JPH0888354A - Insulated gate type semiconductor device - Google Patents

Insulated gate type semiconductor device

Info

Publication number
JPH0888354A
JPH0888354A JP22473994A JP22473994A JPH0888354A JP H0888354 A JPH0888354 A JP H0888354A JP 22473994 A JP22473994 A JP 22473994A JP 22473994 A JP22473994 A JP 22473994A JP H0888354 A JPH0888354 A JP H0888354A
Authority
JP
Japan
Prior art keywords
zener diode
insulated gate
semiconductor device
gate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22473994A
Other languages
Japanese (ja)
Other versions
JP3189589B2 (en
Inventor
Yasuki Nakano
安紀 中野
Yoshiteru Shimizu
喜輝 清水
Yasuhiko Kono
恭彦 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22473994A priority Critical patent/JP3189589B2/en
Publication of JPH0888354A publication Critical patent/JPH0888354A/en
Application granted granted Critical
Publication of JP3189589B2 publication Critical patent/JP3189589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE: To obtain a semiconductor device which has a high breakdown strength and high reliability without sacrificing the ON-characteristics by a method wherein a Zener diode is provided on the surface of the field relief region of a semiconductor substrate and the Zener diode is connected between a gate electrode and a drain electrode. CONSTITUTION: A semiconductor device is composed of an IBGT Q1 and a Zener diode 30 which is connected between the gate 9 and the drain 13 of the vertical IBGT Q1. The Zener diode 30 is composed of n<+> -p junction diodes which are connected to each other in series and provided on the field insulating film of a termination region around the IBGT chip so as to form a ring. With this constitution, if an overvoltage is applied between the source and drain, the Zener diode is broken down and an avalanche current is applied to a gate circuit and the gate potential of the IBGT is elevated to turn on the IBGT which is protected from the overvoltage. Further, it is not necessary to add an overvoltage protective circuit which adds an occupation area, so that the ON-characteristics is not affected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁ゲートバイポーラト
ランジスタ(以下、IGBTと記す)または絶縁ゲート
電界効果トランジスタ(以下、MOSFETと記す)等の絶縁
ゲート型半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate semiconductor device such as an insulated gate bipolar transistor (hereinafter referred to as IGBT) or an insulated gate field effect transistor (hereinafter referred to as MOSFET).

【0002】[0002]

【従来の技術】過電圧保護回路をMOSFETチップ内に内蔵
した半導体装置において、過電圧保護素子をMOSFETと分
離された絶縁膜上に設ける構造は既に特公平5−63949号
公報にて提案されている。図2はその従来例であり、縦
型MOSFETとそれに接続されたゲート保護素子の(a)断
面構造図、(b)等価回路を示す。ここで、1はn型半
導体層、2はMOSFETのゲート絶縁膜、3はフィールド絶
縁膜、4はp型多結晶半導体層であり例えば硼素がドー
プされたものである。5は高濃度不純物をドープしたn
型多結晶半導体層、例えば砒素がドープされたもので、
ソース電極7及び電極17に接続されている。電極17
は絶縁ゲート電極9に接続している。また、10はp型
ベース領域、12はMOSFETのn型ソース領域、14はn
型の半導体基板、13はドレイン電極である。
2. Description of the Related Art In a semiconductor device having an overvoltage protection circuit built in a MOSFET chip, a structure in which an overvoltage protection element is provided on an insulating film separated from a MOSFET has already been proposed in Japanese Patent Publication No. 63949/1993. FIG. 2 is a conventional example thereof, showing (a) a cross-sectional structural view of a vertical MOSFET and a gate protection element connected thereto, and (b) an equivalent circuit. Here, 1 is an n-type semiconductor layer, 2 is a gate insulating film of a MOSFET, 3 is a field insulating film, 4 is a p-type polycrystalline semiconductor layer, and is doped with, for example, boron. 5 is n doped with high-concentration impurities
Type polycrystalline semiconductor layer, for example, one doped with arsenic,
It is connected to the source electrode 7 and the electrode 17. Electrode 17
Is connected to the insulated gate electrode 9. Further, 10 is a p-type base region, 12 is an n-type source region of MOSFET, and 14 is an n-type source region.
And a drain electrode 13.

【0003】以上のように構成された半導体装置の等価
回路は、(b)図に示すように、縦型MOSFETQ2のゲート
・ソース間に、互いに直列に接続された保護ダイオード
31及び32が接続された回路となる。縦型MOSFETQ2
は、ゲート絶縁膜2,n型高濃度不純物のソース領域1
2,p型のベース領域10,多結晶シリコンの絶縁ゲー
ト電極9,半導体基板14(n型高濃度不純物基板)よ
り成っている。ここで、31,32のダイオードはMOSF
ETQ2の絶縁ゲート電極9に過大な外部サージが印加され
ないように動作するものであることから、MOSFETQ2のゲ
ート絶縁膜2の静電破壊防止のために有効なものであ
る。
In the equivalent circuit of the semiconductor device configured as described above, protection diodes 31 and 32 connected in series with each other are connected between the gate and source of the vertical MOSFET Q2, as shown in FIG. It becomes a circuit. Vertical MOSFET Q2
Is the gate insulating film 2, the source region 1 of the n-type high concentration impurity
2, a p-type base region 10, an insulated gate electrode 9 of polycrystalline silicon, and a semiconductor substrate 14 (n-type high-concentration impurity substrate). Here, the diodes 31 and 32 are MOSF
Since it operates so that an excessive external surge is not applied to the insulated gate electrode 9 of the ETQ2, it is effective for preventing electrostatic breakdown of the gate insulating film 2 of the MOSFET Q2.

