JPH01201965A - Manufacture of non-volatile storage device - Google Patents

Manufacture of non-volatile storage device

Info

Publication number
JPH01201965A
JPH01201965A JP63025822A JP2582288A JPH01201965A JP H01201965 A JPH01201965 A JP H01201965A JP 63025822 A JP63025822 A JP 63025822A JP 2582288 A JP2582288 A JP 2582288A JP H01201965 A JPH01201965 A JP H01201965A
Authority
JP
Japan
Prior art keywords
silicon oxide
oxide film
film
silicon nitride
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63025822A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP63025822A priority Critical patent/JPH01201965A/en
Publication of JPH01201965A publication Critical patent/JPH01201965A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a non-volatile storage device with good controllability concerning stabilization of the interface between a silicon nitride and a silicon oxide, by plasma processing a thin silicon oxide film in an air containing ammonia gases for nitrification of the surface of the film and then depositing the silicon nitride film in the specified thickness by the vapor growth method. CONSTITUTION:On a P-type silicon substrate 1, a source area 2 and a drain area 3, which are made of an N-type diffusion layer, are formed by selective diffusion technology. On the specified portion of the thick silicon oxide film 4 formed at the time of selective diffusion, an opening portion is made by photoetching method. Then, a thin silicon oxide film 5 is deposited on this opening portion to cause a charge tunneling. Nextly, the surface of the silicon oxide film 5 is plasma-processed in an air containing ammonia gases. On the ammonia plasma processed silicon oxide film 6, a silicon nitride film 7 is deposited in the specified thickness by the vapor growth method by chemical reaction of silane and ammonia. After that, an Al electrode 8 is deposited to complete and Al gate MNOS-type non-volatile storage device.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、MNOS (金属−窒化シリコン膜−酸化シ
リコン膜−半導体)型の電界効果トランジスタからなる
不揮発性記憶装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a nonvolatile memory device comprising an MNOS (metal-silicon nitride film-silicon oxide film-semiconductor) field effect transistor. .

(従来の技術) 従来、不揮発性記憶装置の代表的なものとして、MNO
8構造の半導体記憶装置がよく知られている。MNO5
型不揮発性記憶装置は、窒化シリコン膜と薄い酸化シリ
コン膜の界面または、その近傍の窒化シリコン膜中に生
じたトラップ準位に、半導体基板側から電荷の1−ンネ
リング注入、蓄積を行い、トランジスタのしきい値電圧
(Vth)を変化させて情報を記憶させることを原理と
するものである。
(Prior art) Conventionally, MNO is a typical non-volatile storage device.
8-structure semiconductor memory devices are well known. MNO5
A type nonvolatile memory device performs one-channel injection and accumulation of charge from the semiconductor substrate side into a trap level generated in the silicon nitride film at or near the interface between a silicon nitride film and a thin silicon oxide film, and then The principle is to store information by changing the threshold voltage (Vth) of the memory.

第2図に従来の製造方法によって得られたMNO8型半
導体記憶装置の断面構造を示す。同図において、11は
P型シリコン基板、12および13はN型の選択拡散領
域であり、ソース領域およびドレイン領域と呼ばれる。
FIG. 2 shows a cross-sectional structure of an MNO8 type semiconductor memory device obtained by a conventional manufacturing method. In the figure, 11 is a P-type silicon substrate, and 12 and 13 are N-type selective diffusion regions, which are called a source region and a drain region.

14は厚い酸化シリコン膜、15はトンネリング媒体と
なりうる薄い酸化シリコン膜、16は窒化シリコン膜、
17はアルミニウム膜からなるゲート電極である。
14 is a thick silicon oxide film, 15 is a thin silicon oxide film that can serve as a tunneling medium, 16 is a silicon nitride film,
17 is a gate electrode made of an aluminum film.

