation, for example, at a thickness of 700.degree. Next, the polycrystalline silicon is, for example,
Laminate 5 μm. Thereafter, a low-concentration p-type region 4 (for example, boron) of a Zener diode 30 serving as a protection element is implanted at a low dose (for example, 6 × 10 13 cm −2 ) with, for example, boron as a p-type impurity over the entire surface of the polycrystalline silicon by ion implantation. (Width 4.5 μm). Next, the Zener diode 30
High-concentration n-type polycrystalline semiconductor layer 5 (for example, having a width of 2.0 μm)
Is formed, a photoresist is left in a portion to be a low concentration p-type region of the Zener diode 30 by photolithography, and an n-type impurity such as arsenic is implanted at a high dose (for example, 1 × 10 16 cm −2 ). This implantation of arsenic is I
The resistance of the insulated gate electrode 9 and the gate wiring of the GBTQ1 is also reduced. As described above, the Zener diode 30 which is the overvoltage protection element of the IGBT Q1 is formed. In addition, a Zener diode having a Zener voltage of 8 V per one is connected to 40
When these were connected in series, a withstand voltage of 320 V was obtained. (C); After the polycrystalline silicon formed in (b) is patterned by photolithography, it is partially removed by dry etching. Next, using the processed polycrystalline silicon and photoresist as a mask, arsenic is implanted at a high dose by an ion implantation method, and a heat treatment is performed to thereby provide an n + type source region of the IGBTQ1 and a channel stopper at a chip end portion. A ring region 16 is formed. (D): A PSG film serving as the second insulating film 15 is laminated on the main surface by the CVD method, and is subjected to photoetching for opening a contact portion. Thereafter, AL-Si is deposited to a thickness of, for example, 5 μm by electron beam evaporation or sputtering.
Laminate and selectively photoetch. This allows IG
Source electrode 7 of BTQ1 and both ends of Zener diode 30
An electrode 17 connected to the insulated gate electrode 9 and an electrode 8 electrically connected to the drain electrode 13 of the IGBT Q1 are formed. Next, a material having high moisture resistance, for example, PIQ or PSG, which can relieve stress as a passivation film and is effective against external moisture, is formed, and finally, a drain electrode is formed on the back surface of the main surface. According to the present manufacturing method, the overvoltage detector uses not the diffusion p-well layer in the n-type semiconductor substrate 1 but the zener diode 30 formed by ion-implanting polycrystalline silicon. As a result, it is easy to define the absolute value of the avalanche voltage. Although the IGBT according to the present invention has been described above, the present invention can be applied not only to the IGBT but also to a semiconductor device having an insulated gate such as a MOSFET. Further, even if the conductivity type is reversed in the embodiment described above,
There is a similar effect. Further, in this embodiment, the protection element is only the Zener diode, but a protection circuit including the Zener diode and other circuit elements may be formed. According to the present invention, a Zener diode serving as a protection element can be built in an insulated gate semiconductor device without increasing the chip area, so that the reliability can be reduced without sacrificing the ON characteristics of the semiconductor device. The performance can be improved.

【図面の簡単な説明】 【図1】本発明の一実施例。 【図2】従来例。 【図3】本発明の他の実施例。 【図4】本発明の更に他の実施例。 【図5】図1に示した半導体装置の製造方法。 【符号の説明】 1…n型半導体層、2…ゲート絶縁膜、3…フィールド
絶縁膜、4…p型多結晶半導体層、5…n型多結晶半導
体層、6…絶縁膜、7…ソース電極、8,17…電極、
9…絶縁ゲート電極、10…p型ベース領域、11…電
界緩和領域、12…n型ソース領域、13…ドレイン電
極、14…半導体基板、15…第2絶縁膜、16…n+
型リング領域、30…ツェナーダイオード。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention. FIG. 2 is a conventional example. FIG. 3 shows another embodiment of the present invention. FIG. 4 shows still another embodiment of the present invention. FIG. 5 is a method for manufacturing the semiconductor device shown in FIG. 1; [Description of Signs] 1 ... n-type semiconductor layer, 2 ... gate insulating film, 3 ... field insulating film, 4 ... p-type polycrystalline semiconductor layer, 5 ... n-type polycrystalline semiconductor layer, 6 ... insulating film, 7 ... source Electrodes, 8, 17, ... electrodes,
9 ... insulated gate electrode, 10 ... p-type base region, 11 ... electric field relaxation region, 12 ... n-type source region, 13 ... drain electrode, 14 ... semiconductor substrate, 15 ... second insulating film, 16 ... n +
Mold ring region, 30 ... Zener diode.