【0004】また、従来、過電圧保護回路部に過電圧検
知のためのアバランシェダイオードを拡散pウェルによ
り形成したもの(特開平4−332172 号公報)も提案され
ている。
Further, conventionally, there is also proposed a device in which an avalanche diode for detecting an overvoltage is formed by a diffusion p-well in the overvoltage protection circuit section (Japanese Patent Laid-Open No. 4-332172).

【0005】[0005]

【発明が解決しようとする課題】IGBTの適用分野と
して主に、電子レンジやCRTの水平偏向出力回路で用
いられる電圧共振回路があるが、IGBTをこれらの回
路に適用する際にはサージ等の過電圧に対して素子とし
て十分な耐量を確保する必要がある。しかしながら、上
記従来技術(特公平5−63949号公報)にはソース・ドレ
イン間の高耐圧化の保護素子については考慮されておら
ず、IGBTやMOSFETをさらに高耐圧,大電流域で用い
た場合、素子が破壊してしまうという問題がある。
A voltage resonance circuit used in a horizontal deflection output circuit of a microwave oven or a CRT is mainly used as an application field of the IGBT. When the IGBT is applied to these circuits, a surge or the like is applied. It is necessary to secure sufficient withstand capacity as an element against overvoltage. However, the above-mentioned conventional technique (Japanese Patent Publication No. 63949/1993) does not consider a protection element for increasing the withstand voltage between the source and drain, and when an IGBT or MOSFET is used in a higher withstand voltage and large current region. However, there is a problem that the element is destroyed.

【0006】また、過電圧保護回路部に過電圧検知のた
めのアバランシェダイオードを拡散pウエルにより形成
したもの(特開平4−332172 号公報)については、アバラ
ンシェダイオードの面積がチップ全体の約5%を占める
ことから、IGBTのオン特性に影響を及ぼすという問
題がある。
Further, in the overvoltage protection circuit in which an avalanche diode for overvoltage detection is formed by a diffusion p-well (Japanese Patent Laid-Open No. 4-332172), the area of the avalanche diode occupies about 5% of the entire chip. Therefore, there is a problem that the ON characteristics of the IGBT are affected.

【0007】本発明は、以上述べた従来技術の問題点を
解決し、高耐圧でかつ信頼性の高い絶縁ゲート型半導体
装置を提供することを目的とする。
It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an insulated gate type semiconductor device having a high breakdown voltage and high reliability.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の絶縁ゲート型半導体装置では、半導体基
板における電界緩和領域の表面上にツェナーダイオード
を設け、このツェナーダイオードを絶縁ゲート電極とド
レイン電極の間に接続する。
In order to achieve the above object, in an insulated gate semiconductor device of the present invention, a Zener diode is provided on the surface of an electric field relaxation region in a semiconductor substrate, and the Zener diode is used as an insulated gate electrode. And the drain electrode.

【0009】[0009]

【作用】本発明によれば、ソース・ドレイン間にツェナ
ーダイオードの耐圧を超える電圧が加わるとツェナーダ
イオードが降伏し、アバランシェ電流がゲート回路に流
れる。この時のソース・ドレイン間電圧はアバランシェ
時の電圧でクランプされる。このアバランシェ電流がゲ
ート回路のゲート抵抗を流れることによりゲート電位が
上昇し、絶縁ゲートのしきい値電圧以上に達すると、半
導体装置はオン状態となる。すなわち、電流を流すこと
によって半導体装置を過電圧から保護するものである。
According to the present invention, when a voltage exceeding the breakdown voltage of the Zener diode is applied between the source and the drain, the Zener diode breaks down and an avalanche current flows in the gate circuit. The source-drain voltage at this time is clamped by the voltage at the time of avalanche. This avalanche current flows through the gate resistance of the gate circuit to increase the gate potential, and when it reaches or exceeds the threshold voltage of the insulated gate, the semiconductor device is turned on. That is, the semiconductor device is protected from an overvoltage by passing a current.

【0010】さらに、ツェナーダイオードは電界緩和領
域上に設けるので、ツェナーダイオードに費やす面積ロ
スがなく、半導体装置のオン特性を犠牲にすることがな
い。
Further, since the Zener diode is provided on the electric field relaxation region, there is no area loss spent on the Zener diode and the ON characteristics of the semiconductor device are not sacrificed.

