JPH01198404A - Inorganic sintering body and its manufacture - Google Patents

Inorganic sintering body and its manufacture

Info

Publication number
JPH01198404A
JPH01198404A JP63024705A JP2470588A JPH01198404A JP H01198404 A JPH01198404 A JP H01198404A JP 63024705 A JP63024705 A JP 63024705A JP 2470588 A JP2470588 A JP 2470588A JP H01198404 A JPH01198404 A JP H01198404A
Authority
JP
Japan
Prior art keywords
powder
sintered body
series
aluminum powder
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63024705A
Other languages
Japanese (ja)
Inventor
Yuji Nagai
裕二 永井
Takashi Yamamoto
隆嗣 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP63024705A priority Critical patent/JPH01198404A/en
Publication of JPH01198404A publication Critical patent/JPH01198404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an inorganic sintered body having excellent heat conductivity and electrical insulating property by mixing alumina-coated Al powder and low melting point glass powder at the specific ratio, compacting and sintering. CONSTITUTION:The low melting point glass powder having about 1-10mum particle size and 200-600 deg.C softening point of PbO series, B2O3 series, ZnO series, PbO-B2O3 series, etc., is mixed to 50-97wt.% the Al powder having <=30mum median of size for 50% particles forming coated layer of Al2O3, which the surface is oxidized by chemically oxidize-treating the Al powder, at 50-3wt.%. Then, binder of stearic acid, polyvinyl alcohol, etc., diapersant of surface active agent, etc., and organic solvent of acetone, lower alcohol, etc., are added to the above mixed material, to make slurry state. After drying this paste at 80 deg.C, it is cold-pressed and successively, by sintering at for example 500 deg.C, the inorganic sintered body having excellent heat conductivity and electrical insulating property is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、無機焼結体及びその製造方法に関する。本発
明の無機焼結体は、熱伝導性及び絶縁性に優れているの
で、電子部品用の回路基板、ヒートシンクなどとして、
有用である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an inorganic sintered body and a method for producing the same. The inorganic sintered body of the present invention has excellent thermal conductivity and insulation properties, so it can be used as a circuit board for electronic components, a heat sink, etc.
Useful.

従来技術とその問題点 従来、電子部品用の回路基板材料としては、樹脂及びセ
ラミックスが使用されている。しかしながら、樹脂製回
路基板には、熱伝導性が低く、透湿性に起因する配線の
腐蝕という問題点がある。
BACKGROUND ART Conventionally, resins and ceramics have been used as circuit board materials for electronic components. However, resin circuit boards have problems such as low thermal conductivity and corrosion of wiring due to moisture permeability.

さらに、公知のセラミックス製回路基板には、熱伝導性
が低(、また焼結温度が高いため、低融点の卑金属ペー
ストとの同時焼成が困難であるという問題点がある。
Further, known ceramic circuit boards have low thermal conductivity (and high sintering temperatures, making it difficult to co-fire with base metal pastes having low melting points).

問題点を解決するための手段 本発明者は、上記の如き従来技術の現状に鑑みて、種々
研究を重ねた結果、アルミナ被覆アルミニウム粉末と低
融点ガラスとの混合物を成形し、焼結する場合には、従
来技術の問題点を大巾に軽減し得ることを見出した。
Means for Solving the Problems In view of the current state of the prior art as described above, the present inventor has conducted various studies and has developed a method in which a mixture of alumina-coated aluminum powder and low-melting glass is molded and sintered. It has been found that the problems of the prior art can be greatly alleviated.

すなわち、本発明は、以下の無機焼結体及びその製造方
法を提供するものである: ■アルミナ被覆アルミニウム粉末50〜97重量%と低
融点ガラス50〜3重伍%とからなる無機焼結体;及び ■アルミナ被覆アルミニウム粉末50〜97重量%と低
融点ガラス50〜3重量%との混合物を成形した後、焼
結することを特徴とする無機焼結体の製造方法。
That is, the present invention provides the following inorganic sintered body and its manufacturing method: ■ An inorganic sintered body consisting of 50 to 97% by weight of alumina-coated aluminum powder and 50 to 3% by weight of low melting glass. and (2) a method for producing an inorganic sintered body, which comprises molding a mixture of 50 to 97% by weight of alumina-coated aluminum powder and 50 to 3% by weight of low-melting point glass, and then sintering the mixture.

本発明で使用するアルミナ被覆アルミニウム粉末は、任
意の方法で製造したものを使用することが出来る。通常
は、50%粒度中央値が30μm以下、より好ましくは
20μm以下の粒度を有し、酸素含有量が1.5〜20
重量%程度(以下において%とあるのは、全て重量%を
意味する)、より好ましくは3〜10%程度のものを使
用する。
The alumina-coated aluminum powder used in the present invention can be produced by any method. Typically, the particle size has a 50% median particle size of 30 μm or less, more preferably 20 μm or less, and an oxygen content of 1.5 to 20 μm.
About % by weight (hereinafter all % means % by weight) is used, more preferably about 3 to 10%.

アルミナ被覆アルミニウム粉末の粒径は、回路基板の表
面の平滑性を高めるために、出来るだけ小さいことが好
ましい。50%粒度中央値が30μmを上回る場合には
、回路基板表面の平滑性が著しく損なわれる様になる。
The particle size of the alumina-coated aluminum powder is preferably as small as possible in order to improve the smoothness of the surface of the circuit board. If the median 50% particle size exceeds 30 μm, the smoothness of the circuit board surface will be significantly impaired.

また、酸素量が20%を超える場合には、熱伝導性が低
下するのに対し、酸素量が1.5%未満の場合には、絶
縁性が低下する。
Further, if the oxygen content exceeds 20%, the thermal conductivity decreases, whereas if the oxygen content exceeds 1.5%, the insulation property decreases.

上記の如きアルミナ被覆アルミニウム粉末は、例えば、
原料アルミニウム粉を化学的酸化処理に供して、その表
面に水和酸化被膜を形成させた後、熱処理を行うことに
より、該被膜をアルミナ層に変換させれば良い。原料ア
ルミニウム粉の組成は特に限定されず、高純度アルミニ
ウム粉、高ケイ素アルミニウム合金粉末などが使用され
る。また、原料アルミニウム粉の形態も特に限定されず
、アトマイジング法により得られる球状乃至涙滴状粉等
が例示される。原料アルミニウム粉の化学的酸化処理力
としては、例えば、常温の水に長時間浸漬する方法;ク
ロム酸塩、リン酸−クロム酸塩、リン酸−アルコールな
どの水溶液に浸漬する方法;各種のアルカリ(水酸化ナ
トリウム、アンモニア、アミン、アルコールアミンなど
)の水溶液に浸漬する方法;各種の酸(硫酸、硝酸、硼
酸など)の溶液に浸漬する方法;加圧蒸気または高温水
に接触させる方法などが挙げられる。これらの方法の巾
でも、加圧蒸気または高温水により接触処理する方法が
、アルミニウム粉表面に緻密なベーマイト皮膜或いはパ
イヤライトを含む擬ベーマイトを形成させるので、好ま
しい。
The alumina-coated aluminum powder as described above is, for example,
Raw material aluminum powder may be subjected to chemical oxidation treatment to form a hydrated oxide film on its surface, and then heat treatment may be performed to convert the film into an alumina layer. The composition of the raw material aluminum powder is not particularly limited, and high-purity aluminum powder, high-silicon aluminum alloy powder, etc. are used. Further, the form of the raw aluminum powder is not particularly limited, and examples thereof include spherical to teardrop-shaped powder obtained by an atomizing method. Chemical oxidation treatment of raw aluminum powder includes, for example, immersion in water at room temperature for a long time; immersion in aqueous solutions such as chromate, phosphoric acid-chromate, and phosphoric acid-alcohol; various alkalis. Methods include immersion in aqueous solutions of (sodium hydroxide, ammonia, amines, alcohol amines, etc.); methods of immersion in solutions of various acids (sulfuric acid, nitric acid, boric acid, etc.); methods of contact with pressurized steam or high-temperature water, etc. Can be mentioned. Among these methods, the method of contact treatment with pressurized steam or high-temperature water is preferable because it forms a dense boehmite film or pseudo-boehmite containing payerite on the surface of the aluminum powder.

この様にしてその表面に水和酸化被膜を形成されたアル
ミニウム粉を乾燥し、次いで減圧下または大気中350
〜600℃程度の温度で熱処理して、水和酸化被膜をア
ルミナ膜に転換させて、所望のアルミナ被覆アルミニウ
ム粉末を得る。熱処理温度が、350℃未満の場合には
、無視できない程度の量の結晶水が残存することがあり
、一方600℃を上回ると、アルミニウム粉相互の融着
を生ずることがある。
The aluminum powder with a hydrated oxide film formed on its surface in this way is dried, and then dried for 350 minutes under reduced pressure or in the atmosphere.
A heat treatment at a temperature of about ˜600° C. converts the hydrated oxide film into an alumina film to obtain the desired alumina-coated aluminum powder. If the heat treatment temperature is less than 350°C, a non-negligible amount of crystal water may remain, while if it exceeds 600°C, aluminum powder may fuse together.

本発明で使用する低融点ガラスとしては、公知の電子部
品の封着用低融点ガラスが使用可能であり、具体的には
、pbo系、B2O3系、ZnO系、PbOB2O3系
、Pb0−B2O3−8i02系、ZnOA(2203
系等が例示される。低融点ガラスは、通常軟化点100
〜660℃程度、より好ましくは軟化点200〜600
℃程度のものを使用する。ガラスの軟化点が100℃未
満の場合には、焼結体の耐熱性が不十分となり、一方6
60°Cを上回る場合には、焼結温度を高くすることが
必要となるため、焼結体製造時にアルミナ被覆アルミニ
ウム粉末が溶融流動し始める。低融点ガラスの粒度、形
状などは、特に限定されないが、取扱いの容易さ、アル
ミナ被覆アルミニウム粉末との均一混合性などの観点か
らは、粒径1〜10μm程度の粉末の形態で使用するこ
とが好ましい。
As the low melting point glass used in the present invention, known low melting point glasses for sealing electronic components can be used, and specifically, pbo type, B2O3 type, ZnO type, PbOB2O3 type, Pb0-B2O3-8i02 type. , ZnOA (2203
Examples include systems. Low melting point glass usually has a softening point of 100
-about 660℃, more preferably softening point 200-600
Use a temperature around ℃. If the softening point of the glass is less than 100°C, the heat resistance of the sintered body will be insufficient;
If the temperature exceeds 60°C, it is necessary to increase the sintering temperature, so that the alumina-coated aluminum powder starts to melt and flow during the production of the sintered body. The particle size and shape of the low melting point glass are not particularly limited, but from the viewpoint of ease of handling and uniform mixability with alumina-coated aluminum powder, it is preferable to use it in the form of a powder with a particle size of about 1 to 10 μm. preferable.

アルミナ被覆アルミニウム粉末と低融点ガラスとの配合
割合は、重量比で、通常50〜97:50〜3の範囲内
、より好ましくは80〜95:20〜5の範囲とする。
The mixing ratio of the alumina-coated aluminum powder and the low melting point glass is usually in the range of 50 to 97:50 to 3, more preferably in the range of 80 to 95:20 to 5 by weight.

混合物中のアルミナ被覆アルミニウム粉末の量が50%
を下回る場合には、焼結体の熱伝導性が低下するのに対
し、97%を超える場合には、成形物の焼結が困難乃至
不可能となる。
The amount of alumina coated aluminum powder in the mixture is 50%
If it is less than 97%, the thermal conductivity of the sintered body decreases, whereas if it exceeds 97%, it becomes difficult or impossible to sinter the molded product.

本発明の無機焼結体は、アルミナ被覆アルミニウム粉末
と低融点ガラスとの混合粉体100重量部に常法にした
がって少量のバインダー、分散剤、有機溶媒などを添加
し、混練してスラリー化し、所定形状に成形した後、使
用する低融点ガラスの軟化点に応じて100〜660℃
の範囲内の温度で1〜10時間程度焼結する。アルミナ
被覆アルミニウム粉末と低融点ガラス以外の材料として
は、公知のものが全て使用可能であり、例えば、バイン
ダーとしては、ステアリン酸、ポリビニルアルコールな
ど、分散剤としては、界面活性剤など、1     有
機溶媒としては、アセトン、メチルエチルケトン、低級
アルコールどが例示される。
The inorganic sintered body of the present invention is prepared by adding a small amount of a binder, a dispersant, an organic solvent, etc. to 100 parts by weight of a mixed powder of alumina-coated aluminum powder and low-melting glass according to a conventional method, and kneading the mixture to form a slurry. After forming into a predetermined shape, the temperature is 100 to 660°C depending on the softening point of the low melting point glass used.
Sintering is performed at a temperature within the range of 1 to 10 hours. All known materials can be used other than the alumina-coated aluminum powder and the low-melting glass. For example, the binder may be stearic acid, polyvinyl alcohol, etc. The dispersant may be a surfactant, etc. 1. Organic solvent Examples include acetone, methyl ethyl ketone, and lower alcohols.

本発明においては、成形体焼成時の温度が低いので、必
要ならば、回路形成用卑金属導電ペースト層を同時に焼
成し、回路を形成することが出来る。
In the present invention, since the temperature during firing of the compact is low, if necessary, the base metal conductive paste layer for circuit formation can be fired at the same time to form a circuit.

発明の効果 本発明によれば、以下のような顕著な効果が達成される
Effects of the Invention According to the present invention, the following remarkable effects are achieved.

(1)本発明無機焼結体は、アルミニウムの存在により
、熱伝導性に優れているので、電子部品用基板としての
放熱性が著しく改善される。
(1) The inorganic sintered body of the present invention has excellent thermal conductivity due to the presence of aluminum, so its heat dissipation as a substrate for electronic components is significantly improved.

(2)基板形成に際し、低温焼成が可能なので、低電気
抵抗の卑金属導電ペースト層を同時に焼結させることが
出来る。
(2) Since low temperature firing is possible when forming the substrate, a base metal conductive paste layer with low electrical resistance can be sintered at the same time.

(3)その結果、Mo、Wなどの導電ペースト層からな
る回路を基板材料との高温同時焼成により形成させる場
合に比して、発熱量の低い同時焼成基板を得ることが出
来る。
(3) As a result, it is possible to obtain a co-fired substrate with a lower calorific value than when a circuit made of a conductive paste layer of Mo, W, etc. is formed by high-temperature co-firing with the substrate material.

(4)使用するアルミナ被覆アルミニウム粉末の個々の
粒子は、アルミナ被覆により絶縁されているので、積層
基板のスルーホール間で短絡を生じることはない。
(4) Since the individual particles of the alumina-coated aluminum powder used are insulated by the alumina coating, short circuits will not occur between the through holes of the laminated substrate.

実施例 以下に実施例を示し、本発明の特徴とするところをより
一層明らかにする。以下において、“%”及び“部“と
あるのは、それぞれ“重量%”及び“重量部”を意味す
る。
EXAMPLES Examples will be shown below to further clarify the features of the present invention. In the following, "%" and "parts" mean "% by weight" and "parts by weight", respectively.

実施例1 アトマイズドアルミニウム粉(酸素含有量0.30%)
を70℃の脱イオン水に50分間浸漬して、その表面に
水和アルミニウム被膜を形成させ、濾過し、乾燥させた
後、大気と連通ずる電気炉中500℃で3時間熱処理し
て、アルミナ被覆アルミニウム粉(50%粒度中央値2
0μm)を得た。得られたアルミナ被覆アルミニウム粉
の酸素含有量は、5.2%であった。酸素含有量の測定
は、(株)堀場製作所製、EMGA−2800型酸素測
定装置により行なった。
Example 1 Atomized aluminum powder (oxygen content 0.30%)
was immersed in deionized water at 70°C for 50 minutes to form a hydrated aluminum film on its surface, filtered and dried, and then heat-treated at 500°C for 3 hours in an electric furnace communicating with the atmosphere to form alumina. Coated aluminum powder (50% median particle size 2
0 μm) was obtained. The oxygen content of the alumina-coated aluminum powder obtained was 5.2%. The oxygen content was measured using an EMGA-2800 oxygen measuring device manufactured by Horiba, Ltd.

上記のようにして得たアルミナ被覆アルミニウム粉(ア
ルミ粉とする)と半導体封着用低融点ガラス粉(PbO
−B203−3i02系:軟化点397℃、50%粒度
中央値4.7μmニガラス粉とする)とを使用して、第
1表に示す配合割合の混合物NO,1〜8を得た。
The alumina-coated aluminum powder (referred to as aluminum powder) obtained as described above and the low-melting point glass powder for semiconductor sealing (PbO
-B203-3i02 system: Nigarasu powder with a softening point of 397°C and a median particle size of 50% of 4.7 μm) was used to obtain mixtures Nos. 1 to 8 with the blending ratios shown in Table 1.

第1表 次いで、混合物No、1〜8のそれぞれ100部にステ
アリン酸10部、ノニオン系界面活性剤1部及びアセト
ン40部を加え、ポリエチレンでライニングしたボール
ミル内でアルミナボールを使用して、24時間混練し、
スラリー化した。
Table 1 Next, 10 parts of stearic acid, 1 part of nonionic surfactant and 40 parts of acetone were added to 100 parts of each of Mixture Nos. 1 to 8, and the mixture was heated in a polyethylene-lined ball mill using alumina balls for 24 hours. Knead for an hour,
It turned into slurry.

得られたスラリーを80℃で3時間乾燥し、冷間プレス
で直径10m+aX高さ2.5mmのベレットに成形し
、500℃で3時間焼成して、焼結体No。
The obtained slurry was dried at 80°C for 3 hours, formed into a pellet with a diameter of 10 m + a x height of 2.5 mm by cold pressing, and fired at 500°C for 3 hours to form a sintered body No.

1〜8を得た。1 to 8 were obtained.

得られた焼結体の熱伝導率をレーザーフラッシュ法によ
り測定し、また体積固有抵抗を求めた。
The thermal conductivity of the obtained sintered body was measured by a laser flash method, and the volume resistivity was determined.

結果を第2表に示す。The results are shown in Table 2.

第2表 焼結体  熱伝導率    体積固有抵抗No、   
  (W/mk)       (Ω・cm)1  (
注1)      (注1) 2   195   7.5xlO1132007,8
xlO” 4   170   8.5x10115   155
   3.2x10126   105   8.9x
lO127654,2xlO’ 8    30   7、4xlO13(注1):成形
体が焼結不十分なため測定不能実施例2 アルミナ被覆アルミニウム粉末の50%粒度中央値をそ
れぞれ5μm(No、9)及び30μm(No、lO)
とする以外は実施例1と同様にして焼結体を得た。
Table 2 Sintered body Thermal conductivity Volume resistivity No.
(W/mk) (Ω・cm)1 (
Note 1) (Note 1) 2 195 7.5xlO1132007,8
xlO" 4 170 8.5x10115 155
3.2x10126 105 8.9x
lO127654, 2xlO' 8 30 7, 4xlO13 (Note 1): Unmeasurable due to insufficient sintering of the compact Example 2 The 50% median particle size of the alumina-coated aluminum powder was 5 μm (No. 9) and 30 μm (No. , lO)
A sintered body was obtained in the same manner as in Example 1 except that.

得られた焼結体の熱伝導率及び体積固有抵抗を第3表に
示す。なお、第3表には、使用したアルミナ被覆アルミ
ニウム粉末の50%粒度中央値が20μmである実施例
1の焼結体No、3の結果を併せて示す。
Table 3 shows the thermal conductivity and volume resistivity of the obtained sintered body. Table 3 also shows the results for sintered bodies No. 3 of Example 1, in which the 50% median particle size of the alumina-coated aluminum powder used was 20 μm.

第3表 焼結体  熱伝導率    体積固有抵抗No、   
  (W/mk)       (Ω・Cm)9   
195   6.9X10113   200   7
.8xlO” 10   205   7、0xb 実施例3 実施例1の混合物No、3.4.及び5とそれぞれ同一
組成の混合物100部にポリビニルブチラール(数平均
分子ff155000)10部、ジブチルフタレート4
部、ノニオン系界面活性剤2部、メチルエチルケトン3
2部、メタノール22部及びn−ブタノール8部を加え
、実施例1と同様にしてスラリー化し、スラリー粘度を
15000CpSに21整した。得られたスラリーをド
クターブレード方式の成形機を使用して厚さ1mmのシ
ートに成形し、500℃で3時間焼成した。
Table 3 Sintered body Thermal conductivity Volume resistivity No.
(W/mk) (Ω・Cm)9
195 6.9X10113 200 7
.. 8xlO" 10 205 7, 0xb Example 3 To 100 parts of a mixture having the same composition as each of Mixture No., 3.4. and 5 of Example 1, 10 parts of polyvinyl butyral (number average molecule ff 155000) and 4 parts of dibutyl phthalate were added.
1 part, 2 parts of nonionic surfactant, 3 parts of methyl ethyl ketone
2 parts of methanol, 22 parts of methanol, and 8 parts of n-butanol were added to form a slurry in the same manner as in Example 1, and the slurry viscosity was adjusted to 15,000 CpS. The obtained slurry was formed into a 1 mm thick sheet using a doctor blade type forming machine, and baked at 500° C. for 3 hours.

得られた焼結体NQ、11112及び13の熱伝導率と
体積面a抵抗を第4表に示す。
Table 4 shows the thermal conductivity and volumetric surface a resistance of the obtained sintered bodies NQ, 11112 and 13.

焼結体  熱伝導率 No、     (W/mk)Sintered body thermal conductivity No, (W/mk)

Claims (1)

【特許請求の範囲】 [1]アルミナ被覆アルミニウム粉末50〜97重量%
と低融点ガラス50〜3重量%とからなる無機焼結体。 [2]アルミナ被覆アルミニウム粉末50〜97重量%
と低融点ガラス50〜3重量%との混合物を成形した後
、焼結することを特徴とする無機焼結体の製造方法。
[Claims] [1] Alumina-coated aluminum powder 50 to 97% by weight
and 50 to 3% by weight of low melting point glass. [2] Alumina-coated aluminum powder 50-97% by weight
1. A method for producing an inorganic sintered body, which comprises molding a mixture of and 50 to 3% by weight of low melting point glass and then sintering the mixture.
JP63024705A 1988-02-03 1988-02-03 Inorganic sintering body and its manufacture Pending JPH01198404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63024705A JPH01198404A (en) 1988-02-03 1988-02-03 Inorganic sintering body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63024705A JPH01198404A (en) 1988-02-03 1988-02-03 Inorganic sintering body and its manufacture

Publications (1)

Publication Number Publication Date
JPH01198404A true JPH01198404A (en) 1989-08-10

Family

ID=12145595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63024705A Pending JPH01198404A (en) 1988-02-03 1988-02-03 Inorganic sintering body and its manufacture

Country Status (1)

Country Link
JP (1) JPH01198404A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102632239A (en) * 2011-02-15 2012-08-15 神基科技(南昌)有限公司 Method for sintering aluminum powder
JP2013046004A (en) * 2011-08-26 2013-03-04 Steq Co Ltd Insulating circuit board, semiconductor module, and manufacturing method therefor
AT512041A4 (en) * 2012-05-04 2013-05-15 Mikroelektronik Ges Mit Beschraenkter Haftung Ab Method for producing a metallized substrate
JP2021098871A (en) * 2019-12-19 2021-07-01 株式会社アドマテックス Particulate material and method of producing the same, and filler material
US11222878B2 (en) 2019-04-30 2022-01-11 Ab Mikroelektronik Gesellschaft Mit Beschraenkter Haftung Electronic power module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102632239A (en) * 2011-02-15 2012-08-15 神基科技(南昌)有限公司 Method for sintering aluminum powder
JP2013046004A (en) * 2011-08-26 2013-03-04 Steq Co Ltd Insulating circuit board, semiconductor module, and manufacturing method therefor
AT512041A4 (en) * 2012-05-04 2013-05-15 Mikroelektronik Ges Mit Beschraenkter Haftung Ab Method for producing a metallized substrate
AT512041B1 (en) * 2012-05-04 2013-05-15 Mikroelektronik Ges Mit Beschraenkter Haftung Ab Method for producing a metallized substrate
US11222878B2 (en) 2019-04-30 2022-01-11 Ab Mikroelektronik Gesellschaft Mit Beschraenkter Haftung Electronic power module
US11776940B2 (en) 2019-04-30 2023-10-03 Kyocera AVX Components (Salzburg) GmbH Electronic power module
JP2021098871A (en) * 2019-12-19 2021-07-01 株式会社アドマテックス Particulate material and method of producing the same, and filler material

Similar Documents

Publication Publication Date Title
US4812422A (en) Dielectric paste and method of manufacturing the paste
CN101321415A (en) Rare earth thick film circuit electrical heating element based on aluminum nitride minicrystal ceramic substrates and its preparation technique
JPH01198404A (en) Inorganic sintering body and its manufacture
WO1989001461A1 (en) Co-sinterable metal-ceramic packages and materials therefor
JP2002187768A (en) Low temperature sintering dielectric material for high frequency and sintered body of the same
JPH01197355A (en) Inorganic sintered body and production thereof
JPS62250626A (en) Thick film capacitor and manufacture of the same
JPH02221162A (en) Production of aluminum nitride-based sintered body
KR100246720B1 (en) Method of preparing paste for resistor for lcr co-firing, method of manufacturing thick film using it
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JPS59162169A (en) Ceramics and multilayer distribution panel
JPH068189B2 (en) Oxide dielectric material
CN115490511B (en) Low-temperature cofiring material with near-zero temperature coefficient and preparation method thereof
JPS62209895A (en) Insulating paste for ceramic multilayer interconnection board
JPS5895643A (en) Sintered body having coefficient of thermal expansion approximating to silicon
JPH1153940A (en) Copper metalized composition and glass ceramic wiring board using it
CN118851732A (en) High-heat-conductivity low-temperature cofiring ceramic material and preparation method thereof
JPH02212363A (en) Production of sintered compact of aluminum nitride
JPS60215569A (en) Manufacture of glass-ceramic composite substrate
JP3236759B2 (en) Insulating porcelain and multilayer wiring board using the same
JP2003026446A (en) Composition for electronic circuit board and electronic circuit board
JPH02196066A (en) Production of aluminum nitride-based sintered body
JPH0431339A (en) Glass-ceramics composite material
JPS587203B2 (en) conductive paint
JPH01138793A (en) Ceramic multilayer circuit substrate