フロントページの続き (56)参考文献 特開 平6−196706(JP,A) 特開 平3−38881(JP,A) 特開 平5−206471(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 29/06 Continuation of front page (56) References JP-A-6-196706 (JP, A) JP-A-3-38881 (JP, A) JP-A-5-206471 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) H01L 29/78 H01L 29/06

Claims (1)

(57)【特許請求の範囲】 【請求頃1】同一半導体基板において、一対の主電極と
絶縁ゲート電極を設けた動作領域と、動作領域に隣接
し、フィールド・リミッティング・リング構造を有する
電界緩和領域と、電界緩和領域の表面に形成する絶縁膜
と、絶縁膜上に設けられ、一主電極と絶縁ゲート電極の
間に接続され、複数のpn接合を有するツェナーダイオ
ードと、動作領域から伸びるべース領域上に設けられ、
他の主電極と絶縁ゲート電極の間に接続されるツェナー
ダイオードと、を有することを特徴とする絶縁ゲート型
半導体装置。 【請求項2】請求項1において、前記各ツエナーダイオ
ードが多結晶半導体からなることを特徴とする絶縁ゲー
ト型半導体装置。 【請求項3】請求項1または請求項2において、前記複
数のpn接合が、前記フィールド・リミッティング・リ
ング構造における複数のフィールド・リミッティング・
リングの配列方向に沿って平行に配列されることを特徴
とする絶縁ゲート型半導体装置。 【請求項4】請求項1〜3のいずれか1頃において、前
記一主電極と前記絶縁ゲート電極の間に接続される前記
ツェナーダイオードが高耐圧ツェナーダイオードであ
り、前記他の主電極と前記絶縁ゲート電極の間に接続さ
れる前記ツェナーダイオードが低耐圧ツェナーダイオー
ドであることを特徴とする絶縁ゲート型半導体装置。 【請求項5】請求項2において、前記絶縁ゲート電極
が、前記各ツェナーダイオードの前記多結晶半導体と同
じ工程で形成される多結晶半導体からなることを特徴と
する絶縁ゲート型半導体装置。
(57) [Claim 1] An electric field having a field limiting ring structure adjacent to the operation area and an operation area provided with a pair of main electrodes and an insulated gate electrode on the same semiconductor substrate. A relaxation region, an insulating film formed on a surface of the electric field relaxation region, a zener diode provided on the insulation film, connected between one main electrode and an insulated gate electrode, having a plurality of pn junctions, and extending from the operation region. Provided on the base area,
An insulated gate semiconductor device comprising: a Zener diode connected between another main electrode and an insulated gate electrode. 2. The insulated gate semiconductor device according to claim 1, wherein each of said Zener diodes comprises a polycrystalline semiconductor. 3. The plurality of pn junctions according to claim 1, wherein the plurality of pn junctions are formed by a plurality of field limiting rings in the field limiting ring structure.
An insulated gate semiconductor device which is arranged in parallel along a direction in which rings are arranged. 4. The method according to claim 1, wherein the Zener diode connected between the one main electrode and the insulated gate electrode is a high voltage Zener diode, and the Zener diode is connected to the other main electrode. The insulated gate semiconductor device, wherein the zener diode connected between the insulated gate electrodes is a low withstand voltage zener diode. 5. The insulated gate semiconductor device according to claim 2, wherein said insulated gate electrode is made of a polycrystalline semiconductor formed in the same step as said polycrystalline semiconductor of each said Zener diode.
JP22473994A 1994-09-20 1994-09-20 Insulated gate type semiconductor device Expired - Fee Related JP3189589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22473994A JP3189589B2 (en) 1994-09-20 1994-09-20 Insulated gate type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22473994A JP3189589B2 (en) 1994-09-20 1994-09-20 Insulated gate type semiconductor device