第2図に示すようなMNO3型不揮発性記憶装置におい
て、薄い酸化シリコン膜15と窒化シリコン膜16の界
面の形成が非常に重要であるが、従来の製造方法では、
トンネリング媒体となりうる薄い(20人程度)酸化シ
リコン膜15を熱酸化により形成したのち、直ちに酸化
シリコン膜15上に、気相成長法により箪化シリコン膜
16を形成して、酸化シリコン−窒化シリコン界面を形
成する方法が通常であった。
In the MNO3 type nonvolatile memory device shown in FIG. 2, the formation of the interface between the thin silicon oxide film 15 and the silicon nitride film 16 is very important, but in the conventional manufacturing method,
After forming a thin (approximately 20 layers) silicon oxide film 15, which can serve as a tunneling medium, by thermal oxidation, a silicon oxide film 16 is immediately formed on the silicon oxide film 15 by vapor phase growth to form a silicon oxide-silicon nitride film. The usual method was to form an interface.

(発明が解決しようとする課題) 上記、従来のMNO8型不揮発性記憶装置の電気的特性
として、(a)酸化シリコン膜と窒化シリコン膜の界面
もしくは、その近傍の窒化シリコン膜中の電#f蓄積と
非蓄積状態に対応するヒステリシス曲線の上下の幅ΔV
th(L、きい値電圧の窓の大きさ)。(b)蓄積、非
蓄積状態の電荷の記憶保持特性。(c)繰返し書き込み
、消去を行ったのちの(a)、(b)項の劣化特性。な
どの特性が、実用上極めて重要であり、さらに、これら
の特性が精度よく安疋して得られることが、MNO8型
不揮発性記憶装置の製造上の最大の課題であり、また実
用上の重大な問題となっている。特に、従来の酸化シリ
コン膜15の上に薫化シリコン膜16を直接、気相成長
法により形成する方法では、酸化シリコン膜15と窒化
シリコン膜16との界面は、構造物性が異なる材料が機
械的に接した一種の不連続面であり、界面に歪や欠陥が
発生することが多い。このような歪や欠陥は、電荷のト
ラップの分布、酸化シリコン−半導体界面、および酸化
シリコン−窒化シリコン界面の状態などに強く影響を与
え、電気的特性のそろったMNO8型不揮発性記憶装置
を精度よく安定して製造することを困難にする欠点があ
った。
(Problems to be Solved by the Invention) As the electrical characteristics of the conventional MNO8 type nonvolatile memory device described above, (a) electric current #f in the silicon nitride film at or near the interface between the silicon oxide film and the silicon nitride film; Upper and lower width ΔV of the hysteresis curve corresponding to accumulation and non-accumulation states
th(L, threshold voltage window size). (b) Memory retention characteristics of charge in accumulated and non-accumulated states. (c) Deterioration characteristics in terms (a) and (b) after repeated writing and erasing. Properties such as these are extremely important in practice, and obtaining these properties with precision and ease is the biggest challenge in manufacturing MNO8 type nonvolatile memory devices, and is also of great practical importance. This has become a serious problem. In particular, in the conventional method of forming the smoked silicon film 16 directly on the silicon oxide film 15 by vapor phase growth, the interface between the silicon oxide film 15 and the silicon nitride film 16 is made of materials with different structural properties. It is a type of discontinuous surface that is in contact with the surface, and distortions and defects often occur at the interface. Such distortions and defects strongly affect the distribution of charge traps, the state of the silicon oxide-semiconductor interface, and the silicon oxide-silicon nitride interface, making it difficult to maintain the accuracy of MNO8 nonvolatile memory devices with uniform electrical characteristics. There were drawbacks that made it difficult to produce well and stably.

本発明の目的は、従来の欠点を解消は、特に窒化シリコ
ンと酸化シリコン界面状態の安定化に関し制御性のよい
製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method with good controllability, particularly with regard to stabilization of the interface between silicon nitride and silicon oxide, which overcomes the drawbacks of the prior art.

(課題を゛解決するための手段) 本発明の不揮発性記憶装置の製造方法は、−導電型半導
体基板面に、正札または電子のトンネリング媒体となり
うる薄い酸化シリコン膜を選択形成する工程と、この酸
化シリコン膜上に窒化シリコン膜を形成する工程と、窒
化シリコン膜上にゲート電極を被着する工程とを有し、
薄い酸化シリコン膜表面上をアンモニアプラズマ処理す
るものである。
(Means for Solving the Problems) The method for manufacturing a non-volatile memory device of the present invention includes the steps of: - selectively forming a thin silicon oxide film, which can be used as an identification tag or an electron tunneling medium, on the surface of a conductive type semiconductor substrate; The method includes a step of forming a silicon nitride film on the silicon oxide film, and a step of depositing a gate electrode on the silicon nitride film,
This involves ammonia plasma treatment on the surface of a thin silicon oxide film.

(作 用) 本発明の製造方法によれば、薄い酸化シリコン膜を形成
したのち、アンモニアガス雰囲気中でプラズマ処理を行
い、酸化シリコン膜表面を窒化させ、そののち、窒化シ
リコン膜を所定の厚さに気相成長法により形成させるた
め、酸化シリコン膜と窒化シリコン膜の界面の不連続性
が緩和され、界面の歪や欠陥を少なくすることができ、
これらの歪や欠陥に基づく電気的特性の不安定性を解消
することができる。
(Function) According to the manufacturing method of the present invention, after forming a thin silicon oxide film, plasma treatment is performed in an ammonia gas atmosphere to nitride the surface of the silicon oxide film, and then the silicon nitride film is formed to a predetermined thickness. Since it is formed using a vapor phase growth method, the discontinuity at the interface between the silicon oxide film and the silicon nitride film is alleviated, and distortion and defects at the interface can be reduced.
The instability of electrical characteristics caused by these distortions and defects can be eliminated.

(実施例) 本発明の一実施例を第1図に基づいて説明する。(Example) An embodiment of the present invention will be described based on FIG.

第1図(A)〜(C)は本発明の製造方法の一実施例を
ボす工程図である。
FIGS. 1(A) to 1(C) are process diagrams showing one embodiment of the manufacturing method of the present invention.

第1図(A)において、P型のシリコン基板1にN型の
拡散層からなるソース領域2、ドレイン領域3を公知の
選択拡散技術で形成し、選択拡散時に形成した厚い酸化
シリコン膜4の所定の部分をフカ1〜エツチング法によ
り開孔部を形成し、この開孔部に、電荷のトンネリング
が起りうるような厚さ(10〜30人程度)変成い酸化
シリコン膜5を通常の熱酸化により形成させる。本実施
例では800°Cの酸素雰囲気中で酸化して形成させ、
膜厚は25人とした。
In FIG. 1(A), a source region 2 and a drain region 3 made of N-type diffusion layers are formed on a P-type silicon substrate 1 by a known selective diffusion technique, and a thick silicon oxide film 4 formed during selective diffusion is formed on a P-type silicon substrate 1. An opening is formed in a predetermined portion by an etching method, and a modified silicon oxide film 5 with a thickness (approximately 10 to 30 layers) that allows charge tunneling is placed in the opening using normal heat. Formed by oxidation. In this example, it is formed by oxidation in an oxygen atmosphere at 800°C,
The film thickness was set at 25 people.

第1図(B)において、酸化シリコン膜5の表面上を、
アンモニアガス雰囲気中でプラズマ処理を行う。本実施
例では、アンモニアプラズマ処理を、基板温度300℃
、パワー50W、ガス圧0.5Torrの条件−トで実
施した。また、・この工程により、酸化シリコン膜5の
表面が窒化され、酸化シリコン膜5の厚さが薄くなるが
、本実施例では、アンモニアプラズマ処理をしたのちの
酸化シリコン膜5の厚さが約20人となるように制御し
た。
In FIG. 1(B), on the surface of the silicon oxide film 5,
Plasma treatment is performed in an ammonia gas atmosphere. In this example, the ammonia plasma treatment was performed at a substrate temperature of 300°C.
The experiment was carried out under the following conditions: , power 50 W, and gas pressure 0.5 Torr. In addition, through this step, the surface of the silicon oxide film 5 is nitrided and the thickness of the silicon oxide film 5 becomes thin; however, in this embodiment, the thickness of the silicon oxide film 5 after the ammonia plasma treatment is approximately The number of participants was controlled to 20.

第1図(C)において、アンモニアプラズマ処理した酸
化シリコン膜6の上に、シラン(SH,)とアンモニア
(NH3)の化学反応に基づく気相成長法によって、7
50℃y N H3/ S x H4=50の条件下で
窒化シリコン膜7を約500変成度形成させる。次にア
ルミニウム(AQ)電極8を通常の真空蒸着法により被
着させ、AI2ゲートMNO8型不揮発性記憶装置を作
製することができる。
In FIG. 1(C), 7 is deposited on a silicon oxide film 6 treated with ammonia plasma by a vapor phase growth method based on a chemical reaction between silane (SH, ) and ammonia (NH3).
The silicon nitride film 7 is formed to have a metamorphic degree of about 500 under the condition of 50° C.y N H3/S x H4=50. Next, an aluminum (AQ) electrode 8 is deposited by a normal vacuum evaporation method to produce an AI2 gate MNO8 type nonvolatile memory device.

本実施例では、ソース、ドレインを選択拡散で形成する
AQゲート型のMNO8型不揮発性記憶装置を作製する
場合について説明を行なってきたが、ゲート電極として
、ポリシリコン等の高融点金属を用いて、本発明の製造
方法によりゲート絶縁膜を形成して、周知のセルファラ
イン技術により、ソース、ドレインを形成してもよい。
In this example, we have explained the case of manufacturing an AQ gate type MNO8 type nonvolatile memory device in which the source and drain are formed by selective diffusion. A gate insulating film may be formed by the manufacturing method of the present invention, and a source and a drain may be formed by a well-known self-line technique.

(発明の効果) 本発明によれば、酸化シリコン膜と窒化シリコン膜の界
面の不連続性が緩和され、界面の歪や欠陥を少なくさせ
ることができる。その結果、界面の歪や欠陥に基づ<M
NO8型不揮発性記憶装置の電気特性の不安定性を解消
することができ、特性のそろった精度の良いMNO8型
不揮発性記憶装置を製造することができ、その実用上の
効果は大である。
(Effects of the Invention) According to the present invention, discontinuity at the interface between a silicon oxide film and a silicon nitride film can be alleviated, and strain and defects at the interface can be reduced. As a result, <M
The instability of the electrical characteristics of the NO8 type nonvolatile memory device can be eliminated, and a highly accurate MNO8 type nonvolatile memory device with uniform characteristics can be manufactured, which has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(C)は本発明の一実施例における不揮
発性記憶装置の製造方法の工程順断面図、第2図は従来
のMNO8型不揮発性記憶装置の構造を示す断面図であ
る。 1 ・・シリコン基板、2・・・ソース領域、3 ・・
 ドレイン領域、4 ・・ 厚い酸化シリコン膜、5 
・・・薄い酸化シリコン膜、6−・・アンモニアプラズ
マ処理した酸化シリコン膜、7  窒化シリコン膜、8
 ・・アルミニウム電極。 特許出願人 松ド電子工業株式会社
FIGS. 1(A) to (C) are cross-sectional views in the order of steps of a method for manufacturing a non-volatile memory device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the structure of a conventional MNO8 type non-volatile memory device. be. 1...Silicon substrate, 2...Source region, 3...
Drain region, 4... Thick silicon oxide film, 5
...Thin silicon oxide film, 6-...Silicon oxide film treated with ammonia plasma, 7 Silicon nitride film, 8
...Aluminum electrode. Patent applicant Matsudo Electronics Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板面に、正札または電子のトンネリ
ング媒体となりうる薄い酸化シリコン膜を選択形成する
工程と、前記酸化シリコン膜上に窒化シリコン膜を形成
する工程と、前記窒化シリコン膜上にゲート電極を被着
する工程とを有する不揮発性記憶装置の製造方法におい
て、前記薄い酸化シリコン膜の表面上をアンモニアプラ
ズマ処理することを特徴とする不揮発性記憶装置の製造
方法。
A step of selectively forming a thin silicon oxide film that can be used as a tag or an electron tunneling medium on the surface of a semiconductor substrate of one conductivity type, a step of forming a silicon nitride film on the silicon oxide film, and a step of forming a gate electrode on the silicon nitride film. A method of manufacturing a non-volatile memory device comprising the step of depositing a thin silicon oxide film on the surface of the thin silicon oxide film is subjected to ammonia plasma treatment.
JP63025822A 1988-02-08 1988-02-08 Manufacture of non-volatile storage device Pending JPH01201965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63025822A JPH01201965A (en) 1988-02-08 1988-02-08 Manufacture of non-volatile storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63025822A JPH01201965A (en) 1988-02-08 1988-02-08 Manufacture of non-volatile storage device

Publications (1)

Publication Number Publication Date
JPH01201965A true JPH01201965A (en) 1989-08-14

Family

ID=12176552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63025822A Pending JPH01201965A (en) 1988-02-08 1988-02-08 Manufacture of non-volatile storage device

Country Status (1)

Country Link
JP (1) JPH01201965A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217317A (en) * 2001-01-16 2002-08-02 Sony Corp Non-volatile semiconductor storage device and its manufacturing method
WO2004021449A1 (en) * 2002-08-30 2004-03-11 Fasl Llc Semiconductor memory and method for manufacturing same
KR100666615B1 (en) * 2004-04-14 2007-01-09 매그나칩 반도체 유한회사 Flash Memory Device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217317A (en) * 2001-01-16 2002-08-02 Sony Corp Non-volatile semiconductor storage device and its manufacturing method
JP4617574B2 (en) * 2001-01-16 2011-01-26 ソニー株式会社 Nonvolatile semiconductor memory device and manufacturing method thereof
WO2004021449A1 (en) * 2002-08-30 2004-03-11 Fasl Llc Semiconductor memory and method for manufacturing same
US7253046B2 (en) 2002-08-30 2007-08-07 Spansion Llc. Semiconductor memory device and manufacturing method thereof
US7410857B2 (en) 2002-08-30 2008-08-12 Spansion Llc. Semiconductor memory device and manufacturing method thereof
KR100666615B1 (en) * 2004-04-14 2007-01-09 매그나칩 반도체 유한회사 Flash Memory Device

Similar Documents

Publication Publication Date Title
US6656804B2 (en) Semiconductor device and production method thereof
JPH10173187A (en) Method of forming silicon nitride thin film or silicon oxide nitride gate dielectric
KR19980032402A (en) Fabrication of Intermediate Gap Metal Gates Compatible with Ultra-thin Layer Dielectrics
JPH06204496A (en) Method for growing high-quality oxide film
US3853496A (en) Method of making a metal insulator silicon field effect transistor (mis-fet) memory device and the product
Pan et al. High-Performance High-$ k $$\hbox {Y} _ {2}\hbox {O} _ {3} $ SONOS-Type Flash Memory
JP2764049B2 (en) Method of manufacturing compound semiconductor device, compound semiconductor device and field effect transistor
JP4358504B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JPH01201965A (en) Manufacture of non-volatile storage device
JP2000332235A (en) Semiconductor device and its manufacture
JP2691385B2 (en) Semiconductor memory device
JPH09223752A (en) Manufacture of nonvolatile semiconductor storage device
JP3041066B2 (en) Insulating film forming method
JPH07297182A (en) Method of forming sin-based insulating film
JPH10189775A (en) Fabrication of nonvolatile semiconductor memory
US6620705B1 (en) Nitriding pretreatment of ONO nitride for oxide deposition
JPS603159A (en) Manufacture of nonvolatile memory device
JPS5963764A (en) Manufacture of nonvolatile memory
JPH10125813A (en) Nonvolatile semiconductor storage device and manufacture thereof
JPS61288471A (en) Manufacture of semiconductor memory device
JPS61290771A (en) Manufacture of semiconductor memory device
JPH0590602A (en) Semiconductor memory cell and manufacture thereof
JPS61287274A (en) Manufacture of semicondutor memory device
JPH0341775A (en) Manufacture of semiconductor memory
JPH07245351A (en) Manufacture of nonvolatile semiconductor storage device