【0011】[0011]

【実施例】図1は本発明の一実施例を示す。縦型IGB
Tとそれに接続されたゲート保護素子の(a)A−A′
面の断面構造、(b)平面パターンの一部、(c)等価
回路である。ここで1はn型半導体層(例えば比抵抗6
0Ωcm,厚さ60μmのシリコン)、2はIGBTのゲ
ート絶縁膜(SiO2 等、厚さ70nm)、3はターミ
ネーション部のフィールド絶縁膜(SiO2等、厚さ1.
5μm)、4はp型多結晶半導体層(厚さ0.5μm の
ポリシリコン)であり例えばp型不純物であるボロンが
低濃度でドープされたもの、5はn型多結晶半導体層
(厚さ0.5μmのポリシリコン)であり例えばn型不純
物である砒素が高濃度でドープされたものである。p型
多結晶半導体層4およびn型多結晶半導体層5は複数個
直列に接続され、両端部となるn型多結晶半導体層5は
電極8および17に接続されている。この電極8はドレ
イン電極と電気的に同電位であり、電極17はアルミ配
線により絶縁ゲート電極9に接続している。10はp型
ベース領域、12はIGBTのn型ソース領域、11はター
ミネーション部の電界緩和領域(p型半導体シリコン
層)で、いわゆるフィールド・リミティング・リング構
造になっている。13はドレイン電極、14は半導体基
板(p型シリコン基板)である。
FIG. 1 shows an embodiment of the present invention. Vertical IGB
(A) AA ′ of the gate protection element connected to T
It is a cross-sectional structure of the plane, (b) a part of the plane pattern, and (c) an equivalent circuit. Here, 1 is an n-type semiconductor layer (for example, specific resistance 6
0 Ωcm, 60 μm thick silicon), 2 IGBT gate insulating film (SiO 2, etc., thickness 70 nm), 3 field termination film (SiO 2, etc., thickness 1.)
5 .mu.m), 4 is a p-type polycrystalline semiconductor layer (polysilicon having a thickness of 0.5 .mu.m), for example, p-type impurity boron doped at a low concentration, and 5 is an n-type polycrystalline semiconductor layer.
It is (polysilicon having a thickness of 0.5 μm) and is heavily doped with arsenic, which is an n-type impurity. A plurality of p-type polycrystalline semiconductor layers 4 and n-type polycrystalline semiconductor layers 5 are connected in series, and n-type polycrystalline semiconductor layers 5 at both ends are connected to electrodes 8 and 17. The electrode 8 has the same electric potential as the drain electrode, and the electrode 17 is connected to the insulated gate electrode 9 by aluminum wiring. Reference numeral 10 is a p-type base region, 12 is an n-type source region of the IGBT, and 11 is an electric field relaxation region (p-type semiconductor silicon layer) of the termination portion, which has a so-called field limiting ring structure. Reference numeral 13 is a drain electrode, and 14 is a semiconductor substrate (p-type silicon substrate).

【0012】以上のように、本実施例の半導体装置は、
(c)図に示したIBGTQ1と多結晶半導体層からなるツェ
ナーダイオード30から構成され、縦型IGBTQ1のゲート
・ドレイン間にツェナーダイオード30が接続された回
路となる。縦型IGBTQ1は、n型ソース領域12,p型ベ
ース領域10、多結晶シリコンの絶縁ゲート電極9,半
導体基板14より成っている。ツェナーダイオードの構
成はn+ p構造ダイオードの直列接続(例えば40個直
列)より成っており、IGBTチップ周辺のターミネー
ション部のフィールド絶縁膜3(酸化膜)上にリング状
に形成する。
As described above, the semiconductor device of this embodiment is
The circuit is constituted by the Zener diode 30 composed of the IBGTQ1 and the polycrystalline semiconductor layer shown in FIG. 7C, and the Zener diode 30 is connected between the gate and drain of the vertical IGBT Q1. The vertical IGBT Q1 comprises an n-type source region 12, a p-type base region 10, an insulated gate electrode 9 of polycrystalline silicon, and a semiconductor substrate 14. The Zener diode is composed of n + p structure diodes connected in series (for example, 40 in series), and is formed in a ring shape on the field insulating film 3 (oxide film) in the termination portion around the IGBT chip.

【0013】本実施例において、電圧共振回路における
フライバック電圧のように、IGBTのターンオフの際にソ
ース・ドレイン間に過電圧が加わると、IGBTQ1より若干
耐圧を低く設定した直列接続したツェナーダイオード3
0が降伏し、アバランシェ電流がゲート回路に流れる。
この時ソース・ドレイン間電圧はアバランシェ時の電圧
でクランプされる。このアバランシェ電流がゲート回路
のゲート抵抗を流れることによりゲート電位が上昇し、
IGBTQ1のしきい値電圧以上に達すると、瞬間的にIGB
Tはオン状態となり、過電圧から保護される。
In this embodiment, when an overvoltage is applied between the source and the drain when the IGBT is turned off, like the flyback voltage in the voltage resonance circuit, the Zener diode 3 connected in series has a withstand voltage set slightly lower than that of the IGBTQ1.
0 breaks down and an avalanche current flows through the gate circuit.
At this time, the source-drain voltage is clamped to the voltage during avalanche. This avalanche current flows through the gate resistance of the gate circuit and the gate potential rises,
When the threshold voltage of IGBTQ1 or higher is reached,
T is turned on and protected from overvoltage.

【0014】また、ターミネーション上に直列接続した
ツェナーダイオード30を形成するので過電圧保護回路
の付加による面積の増加はなく、その結果IGBTQ1のオン
特性に影響を与えない。
Further, since the Zener diode 30 connected in series is formed on the termination, the area is not increased due to the addition of the overvoltage protection circuit, and as a result, the ON characteristics of the IGBT Q1 are not affected.

【0015】さらに、本実施例においては、p型多結晶
半導体層4とn型多結晶半導体層5からなる複数のpn
接合が、複数個のフィールド・リミッティング・リング
(11)の配列方向に沿ってほぼ平行に配列される。これに
より、フィールド絶縁膜3の上に形成したツェナーダイ
オード30内の電界の方向とフィールド・リミッティン
グ・リング部のシリコン表面の電界の方向が一致するの
で、フィールド絶縁膜3の厚み方向に過大な電位差がか
からない。従って、フィールド絶縁膜3の劣化が起こら
ないので、ツェナーダイオード30を付加したことによ
るターミネーションへの悪影響がない。また、半導体基
板表面の電位を直列接続したツェナーダイオード30の
電位と一致するように電界制限領域11の位置と不純物
濃度をコントロールすれば、ツェナーダイオードの領域
は半絶縁性のターミネーション保護膜としても有効に働
く。以上のことから信頼性の高い耐圧特性を得ることが
できる。
Further, in the present embodiment, a plurality of pn's including the p-type polycrystalline semiconductor layer 4 and the n-type polycrystalline semiconductor layer 5 are formed.
Junction with multiple field limiting rings
They are arranged substantially in parallel along the arrangement direction of (11). As a result, the direction of the electric field in the Zener diode 30 formed on the field insulating film 3 and the direction of the electric field on the silicon surface of the field limiting ring portion match, so that there is an excessive amount in the thickness direction of the field insulating film 3. There is no potential difference. Therefore, since the field insulating film 3 does not deteriorate, the addition of the Zener diode 30 does not adversely affect the termination. Further, if the position of the electric field limiting region 11 and the impurity concentration are controlled so that the potential of the surface of the semiconductor substrate matches the potential of the Zener diode 30 connected in series, the region of the Zener diode is also effective as a semi-insulating termination protection film. To work. From the above, highly reliable breakdown voltage characteristics can be obtained.

【0016】図3は本発明の他の実施例を示し、縦型I
GBTとそれに接続された過電圧保護素子の(a)断面
構造図,(b)等価回路、及び(c)平面パターンの一
部である。この実施例では、保護素子が過電圧検知のた
めの高耐圧ツェナーダイオード30と逆流防止およびゲ
ート保護のための低耐圧ツェナーダイオード31で構成
される。ゲート・ドレイン間に設けられた高耐圧ツェナ
ーダイオード30は前記実施例と同様、n+ p構造のツ
ェナーダイオードを直列接続したものである。直列接続
する個数は、過電圧印加時にIGBTQ1よりも先にアバラン
シェ降伏させ、過電圧検知機能を動作させるようIGBTQ1
の素子耐圧より若干低く設定する。また、ゲート・ソー
ス間に設けられた低耐圧ツェナーダイオード31も前記
高耐圧ツェナーダイオード30と同様にn+ p構造のツ
ェナーダイオードを数個直列接続し、IGBTQ1のゲート絶
縁膜2の静電破壊防止に用いる。高耐圧ツェナーダイオ
ード30と低耐圧ツェナーダイオード31のゲート側は
共通であるので電極17により接続し、低耐圧ツェナー
ダイオード31の下部にはIGBTQ1のp型ベース領域10
を伸ばし、IGBTQ1のラッチアップ防止を図る。上記低耐
圧ツェナーダイオード31がチップ全体に占める面積は
IGBTQ1の損失のトレードオフに影響を及ぼさない程度の
ものであり、問題はない。
FIG. 3 shows another embodiment of the present invention, which is a vertical type I
It is (a) sectional structure drawing of GBT and the overvoltage protection element connected to it, (b) equivalent circuit, and a part of (c) plane pattern. In this embodiment, the protective element is composed of a high breakdown voltage Zener diode 30 for overvoltage detection and a low breakdown voltage Zener diode 31 for backflow prevention and gate protection. The high breakdown voltage Zener diode 30 provided between the gate and the drain is formed by connecting in series the Zener diodes of the n + p structure, as in the above-mentioned embodiment. The number of devices connected in series should be set so that the avalanche breakdown occurs before the IGBTQ1 when an overvoltage is applied and the overvoltage detection function operates.
Set a little lower than the element breakdown voltage. The low breakdown voltage Zener diode 31 provided between the gate and the source is also connected with several Zener diodes of n + p structure in series like the high breakdown voltage Zener diode 30 to prevent electrostatic breakdown of the gate insulating film 2 of the IGBTQ1. Used for. Since the gate sides of the high breakdown voltage Zener diode 30 and the low breakdown voltage Zener diode 31 are common, they are connected by the electrode 17, and the p-type base region 10 of the IGBT Q1 is formed below the low breakdown voltage Zener diode 31.
To prevent the latch up of the IGBT Q1. The area occupied by the low breakdown voltage Zener diode 31 in the entire chip is
There is no problem because it does not affect the trade-off of the loss of the IGBT Q1.

【0017】図4は本発明の更に他の実施例であり、縦
型IGBTとそれに接続された過電圧保護素子の断面図
を示す。この実施例の特徴は、高耐圧化技術として知ら
れているジャンクション・ターミネーション・エクステ
ンション構造に直列接続したツェナーダイオードを適用
した点にあり、図1中の電界緩和領域11を設ける代わ
りに、p型ベース領域10に接してn+ 型リング領域1
6側に伸びるp- 型半導体層40を設けた点にある。ジ
ャンクション・ターミネーション・エクステンション構
造の場合も電界緩和領域11を設ける場合と同様、ツェ
ナーダイオード中の電位分布が半導体基板表面の電位分
布と一致するようにp- 型半導体層40の位置および不
純物濃度を設定することにより、ツェナーダイオード領
域は半絶縁性のターミネーション用保護膜としても有効
に働き、信頼性の高い耐圧特性を得ることができる。
FIG. 4 shows still another embodiment of the present invention, which is a sectional view of a vertical IGBT and an overvoltage protection element connected thereto. The feature of this embodiment is that a Zener diode connected in series to a junction termination extension structure, which is known as a high breakdown voltage technology, is applied. Instead of providing the electric field relaxation region 11 in FIG. N + type ring region 1 in contact with base region 10
The p-type semiconductor layer 40 extending to the 6 side is provided. Also in the case of the junction termination extension structure, the position and the impurity concentration of the p − type semiconductor layer 40 are set so that the potential distribution in the Zener diode matches the potential distribution on the surface of the semiconductor substrate, as in the case where the electric field relaxation region 11 is provided. By doing so, the Zener diode region effectively functions also as a semi-insulating termination protective film, and highly reliable breakdown voltage characteristics can be obtained.

【0018】次に、図1に示した半導体装置の製造方法
を図5を用いて説明する。図において、(a),(b),
(c),(d)はそれぞれ図1に示した高耐圧半導体集
積回路装置の製造方法の各工程を示している。
Next, a method of manufacturing the semiconductor device shown in FIG. 1 will be described with reference to FIG. In the figure, (a), (b),
(C) and (d) show respective steps of the method for manufacturing the high breakdown voltage semiconductor integrated circuit device shown in FIG.

【0019】(a);n型半導体層1の主表面にイオン
打ち込み法および熱拡散によってp型ベース領域10お
よび電界緩和領域11を選択的に形成する。ここで、p
型ベース領域10と電界緩和領域11のイオン打ち込み
は所望の接合深さと不純物濃度を得るため、各々硼素ド
ーズ量および拡散時間を設定する。p型ベース領域10
は電界緩和領域11に比べ、接合深さが浅く、且つ不純
物濃度が低い。その後、熱酸化によりn型半導体層1の
主表面を例えば1.5μm 酸化し、部分的にホトエッチ
ングで除去する。以上によりIGBTQ1のターミネーション
部の第1の絶縁膜3(フィールド酸化膜)と電界緩和領
域11およびIGBTのp型ベース領域10を形成す
る。
(A); A p-type base region 10 and an electric field relaxation region 11 are selectively formed on the main surface of the n-type semiconductor layer 1 by an ion implantation method and thermal diffusion. Where p
In the ion implantation of the mold base region 10 and the electric field relaxation region 11, a boron dose amount and a diffusion time are set in order to obtain a desired junction depth and a desired impurity concentration. p-type base region 10
Has a shallower junction depth and a lower impurity concentration than the electric field relaxation region 11. Then, the main surface of the n-type semiconductor layer 1 is oxidized by thermal oxidation to, for example, 1.5 μm, and is partially removed by photoetching. As described above, the first insulating film 3 (field oxide film) in the termination portion of the IGBT Q1, the electric field relaxation region 11 and the p-type base region 10 of the IGBT are formed.

【0020】(b);n型半導体層1の主表面に熱酸化
によりIGBTQ1のゲート絶縁膜2を例えば700Å形成す
る。次に、CVD法により多結晶シリコンを例えば0.
5 μm積層する。その後、イオン打ち込み法により多
結晶シリコン全面にp型不純物である例えば硼素を低ド
ーズ量(例えば6×1013cm-2)で打ち込み保護素子とな
るツェナーダイオード30の低濃度p型領域4(例えば
幅4.5μm)を形成する。次にツェナーダイオード30
の高濃度のn型多結晶半導体層5(例えば幅2.0μm)
を形成するため、ホトリソグラフィにてツェナーダイオ
ード30の低濃度p型領域となる部分にホトレジストを
残し、n型不純物である例えば砒素を高ドーズ量(例え
ば1×1016cm-2)で打ち込む。この砒素の打ち込みはI
GBTQ1の絶縁ゲート電極9およびゲート配線の低抵抗化
を兼ねている。以上により、IGBTQ1の過電圧保護素子で
あるツェナーダイオード30を形成する。なお、1個当
たりのツェナー電圧が8Vのツェナーダイオードを40
個直列接続した場合、320Vの耐圧を得た。
(B); The gate insulating film 2 of the IGBT Q1 is formed on the main surface of the n-type semiconductor layer 1 by thermal oxidation, for example, 700 Å. Next, the polycrystalline silicon, for example, is formed by the CVD method to a level of 0.1.
Stack 5 μm. After that, a low-concentration p-type region 4 of the Zener diode 30 (for example, boron), which is a p-type impurity, is implanted into the entire surface of the polycrystalline silicon at a low dose amount (for example, 6 × 10 13 cm −2 ) by an ion implantation method (for example, Width 4.5 μm). Next, Zener diode 30
High-concentration n-type polycrystalline semiconductor layer 5 (for example, width 2.0 μm)
In order to form, the photoresist is left in a portion of the Zener diode 30 which will be a low-concentration p-type region by photolithography, and an n-type impurity such as arsenic is implanted at a high dose amount (for example, 1 × 10 16 cm -2 ). This arsenic implant is I
It also serves to reduce the resistance of the insulated gate electrode 9 and the gate wiring of GBTQ1. As described above, the Zener diode 30, which is the overvoltage protection element of the IGBT Q1, is formed. 40 Zener diodes with a Zener voltage of 8V
When they were connected in series, a breakdown voltage of 320 V was obtained.

【0021】(c);(b)で形成した多結晶シリコン
をホトリソグラフィにてパターニング後、ドライエッチ
ングにより部分的に除去する。次に、加工した多結晶シ
リコンおよびホトレジストをマスクとし、イオン打ち込
み法により砒素を高ドーズ量で打ち込み、熱処理を施す
ことにより、IGBTQ1のn型ソース領域とチップ端部のチ
ャネルストッパーとなるn+ 型リング領域16を形成す
る。
(C); The polycrystalline silicon formed in (b) is patterned by photolithography and then partially removed by dry etching. Next, using the processed polycrystalline silicon and photoresist as a mask, arsenic is ion-implanted at a high dose and heat treatment is performed to form an n + type n-type source region of the IGBT Q1 and a channel stopper at the chip end. The ring region 16 is formed.

【0022】(d);主表面にCVD法により第2絶縁
膜15となるPSG膜を積層し、コンタクト部の開口の
ためのホトエッチングを施す。その後、AL−Siを電
子ビーム蒸着やスパッタリング法によって例えば5μm
積層し、選択的にホトエッチングする。これにより、IG
BTQ1のソース電極7,ツェナーダイオード30の両端の
IGBTQ1の絶縁ゲート電極9と接続する電極17およびド
レイン電極13と電気的に接続する電極8が形成され
る。次にパッシベーション膜として応力を緩和でき、且
つ外部からの湿気に対して有効な耐湿性の高い材料、例
えば、PIQやPSGを形成し、最後にドレイン電極を
主表面の裏面に形成する。
(D); A PSG film to be the second insulating film 15 is laminated on the main surface by a CVD method, and photoetching for opening a contact portion is performed. After that, AL-Si is deposited by, for example, 5 μm by electron beam evaporation or sputtering.
Laminate and photoetch selectively. This allows IG
BTQ1 source electrode 7 and Zener diode 30 both ends
An electrode 17 connected to the insulated gate electrode 9 of the IGBT Q1 and an electrode 8 electrically connected to the drain electrode 13 are formed. Next, a material that can relieve stress as the passivation film and has high moisture resistance that is effective against moisture from the outside, such as PIQ or PSG, is formed, and finally, the drain electrode is formed on the back surface of the main surface.

【0023】本製法によれば、過電圧検知部はn型半導
体基板1内の拡散pウエル層ではなく、多結晶シリコン
にイオン打ち込みを施して形成するツェナーダイオード
30を用いるため加工精度が良好であり、その結果アバ
ランシェ電圧の絶対値を規定し易い。
According to this manufacturing method, the overvoltage detecting portion is not the diffusion p well layer in the n-type semiconductor substrate 1 but uses the Zener diode 30 formed by implanting ions in polycrystalline silicon, so that the processing accuracy is good. As a result, it is easy to define the absolute value of the avalanche voltage.

【0024】以上、本発明の実施したIGBTについて
述べたが、本発明はIGBTのみならずMOSFETなどの絶
縁ゲートを有する半導体装置に対して適用できる。ま
た、上述した実施例において導電型を逆極性にしても、
同様の効果がある。さらに、本実施例においては保護素
子はツェナーダイオードのみであるが、ツェナーダイオ
ードと他の回路素子からなる保護回路を形成しても良
い。
Although the IGBT according to the present invention has been described above, the present invention can be applied not only to the IGBT but also to a semiconductor device having an insulated gate such as a MOSFET. In addition, in the above-mentioned embodiment, even if the conductivity type is reversed,
It has the same effect. Further, in this embodiment, the protective element is only the Zener diode, but a protective circuit including the Zener diode and other circuit elements may be formed.

【0025】[0025]

【発明の効果】本発明によれば、チップ面積を増大させ
ることなく保護素子としてのツェナーダイオードを絶縁
ゲート型半導体装置に内蔵できるので、半導体装置のオ
ン特性を犠牲にすることなく信頼性の向上が可能とな
る。
According to the present invention, the Zener diode as a protection element can be built in the insulated gate type semiconductor device without increasing the chip area, so that the reliability is improved without sacrificing the ON characteristics of the semiconductor device. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例。FIG. 1 is an embodiment of the present invention.

【図2】従来例。FIG. 2 is a conventional example.

【図3】本発明の他の実施例。FIG. 3 is another embodiment of the present invention.

【図4】本発明の更に他の実施例。FIG. 4 shows another embodiment of the present invention.

【図5】図1に示した半導体装置の製造方法。FIG. 5 is a method of manufacturing the semiconductor device shown in FIG.

【符号の説明】[Explanation of symbols]

1…n型半導体層、2…ゲート絶縁膜、3…フィールド
絶縁膜、4…p型多結晶半導体層、5…n型多結晶半導
体層、6…絶縁膜、7…ソース電極、8,17…電極、
9…絶縁ゲート電極、10…p型ベース領域、11…電
界緩和領域、12…n型ソース領域、13…ドレイン電
極、14…半導体基板、15…第2絶縁膜、16…n+
型リング領域、30…ツェナーダイオード。
DESCRIPTION OF SYMBOLS 1 ... N-type semiconductor layer, 2 ... Gate insulating film, 3 ... Field insulating film, 4 ... P-type polycrystalline semiconductor layer, 5 ... N-type polycrystalline semiconductor layer, 6 ... Insulating film, 7 ... Source electrode, 8, 17 …electrode,
9 ... Insulated gate electrode, 10 ... P-type base region, 11 ... Electric field relaxation region, 12 ... N-type source region, 13 ... Drain electrode, 14 ... Semiconductor substrate, 15 ... Second insulating film, 16 ... N +
Mold ring region, 30 ... Zener diode.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】同一半導体基板において、 一対の主電極と絶縁ゲート電極を設けた動作領域と、 動作領域に隣接する電界緩和領域と、を備え、 電界緩和領域の表面に形成する絶縁膜と、 絶縁膜上に設けられ、一主電極と絶縁ゲート電極の間に
接続されるツェナーダイオードと、を有することを特徴
とする絶縁ゲート型半導体装置。
1. An insulating film formed on the surface of an electric field relaxation region, comprising: an operating region provided with a pair of main electrodes and an insulated gate electrode; and an electric field relaxation region adjacent to the operating region, in the same semiconductor substrate. An insulated gate semiconductor device, comprising: a zener diode provided on an insulating film and connected between one main electrode and an insulated gate electrode.
【請求項2】同一半導体基板において、 一対の主電極と絶縁ゲート電極を設けた動作領域と、 動作領域に隣接する電界緩和領域と、を備え、 電界緩和領域の表面に形成する絶縁膜と、 絶縁膜上に設けられ、一主電極と絶縁ゲート電極の間に
接続されるツェナーダイオード、及び他の主電極と絶縁
ゲート電極の間に接続されるツェナーダイオードと、を
有することを特徴とする絶縁ゲート型半導体装置。
2. An insulating film formed on the surface of an electric field relaxation region, comprising: an operating region provided with a pair of main electrodes and an insulated gate electrode on the same semiconductor substrate; and an electric field relaxation region adjacent to the operating region, An insulation characterized by having a Zener diode provided on an insulating film and connected between one main electrode and an insulated gate electrode, and a Zener diode connected between another main electrode and an insulated gate electrode. Gate type semiconductor device.
【請求項3】請求項1または請求項2において、ツェナ
ーダイオードが多結晶半導体からなることを特徴とする
絶縁ゲート型半導体装置。
3. The insulated gate semiconductor device according to claim 1, wherein the Zener diode is made of a polycrystalline semiconductor.
【請求項4】請求項1または請求項2において、電界緩
和領域がジャンクション・ターミネーション・エクステ
ンション構造を有することを特徴とする絶縁ゲート型半
導体装置。
4. The insulated gate semiconductor device according to claim 1 or 2, wherein the electric field relaxation region has a junction termination extension structure.
【請求項5】請求項1または請求項2において、電界緩
和領域がフィールド・リミティング・リング構造を有す
ることを特徴とする絶縁ゲート型半導体装置。
5. The insulated gate semiconductor device according to claim 1, wherein the electric field relaxation region has a field limiting ring structure.
JP22473994A 1994-09-20 1994-09-20 Insulated gate type semiconductor device Expired - Fee Related JP3189589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22473994A JP3189589B2 (en) 1994-09-20 1994-09-20 Insulated gate type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22473994A JP3189589B2 (en) 1994-09-20 1994-09-20 Insulated gate type semiconductor device

Publications (2)

Publication Number Publication Date
JPH0888354A true JPH0888354A (en) 1996-04-02
JP3189589B2 JP3189589B2 (en) 2001-07-16

Family

ID=16818487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22473994A Expired - Fee Related JP3189589B2 (en) 1994-09-20 1994-09-20 Insulated gate type semiconductor device

Country Status (1)