Publications (2)

Publication Number Publication Date
JPH0888354A JPH0888354A (en) 1996-04-02
JP3189589B2 true JP3189589B2 (en) 2001-07-16

Family

ID=16818487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22473994A Expired - Fee Related JP3189589B2 (en) 1994-09-20 1994-09-20 Insulated gate type semiconductor device

Country Status (1)

Country Link
JP (1) JP3189589B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018115637A1 (en) * 2018-06-28 2020-01-02 Infineon Technologies Ag Power semiconductor component

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331540B1 (en) * 2000-06-23 2002-04-06 김덕중 MOS-type semiconductor device with electrostaticdischarge diode between gate and emitter
JP2006093505A (en) * 2004-09-27 2006-04-06 Sanyo Electric Co Ltd Protecting device for mos type element, and semiconductor device
JP2008177328A (en) 2007-01-18 2008-07-31 Denso Corp Semiconductor device and manufacturing method thereof
JP5298488B2 (en) * 2007-09-28 2013-09-25 富士電機株式会社 Semiconductor device
JP2009111304A (en) * 2007-11-01 2009-05-21 Fuji Electric Device Technology Co Ltd Overvoltage protective function built-in mos semiconductor apparatus and method of manufacturing the same
JP5358926B2 (en) * 2007-11-01 2013-12-04 富士電機株式会社 Silicon carbide trench MOS type semiconductor device
CN104321871B (en) 2012-11-08 2017-10-10 富士电机株式会社 The manufacture method of semiconductor device and semiconductor device
JP6083464B2 (en) * 2013-03-14 2017-02-22 富士電機株式会社 Semiconductor device
JP6430424B2 (en) * 2016-03-08 2018-11-28 株式会社東芝 Semiconductor device
JP6301561B1 (en) * 2016-09-13 2018-03-28 新電元工業株式会社 Semiconductor device and manufacturing method thereof
JP6872933B2 (en) * 2017-03-01 2021-05-19 株式会社豊田中央研究所 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018115637A1 (en) * 2018-06-28 2020-01-02 Infineon Technologies Ag Power semiconductor component

Also Published As

Publication number Publication date
JPH0888354A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
JP3191747B2 (en) MOS type semiconductor device
US6323518B1 (en) Insulated gate type semiconductor device and method of manufacturing thereof
TWI415223B (en) Semiconductor device and manufacturing method thereof
JPH0427712B2 (en)
JPH0563949B2 (en)
JPH11284175A (en) Mos type semiconductor device
JPH0837284A (en) Semiconductor integrated circuit device
JPH0433139B2 (en)
JP3189589B2 (en) Insulated gate type semiconductor device
US20020050602A1 (en) Semiconductor device having diode for input protection circuit of MOS structure device
US5821586A (en) Semiconductor device including a protective element having negative resistance characteristic
JP2937185B2 (en) High breakdown voltage MOS type semiconductor device
JP2814079B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP3317345B2 (en) Semiconductor device
JP2755619B2 (en) Insulated gate semiconductor device
JPH06350031A (en) Protective circuit of integrated structure
US10741542B2 (en) Transistors patterned with electrostatic discharge protection and methods of fabrication
JP2002184988A (en) Semiconductor device
JP4479041B2 (en) Semiconductor device and manufacturing method thereof
JP2748938B2 (en) Semiconductor integrated circuit device
US6423985B1 (en) SCR compact structure
KR0175402B1 (en) Power semiconductor device and its manufacturing method
JP2988047B2 (en) Semiconductor device
JP2500802B2 (en) Semiconductor device
JPS6146062A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees