JPH01204488A - 半導体レーザ - Google Patents

半導体レーザ

Info

Publication number
JPH01204488A
JPH01204488A JP2746888A JP2746888A JPH01204488A JP H01204488 A JPH01204488 A JP H01204488A JP 2746888 A JP2746888 A JP 2746888A JP 2746888 A JP2746888 A JP 2746888A JP H01204488 A JPH01204488 A JP H01204488A
Authority
JP
Japan
Prior art keywords
laser
semiconductor laser
resonator
distribution
faces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2746888A
Other languages
English (en)
Inventor
Mamoru Uchida
護 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2746888A priority Critical patent/JPH01204488A/ja
Publication of JPH01204488A publication Critical patent/JPH01204488A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光情報処理に用いられる半導体レーザ、特に光
デイスクファイルシステムに用いられる低雑音レーザに
関するものである。
〔従来の技術〕
半導体レーザはコンパクトディスク、ビデオディスクを
はじめとして多くの記録媒体の光ピンクアップ用光源に
使われている。その際、現在問題となっているものの一
つが、読み込み時に記録媒体から半導体レーザに戻るレ
ーザ光による雑音の発生である。
この雑音の発生のメカニズムを以下に簡単に述べる。半
導体レーザの共振器面から出射されたレーザ光が記録媒
体によって反射され、一部はレーザ内部へ戻ることによ
り内部レーザ光と結合し、一部は半導体レーザの共振器
表面でさらに反射されることにより外部共振器を形成す
る。この外部共振器長は常に変化し、また半導体レーザ
の共振器長に比べ極端に長いため軸モード間隔が短いの
で軸モードの競合が起こり易くなり、モードホッピング
に伴って雑音が発生する。
この戻り光雑音を軽減するために、いくつかの方法が提
案されている。そのうちの一つが可飽和吸収体を利用し
た自動発振型マルチ軸モードレーザである。この代表的
な例としてrsssレーザがある(鈴木他、rrsss
レーザの雑音特性と自己パルス変調の機構」電子通信学
会・光量子エレクトロニクス研究会0QE84−57)
まずこの従来例について簡単に説明する。第7図はl5
SSレーザの構造を示す模式断面図である。その製作方
法は、まず、有機金属気相成長法(MO−VPE法)に
より、p−GaAsM4反21上に反履1上なる電流ブ
ロック層22〜26を成長させる。その構造は下からn
−GaAs層22、AlGaAs層23、n  GaA
s層24、n−AlGaAs層25、n−GaAs層2
6である。このうち、ブロック層23と25のA/Ga
Asは後に行う液相成長時のメルトバンクを防ぐための
ものである。
この多層からなるブロック層22〜26を積層したウェ
ハにB Cl x / C(l zをエツチングガスと
する反応性イオンエツチング(RI E : Reac
tive IonIEtching)によりT字型の溝
を形成する。この工程は2回のエツチングからなり、溝
の先端は基板に達するようtEを制御しなければならな
い。
次に、このT字溝付きウェハに液相成長法(LPE)に
よって、p AlGaAsクランド層27、p−Aj2
GaAs活性層28、n−AfGaAsクラッド層29
、お上29−GaAsキャンプN30を順次成長するこ
とによりレーザの結晶構造は完成する。
このレーザ構造の特徴は、活性層28の電流注入領域が
T溝の先端の狭い部分の幅で決まるのに対して、等測的
な光ガイド領域はT溝肩部の幅によって独立に制御でき
る点にある。
第8図は1sssレーザのキャリア密度分布と光強度分
布の関係を模式的に表したものである。
図中、破線35は横方向に導波される光の強度分布を、
実線34は活性層2gへの注入キャリア密度分布をそれ
ぞれ表している。また、32はブロック層を示している
。光ガイド領域に比べ電流注入領域が狭いから、光ガイ
ド領域中の活性層のキャリア注入レベルが低い部分(斜
線で示した部分)が可飽和吸収体33として機能する。
可飽和吸収体が自動発振を引き起こす機構は未だ明確で
はないが、定性的には可飽和吸収体がQスイッチ発振を
引き起こすものとして理解されており、I SSSレー
ザだけでなく類似の構造で自動発振動作が確認されてい
る。その際、可飽和吸収領域ではギガヘルツオーダーの
周波数でキャリア密度が変動することにより屈折率も変
化する。このため軸モードが極めて高速にモードホップ
するため、空間的にはあたかもマルチモード発振の様に
観測される。この結果、高周波重畳回路等の外部装置を
付加することなく、レーザ光のコヒーレンスは低下し戻
り光に対して雑音を発生しにくいという特長を有してい
る。
〔発明が解決しようとする課題〕
しかしながら、このl5SSレーザあるいは類似の構造
のレーザには多くの問題点がある。まず、マルチ軸モー
ド発振を起こし易くするために利得導波性を強めなけれ
ばならず、そのためのデバイス構造パラメータが極めて
微妙で製作の歩どまりが極めて低いということである。
実際、I SSSレーザで−は層厚制御のためのMO−
VPEおよび平坦化のためのLPEの2回の結晶成長、
RIEによる2工程の微細加工を必要としている。さら
に決定的な問題点として、注入量が上がるにつれてキャ
リアの拡散により可飽和吸収領域が減少し安定な多モー
ド発振は得られにくくなる、つまり低雑音となる光出力
の領域が低出力領域に限られてしまう。またキャリア及
び利得の温度依存性のために安定なマルチ軸モード動作
は困難である。
〔発明の目的〕
本発明の目的は、広い範囲の光出力にわたって安定なマ
ルチ軸モード発振を維持し、戻り光に対して安定な低雑
音動作が可能な半導体レーザを再現性良く提供すること
にある。
〔課題を解決するための手段〕
本発明は、化合物半導体の多層構造からなる半導体レー
ザにおいて、レーザの共振器が一対の曲面鏡からなるこ
とを特徴とする。
〔作 用〕
本発明の骨子は共振器面形状を曲面とすることで端面各
部で反射率を変化させ、半導体レーザのしきい値利得の
空間分布を制御し、軸モード選択比を弱めキャリアの高
注入時においてもマルチ軸モード発振を維持し、空間的
コヒーレンシーを低下させ、戻り光雑音を低く抑えるこ
とにある。本発明の作用を明確にするために以下に補足
的説明を行う。
半轟体レーザの発振に必要な利得Gthは、次のように
表せる。
ここで、Aは内部損失、Lは共振器長、R1,R2は共
振器前面後面の端面反射率である。また利得Gの電流密
度依存性は、以下の関係がある。
G=B −J              (2)ここ
で、Jは電流密度、Bは比例定数である。
(2)式より利得はキャリア分布と相似形であり、レー
ザ媒質が均一であれば、(1)式よりレーザ内部ではし
きい値利得は一定となる。この結果、発振波長は最小し
きい値利得ピークに最も近い軸モードとして選択される
通常の利得導波型レーザの場合、電流注入領域幅がキャ
リアの拡散長よりも十分広い時には、キャリア分布は釣
鐘状であり、利得分布もそれを反映している。このため
低注入レベルでは、キャリアのホールバーニングのため
本質的にマルチ軸モード発振し易い傾向にある。しかし
キャリアの注入レベルが上がると利得はその軸モードで
消費されるので軸モードの選択性が強まり、原理的には
単一軸モードで動作する。しかし実際には自然放出光成
分や利得の不均一があるため、何本かのサブモードが観
測される。
一方、屈折率導波型の基本横モード制御されたレーザで
は、キャリアの注入領域はキャリアの拡散長程度であり
、しきい値利得は実効的なキャリア注入領域内でほぼ一
定である。また光強度は注入領域中央に集中するため、
キャリア分布は空間的ホールバーニングの影響を受は易
くなり、しきい値利得も一様となり低レベルから単一軸
モード性が強くなる。このため屈折率導波型レーザでは
戻り光雑音に弱いとされている。この様子を第5図に示
した。図中、(a)および(b)において、横軸は横モ
ード方向にとってあり、−a<x<aの領域は実効的な
キャリア注入領域を表している。
縦軸にはしきい値利得Gい(x)およびキャリア密度n
 (x)をそれぞれとっである。(b)において破線1
31は発振直後の低キヤリア密度時のキャリア密度分布
を示し、実線132は高注入時におけるキャリア密度分
布をそれぞれ示している。また(C)は高注入時におけ
る波長スペクトルを表している。
ここでもしキャリア分布に対応したしきい値利得に変化
をつけることができれば、発振時の利得分布に変化をつ
けることができ、軸モードの選択比が弱まり常に安定し
たマルチ軸モード発振を維持することができる。第6図
は、その様子を示したものである。第6図における表記
は第5図とまったく同じである。第6図(b)のように
低注入レベル133では第5図に比ベキャリア分布に変
化がなくとも第6図(a)の様にキャリア密度に依存し
ないしきい値利得を形成すれば、高注入レベル】34で
はしきい値利得を反映したキャリア密度分布を形成する
。その結果、第6図(C)のように高注入時においても
マルチ軸モードを維持できる。
従来例が可飽和吸収体を用いて時間的にマルチモード発
振させていたのに対し、本発明は共振器形状を変化させ
ることにより各部において反射率、即ち共振器損失を制
御して空間的にしきい値利得に変化をつけることによっ
て空間的にマルチモード発振を得るものである。
〔実施例〕
第1図は本発明の一実施例の模式的斜視図、第2図はそ
の平面図である。
まずこのレーザの結晶構造について説明する。
第3図はレーザ結晶の断面図である。層構造は以下のご
とくである。(100)面を有するn型GaAs基板1
01上に<011>方向に沿って幅3μm、深さ1.5
μmの溝102をエツチングで形成した後、液相成長法
によりn型AAGaAsクラッド層103 、n型Al
GaAs光ガイド層104、アンドープAlGaAs活
性層105 、p型AIGaAs光反射1106 、p
型Aj2GaAsクラッド層107 、n型GaAsキ
ャップ層108を積層する。
この後、結晶の表面から溝102に沿って幅4μmの領
域のみに亜鉛拡散することで電流注入領域109とする
。この構造は基板に形成した溝によって横方向の層厚を
変化させることで屈折率差をつけ、高出力まで安定な基
本横モード動作が可能である。本発明の場合、レンズに
よる集光性を重視しているので安定な基本横モード動作
に優れることは、ぜひ必要である。
次に共振器面形成工程について説明する。まず共振器面
の設計について説明する。(1)式において共振器面が
曲面となることによるしきい値利得の変化ΔGthは、
共振器長及び反射率が微小変化するとして以下のように
表される。
ΔGth” ここで端面反射率は前後対称としてR1=R2=Rとし
た。共振器長りを300μm程度とすると、曲率半径を
10μmとかなり小さくとった場合でも、ΔL/Lは十
分率さいので共振器長が変化するごとによるしきい値利
得が変化する割合は無視できる。しきい値利得分布はキ
ャリア注入密度が小さい部分はど小さく設定する必要が
ある。つまり電流注入領域の中央よりも周辺部で、しき
い値利得が小さいことが望ましい。この条件を満たす共
振器形状として周辺部から中央部に行くにつれ、曲面の
曲率半径が小さくなっていればよい。
さて、第1図および第2図に戻り、本実施例の場合、共
振器面123a、  123bは中央から5μm離れた
位置で40μmの曲率半径、中央位置で5μmの曲率半
径が連続的に変化するよう共振器形状を設定した。この
ときのΔR/Rの空間分布を第4図に模式的に示した。
この結果、第6図(a)のような理想的なしきい値利得
分布が得られる。
このしきい値利得分布は高注入になっても保たれるので
、マルチ軸モードで発振が可能である。
次に本実施例の製作方法について説明する。第3図で示
したレーザウェハ上にレジストで共振器形状をパターニ
ングし、これをエツチングマスクとして反応性イオンビ
ームエツチング(RrBE: Reactive Jo
n Beam Etching )により、GaAS基
板101に達するまでエツチングを行う。RIBEは指
向性及び異方性に優れエツチング面に与える損傷も小さ
いので本発明の目的に適している。
共振器を形成した後、共振器面123a、  123b
のバンシベーションを行い端面を保護する。次に電流注
入領域109上のウェハ表面に正電極121、裏面全面
に負電極122を形成して完成する。
本実施例では、凸形状の共振器面を用いたが凹形状のも
のを用いることももちろん可能である。
特にレーザ構造が利得ガイド型の場合には、非点隔差が
大きいので凹形状のものの方が非点隔差をも小さくでき
るという利点ある。
第4図のように本実施例の場合、反射率は通常のへき開
面よりも低下するのでしきい値の増大および微分効率の
低下による動作電流の増加を招く恐れがある。しかし、
この問題は後の端面を高反射率コーティングすることに
より容易に解決することができる。
〔発明の効果〕
本発明の最大の効果は屈折率導波型の半導体レーザにお
いて、高注入時においてもマルチ軸モード発振が得られ
ることにある。この結果、基本横モードを保ったままで
レーザ光の空間的コヒーレンスが高くならないために、
ディスク媒体からの戻り光が数パーセントと大きい場合
でも雑音レベルが高くなることを避けることができる。
【図面の簡単な説明】
第1図は本発明の一実施例である半導体レーザの模式的
斜視図、 第2図は第1図の半導体レーザの平面図、第3図は第1
図の半導体レーザのレーザ結晶の断面図、 第4図は曲面共振器による横方向各部の反射率分布、 第5図は通常の屈折率導波型レーザのしきい値利得分布
、キャリア密度分布、高注入時の軸モートスベクトルを
示す図、 第6図は本発明の半導体レーザのしきい値利得分布、キ
ャリア密度分布、高注入時の軸モードスペクトル、 第7図は従来例の半導体レーザのレーザの構造を表す断
面図、 第8図は第7図の半導体レーザのキャリア密度分布と光
強度分布の関係をそれぞれ示す図である。 101  ・・・・・GaAs基板 102  ・・・・・エノチンク溝 103  ・・・・・AfGaAsクラッド層104 
 ・・・・・AlGaAs光ガイド層105 ・・・・
・AIGaAS活性層lO6・・・・・AIGaAS中
間層 107  ・・・・・A/GaAsクラッド層108 
 ・・・・・A I G a、 A Sキヤ・ノブ層1
09  ・・・・・電流注入領域 121  ・・・・・正電極 122  ・・・・・負電極 123a、 123b ・・・共振器面131.133
  ・・・低注入時のキャリア分布132.134  
・・・高注入時のキャリア分布代理人 弁理士  岩 
佐  義 幸 第1図 第2図 109電、茄注入領域 圭ソ汁 −a               a第4図 G+h (X)                Gt
h(x)n(x)                 
                 n(x)(b) 
                   (bン第5図
    第6図 第7図 第8図

Claims (3)

    【特許請求の範囲】
  1. (1)化合物半導体の多層構造からなる半導体レーザに
    おいて、レーザの共振器が一対の曲面鏡からなることを
    特徴とする半導体レーザ。
  2. (2)前記半導体レーザの構造が屈折率導波型であるこ
    とを特徴とする請求項1記載の半導体レーザ。
  3. (3)前記1対の曲面鏡の各部の曲率半径が連続的に変
    化し、各部の注入キャリア密度との間に正の相関がある
    ことを特徴とする請求項1または2記載の半導体レーザ
JP2746888A 1988-02-10 1988-02-10 半導体レーザ Pending JPH01204488A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2746888A JPH01204488A (ja) 1988-02-10 1988-02-10 半導体レーザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2746888A JPH01204488A (ja) 1988-02-10 1988-02-10 半導体レーザ

Publications (1)

Publication Number Publication Date
JPH01204488A true JPH01204488A (ja) 1989-08-17

Family

ID=12221946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2746888A Pending JPH01204488A (ja) 1988-02-10 1988-02-10 半導体レーザ

Country Status (1)

Country Link
JP (1) JPH01204488A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565261A1 (en) * 1992-04-10 1993-10-13 Gec-Marconi Limited Optical devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565261A1 (en) * 1992-04-10 1993-10-13 Gec-Marconi Limited Optical devices

Similar Documents

Publication Publication Date Title
CA1325670C (en) Combination index/gain guided semiconductor lasers
JP2692913B2 (ja) グレーティング結合型表面発光レーザ素子およびその変調方法
US8331412B2 (en) Vertical-cavity surface-emitting semiconductor laser diode and method for the manufacture thereof
JPH07503581A (ja) キャビティスポイル溝のあるテーパのついた半導体レーザゲイン構造
US5548610A (en) Surface-emitting power laser and process for fabricating this laser
JPS5940592A (ja) 半導体レ−ザ素子
US5438583A (en) Semiconductor laser with optimum resonator
JP2002057400A (ja) 半導体装置およびその製造方法
KR100795994B1 (ko) 단일모드 수직 공진식 표면발광레이저 및 그 제조방법
JPH05129720A (ja) 半導体レーザ装置
JPH01204488A (ja) 半導体レーザ
JPS63166281A (ja) 分布帰還型半導体レ−ザ装置
EP0143460B1 (en) Semiconductor laser device and production method thereof
JP4309636B2 (ja) 半導体レーザおよび光通信用素子
JPS61272987A (ja) 半導体レ−ザ素子
JPH0278291A (ja) 半導体レーザ素子
JPH0671121B2 (ja) 半導体レーザ装置
JPS59165481A (ja) 分布帰還型半導体レ−ザ
KR100331441B1 (ko) 수직 공진기 면발광 레이저 다이오드
JPH02178987A (ja) 半導体レーザ素子
JPH0671122B2 (ja) 半導体レーザ素子
JPS6237899B2 (ja)
JPS63142879A (ja) 半導体レーザ及び半導体レーザの製造方法
JPS59184585A (ja) 単一軸モ−ド半導体レ−ザ
JPH05343795A (ja) 面発光型半導体レーザ