Country Link
JP (1) JP3189589B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026325A (en) * 2000-06-23 2002-01-25 Fairchild Korea Semiconductor Kk Mos semiconductor element containing diode for preventing static electricity between gate and emitter
JP2006093505A (en) * 2004-09-27 2006-04-06 Sanyo Electric Co Ltd Protecting device for mos type element, and semiconductor device
JP2008177328A (en) * 2007-01-18 2008-07-31 Denso Corp Semiconductor device and manufacturing method thereof
JP2009088159A (en) * 2007-09-28 2009-04-23 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2009111304A (en) * 2007-11-01 2009-05-21 Fuji Electric Device Technology Co Ltd Overvoltage protective function built-in mos semiconductor apparatus and method of manufacturing the same
JP2009111320A (en) * 2007-11-01 2009-05-21 Fuji Electric Device Technology Co Ltd Silicon carbide trench mos type semiconductor device
WO2014073656A1 (en) 2012-11-08 2014-05-15 富士電機株式会社 Semiconductor device and semiconductor device fabrication method
WO2014142331A1 (en) 2013-03-14 2014-09-18 富士電機株式会社 Semiconductor device
JP2017162891A (en) * 2016-03-08 2017-09-14 株式会社東芝 Semiconductor device
WO2018051416A1 (en) * 2016-09-13 2018-03-22 新電元工業株式会社 Semiconductor device and manufacturing method therefor
JP2018147935A (en) * 2017-03-01 2018-09-20 株式会社豊田中央研究所 Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018115637A1 (en) * 2018-06-28 2020-01-02 Infineon Technologies Ag Power semiconductor component

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026325A (en) * 2000-06-23 2002-01-25 Fairchild Korea Semiconductor Kk Mos semiconductor element containing diode for preventing static electricity between gate and emitter
JP2006093505A (en) * 2004-09-27 2006-04-06 Sanyo Electric Co Ltd Protecting device for mos type element, and semiconductor device
JP2008177328A (en) * 2007-01-18 2008-07-31 Denso Corp Semiconductor device and manufacturing method thereof
US7910411B2 (en) 2007-01-18 2011-03-22 Denso Corporation Semiconductor device and method for manufacturing the same
US8018028B2 (en) 2007-01-18 2011-09-13 Denso Corporation Semiconductor device and method for manufacturing the same
JP2009088159A (en) * 2007-09-28 2009-04-23 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2009111304A (en) * 2007-11-01 2009-05-21 Fuji Electric Device Technology Co Ltd Overvoltage protective function built-in mos semiconductor apparatus and method of manufacturing the same
JP2009111320A (en) * 2007-11-01 2009-05-21 Fuji Electric Device Technology Co Ltd Silicon carbide trench mos type semiconductor device
WO2014073656A1 (en) 2012-11-08 2014-05-15 富士電機株式会社 Semiconductor device and semiconductor device fabrication method
US9368613B2 (en) 2012-11-08 2016-06-14 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN104981903A (en) * 2013-03-14 2015-10-14 富士电机株式会社 Semiconductor device
WO2014142331A1 (en) 2013-03-14 2014-09-18 富士電機株式会社 Semiconductor device
US9406666B2 (en) 2013-03-14 2016-08-02 Fuji Electric Co., Ltd. Semiconductor device
JPWO2014142331A1 (en) * 2013-03-14 2017-02-16 富士電機株式会社 Semiconductor device
JP2017162891A (en) * 2016-03-08 2017-09-14 株式会社東芝 Semiconductor device
WO2018051416A1 (en) * 2016-09-13 2018-03-22 新電元工業株式会社 Semiconductor device and manufacturing method therefor
JP6301561B1 (en) * 2016-09-13 2018-03-28 新電元工業株式会社 Semiconductor device and manufacturing method thereof
CN109952633A (en) * 2016-09-13 2019-06-28 新电元工业株式会社 Semiconductor device and its manufacturing method
US10424578B2 (en) 2016-09-13 2019-09-24 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method of manufacturing the same
JP2018147935A (en) * 2017-03-01 2018-09-20 株式会社豊田中央研究所 Semiconductor device

Also Published As

Publication number Publication date
JP3189589B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
US6323518B1 (en) Insulated gate type semiconductor device and method of manufacturing thereof
JP3191747B2 (en) MOS type semiconductor device
JP2988871B2 (en) Trench gate power MOSFET
US6885061B2 (en) Semiconductor device and a method of manufacturing the same
TWI415223B (en) Semiconductor device and manufacturing method thereof
JP3904648B2 (en) Semiconductor device
JPH0427712B2 (en)
JP3168763B2 (en) Semiconductor device and manufacturing method thereof
EP0057024A1 (en) Semiconductor device having a safety device
JP3189589B2 (en) Insulated gate type semiconductor device
JPH0715006A (en) Integrated structure protective device
JP2680788B2 (en) Integrated structure active clamp device
US6835624B2 (en) Semiconductor device for protecting electrostatic discharge and method of fabricating the same
US20160126100A1 (en) Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
JP2814079B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH07326743A (en) Planar type semiconductor device
JP2937185B2 (en) High breakdown voltage MOS type semiconductor device
KR101570483B1 (en) Power semiconductor device having diode element device for transient voltage protection and method of manufacture thereof
JP3590207B2 (en) MOS capacitor
US4520382A (en) Semiconductor integrated circuit with inversion preventing electrode
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP2755619B2 (en) Insulated gate semiconductor device
US10741542B2 (en) Transistors patterned with electrostatic discharge protection and methods of fabrication
JP4479041B2 (en) Semiconductor device and manufacturing method thereof
KR0175402B1 (en) Power semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees