JPH01196890A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH01196890A
JPH01196890A JP2308888A JP2308888A JPH01196890A JP H01196890 A JPH01196890 A JP H01196890A JP 2308888 A JP2308888 A JP 2308888A JP 2308888 A JP2308888 A JP 2308888A JP H01196890 A JPH01196890 A JP H01196890A
Authority
JP
Japan
Prior art keywords
type
layer
thin film
active layer
striped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2308888A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Takashi Sugino
隆 杉野
Masahiro Kume
雅博 粂
Masanori Hirose
広瀬 正則
Atsuya Yamamoto
敦也 山本
Akira Nakamura
晃 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2308888A priority Critical patent/JPH01196890A/en
Publication of JPH01196890A publication Critical patent/JPH01196890A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser device oscillated at a fundamental transverse mode by a low threshold current value by effectively injecting electrons and holes to an active layer having striped width of approximately 2mum or less. CONSTITUTION:A recessed section is formed to a substrate 11, and a GaAs buffer layer 12, a P-type AlxGa1-xAs clad layer 13, a multiple quantum well type active layer 14, an N-type AlxGa1-xAs clad layer 15 and an N-type GaAs contact layer 16 are grown into the recessed section. An N-type electrode 19 and P-type electrodes 18 isolated to a striped shape are formed respectively in an ohmic manner. Both electrons and holes in carriers are injected effectively to the multiple quantum well type active layer 14 having striped width of 2mum, and laser beams are also confined effectually into a region having striped width W. Accordingly, a semiconductor laser device oscillated at a fundamental transverse mode at a low threshold current value is acquired.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種電子機器などの光源として用いられる半
導体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser device used as a light source for various electronic devices.

従来の技術 半導体レーザと電子回路をハイブリッドに、或いはモノ
リシックに集積化する時、半導体レーザウエハガプレー
ナな表面を持ち、プレーナな電極構成をしていることが
、集積化素子の高速化、高信頼性の保持、素子間の接続
工程の容易さ等の観点から重要である。
Conventional technology When integrating semiconductor lasers and electronic circuits in a hybrid or monolithic manner, the fact that the semiconductor laser wafer has a planar surface and a planar electrode configuration increases the speed and reliability of the integrated device. This is important from the viewpoints of maintaining properties and facilitating the process of connecting elements.

第2図に従来例を示す。(1sae年秋季応用物理学会
学術講演会予稿集2了a−T−B 、 p、 155く
牧内他、「横方向注入レーザ(1)−基本構造−」〉)
半絶縁性G a A s基板1上に高抵抗A I G 
a A s層2゜多重量子井戸型活性層6.高抵抗A 
I G a A s層6及びG a A sコンタクト
層7,8を形成した後、p型拡散領域3及び、n型拡散
領域4をそれぞれ、Zn、Siで形成する。微細加工に
より残したn型G a A sコンタクト層7とp5G
aAsコンタクト層8上にそれぞれn仰j電極9とp側
電極10をオーミックに形成する。作製された第2図に
示す素子は、n型拡散領域3とn型拡散領域4から、ス
トライプ幅Wの多重量子井戸型活性層5にキャリアが注
入され、再結合し、レーザ発振に致る。レーザ光は、ス
トライプ幅Wの多重量子井戸型活性層5に有効に閉じ込
められる。積層方向では、隣接した高抵抗AlGaAs
  クラッドa2と6の方が活性層よ)も十分禁止帯幅
が大きく、また、積層方向と垂直方向では、活性層に隣
接した層が、ZnとSiの無秩序化により、量子井戸構
造から、混晶となり、ストライプ幅Wの光導波路が形成
されるためである。その結果、W = 0.571m 
でしまい電流値30 mAで高効率で発振するレーザが
得られた。
FIG. 2 shows a conventional example. (1sae Autumn Academic Conference Proceedings of the Japan Society of Applied Physics 2 Ryoa-T-B, p. 155 Kumauchi et al., “Laterally Injected Laser (1) - Basic Structure”)
High resistance A I G on semi-insulating Ga A s substrate 1
a As layer 2° multi-quantum well type active layer 6. High resistance A
After forming the IGaAs layer 6 and the GaAs contact layers 7 and 8, a p-type diffusion region 3 and an n-type diffusion region 4 are formed of Zn and Si, respectively. n-type GaAs contact layer 7 and p5G left by microfabrication
On the aAs contact layer 8, an n-elevation j electrode 9 and a p-side electrode 10 are formed ohmically. In the fabricated device shown in FIG. 2, carriers are injected from the n-type diffusion region 3 and the n-type diffusion region 4 into the multi-quantum well type active layer 5 with a stripe width W, and are recombined, resulting in laser oscillation. . The laser light is effectively confined in the multi-quantum well type active layer 5 having a stripe width W. In the stacking direction, adjacent high resistance AlGaAs
The forbidden band width of claddings a2 and 6 is sufficiently large (the active layer is larger), and in the direction perpendicular to the stacking direction, the layer adjacent to the active layer is decontaminated from the quantum well structure due to the disordering of Zn and Si. This is because the optical waveguide with the stripe width W is formed. As a result, W = 0.571m
A laser that oscillated with high efficiency at a current value of 30 mA was obtained.

発明が解決しようとする課題 しかしながら、上記構造でぽ、ストライプ幅Wが1.5
1tm以上になるとしきい値の上昇(2倍以上)、効率
の低下(’/以下)が起こるという欠点が生ずる。これ
は各拡散層から横方向に量子井戸型活性層へキャリアを
注入することによるものと考えられ、ストライプ幅が大
きくなると、ストライプ内で電子と正孔の濃度分布が顕
著とをp、再結合確率が減少する結果と考えられる。ま
た、ZnやSiの拡散プロセヌを用いて、ストライプ幅
Wを0.5μm程度に再現性良く得ることは難しい。
Problems to be Solved by the Invention However, in the above structure, the stripe width W is 1.5.
If it exceeds 1 tm, there will be disadvantages such as an increase in the threshold value (more than double) and a decrease in efficiency (less than '/). This is thought to be due to the injection of carriers from each diffusion layer into the quantum well type active layer in the lateral direction, and as the stripe width increases, the concentration distribution of electrons and holes within the stripe becomes more pronounced. This is thought to be the result of a decrease in the probability. Furthermore, it is difficult to obtain a stripe width W of about 0.5 μm with good reproducibility using Zn or Si diffusion prosthesis.

本発明は上記欠点に鑑み、ストライプ幅2μm程度以下
の活性層に有効に電子と正孔を注入し、その結果、低し
きい電流値で基本横モード発振する半導体レーザ装置を
提供するものである。
In view of the above drawbacks, the present invention provides a semiconductor laser device that effectively injects electrons and holes into an active layer with a stripe width of about 2 μm or less, and as a result, oscillates in a fundamental transverse mode with a low threshold current value. .

課題を解決するための手段 上記課題を解決するために、本発明の半導体レーザ装置
は、凹部を有する半絶縁性基板上に凹部の幅より狭いス
トライプ状の多層薄膜が構成され、前記多層薄膜中には
、活性層と活性層に隣接して、活性層より禁止帯幅の大
きいクラッド層が少なくとも構成され、しかも前記活性
層は多重又は単一量子井戸構造で構成され、前記凹部の
ストライプ状領域以外の領域には、一導電型の二重ヘテ
ロ接合を含む多層薄膜を構成し、さらに前記多層薄膜に
隣接して基板側と前記ストライプ状多層薄膜領域と反対
側に前記多層薄膜と同一導電型の領域を形成し、前記ス
トライプ状領域表面に、前記ストライプ幅より狭い1陥
のストライプ状電極と、前記ストライプ状電極と分離し
て平行に前記一導電型の多層薄膜領域上に少なくとも1
つ以上のストライプ状電極を有することにより構成され
ている。
Means for Solving the Problems In order to solve the above problems, a semiconductor laser device of the present invention includes a semi-insulating substrate having a recess, and a striped multilayer thin film having a width narrower than the recess. comprises at least an active layer and a cladding layer adjacent to the active layer having a wider forbidden band width than the active layer, and the active layer has a multiple or single quantum well structure, and the striped region of the recess In the other regions, a multilayer thin film including a double heterojunction of one conductivity type is formed, and further, adjacent to the multilayer thin film, a layer of the same conductivity type as the multilayer thin film is formed on the substrate side and on the side opposite to the striped multilayer thin film region. forming a stripe-like electrode on the surface of the stripe-like region, one recess narrower than the stripe width, and at least one stripe-like electrode separated from and parallel to the stripe-like electrode on the multilayer thin film region of one conductivity type.
It is constructed by having three or more striped electrodes.

作   用 この構成により、効率よくキャリアを注入することがで
き、低しきい電流値で基本横モード発振する半導体レー
ザ装置を実現することができる。
Function: With this configuration, carriers can be injected efficiently, and a semiconductor laser device that oscillates in the fundamental transverse mode with a low threshold current value can be realized.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の実施例の半導体レーザ装置の断面図
を示すものであり、このように構成された半導体レーザ
装置について、以下動作結果を説明する。
FIG. 1 shows a cross-sectional view of a semiconductor laser device according to an embodiment of the present invention, and the operation results of the semiconductor laser device configured in this manner will be described below.

基板は、第1図に示す様に、半絶縁性G a A s基
板11を用いる。基板11に凹部を設け、MOCVD法
による選択エビタキンヤル成長により、凹部内に、G 
a A sバッファ層12.p型Al、Ga1−、As
クラッド層13.多重量子井戸型活性層14.n型A/
!xGa1−xAsクラッド層15.n型GaAs m
l :/タクト層16をそれぞれ111m、 1.27
zm、 0.171m(GaAg  ウ エルに4 、
4 ウ ェ ル 、 100 人、蕾μf 。
As the substrate, a semi-insulating GaAs substrate 11 is used, as shown in FIG. A concave portion is provided in the substrate 11, and G is grown in the concave portion by selective epitaxial growth using the MOCVD method.
a As buffer layer 12. p-type Al, Ga1-, As
Cladding layer 13. Multi-quantum well type active layer 14. n-type A/
! xGa1-xAs cladding layer 15. n-type GaAs m
l:/tact layer 16, 111 m and 1.27, respectively
zm, 0.171m (4 in GaAg well,
4 wells, 100 people, bud μf.

A l y G a 1y A sバリア、1.5層、
12OA層厚(Q (7(X > ) 、 1.27z
m、 0.5層1mの厚さに成長する。成長温度は75
0℃、成長速度31trn/時。
A ly G a 1y As barrier, 1.5 layers,
12OA layer thickness (Q (7(X > ), 1.27z
m, 0.5 layers are grown to a thickness of 1 m. Growth temperature is 75
0°C, growth rate 31 trn/hour.

V/I比は60で行った。活性層幅Wを残して、第1図
に示す様にZn拡散を行い、その後ストライプ状に分離
したn側電極19とp側電極18をそれぞれオーミック
に形成する。
The V/I ratio was 60. Leaving the active layer width W, Zn is diffused as shown in FIG. 1, and then an n-side electrode 19 and a p-side electrode 18 separated into stripes are formed ohmically.

作製した半導体レーザは、ストライプ幅W=α5 It
 m〜2.01t mでいずれも、30 mA以下のし
きい電流値で基本横モード発振を行った。電流対光出力
特性においても、10mWまで直線性の良い特性が得ら
れ、ストライプ幅Wによる効率の低下は10%未満とな
っている。
The fabricated semiconductor laser has a stripe width W=α5 It
Fundamental transverse mode oscillation was performed at a threshold current value of 30 mA or less at m to 2.01 t m. In terms of current vs. light output characteristics as well, good linearity was obtained up to 10 mW, and the decrease in efficiency due to the stripe width W was less than 10%.

以上の結果より、キャリアは、″重子、正孔ともに有効
に、ストライプ幅Wの多重量子井戸型活性層に注入され
、レーザ光も、ストライプ幅Wの領域に有効に閉じ込め
られていることがわかる。し−ザ光の閉じ込めが生じる
様にストライプ4Wの領域が光導波路となるのは、隣接
するZn拡散領域内の量子井戸層が、Znの無秩序化に
より、混晶組成に変化するためであると考えられる。
From the above results, it can be seen that carriers, both molecules and holes, are effectively injected into the multi-quantum well type active layer with the stripe width W, and the laser light is also effectively confined in the region with the stripe width W. The reason why the region of the stripe 4W becomes an optical waveguide so that the confinement of the laser light occurs is because the quantum well layer in the adjacent Zn diffusion region changes to a mixed crystal composition due to the disordering of Zn. it is conceivable that.

なお、本実施例では、G a、 A s系、AlGaA
s 系半導体レーザについて述べたが、InP系や他の
翫混合系を含む化合物半導体を材料とする半導体レーザ
装置についても、同様に本発明を適用できる。
In addition, in this example, Ga, As-based, AlGaA
Although the s-based semiconductor laser has been described, the present invention can be similarly applied to semiconductor laser devices made of compound semiconductors including InP-based and other mixed semiconductor lasers.

発明の効果 本発明は、活性層に効率良くキャリアを注入することが
可能な、低しきい電流埴で基本横モード発振する、電子
回路との集積化に適したプレーナな表面と電極構成を持
つ半導体レーザ装置の構造を与えるものであり、その実
用的効果は著しい。
Effects of the Invention The present invention has a planar surface and electrode structure that can efficiently inject carriers into the active layer, oscillates in a fundamental transverse mode with a low threshold current, and is suitable for integration with electronic circuits. It provides the structure of a semiconductor laser device, and its practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の半導体レーザ装置の断面図、
第2図は、従来の半導体レーザ装置の断面図を示す。 1.11・・・・・・半絶縁性G a A s基板、2
・・・・・・高抵抗A I G a A s層、3・・
・・・・p型拡散領域、4・・・・・・n型拡散領域、
5,14・・・・・・多重量子井戸型活性虐、6−0.
、++、−6抵抗A I G a A s層、7−−−
−−− n型GaAs:1ンタクト層、8・・・・・・
p 型G a A sコンタクト層、9゜19・・・・
・・n側電極、10.18・・・・・・p側電極、12
・・・・・・G a A s ハソファ層、13・・・
・・・p型AlGaAsクラッド層、15− n 型A
lGaAs  クラッド層、16・・・・・・n 型G
 aA sコンタクト層、17・・・・・・p5Zn拡
散領域、W・・・・・・ストライプ幅。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名71
−− ’t&壜a (qa As 基板72、、− C
raAs t<ッファ層/3−− P’JLA1(ra
Asクラット層/4−−・多重量子井六至呑眺場 15−−− 72型A1ξAs7ラツドl、萱#)−−
−n型GaAs:I>9’7 ト41’1−−−P里Z
n拡散頌域 1B −−−P イ!リペ1糧 第1図   1’1−77使jt@ 7−−−キ絶縁柱CraAs基板 2−°°高低坑AI!6tzAs層 3−・P型s、、散横桟 4−−71型#、、致領域 S−・・多重童子キた空温〕1 6 =−at抵坑AI Cra AsM9−・−n型電
極 10・・−P型電極
FIG. 1 is a cross-sectional view of a semiconductor laser device according to an embodiment of the present invention;
FIG. 2 shows a cross-sectional view of a conventional semiconductor laser device. 1.11...Semi-insulating GaAs substrate, 2
...High resistance AIGAs layer, 3...
...p-type diffusion region, 4...n-type diffusion region,
5,14...Multiple quantum well type activation, 6-0.
, ++, -6 resistance A I Ga As layer, 7---
--- N-type GaAs: 1 contact layer, 8...
P-type GaAs contact layer, 9°19...
...N-side electrode, 10.18...P-side electrode, 12
・・・・・・G a A s Ha Sofa Layer, 13...
... p-type AlGaAs cladding layer, 15-n type A
lGaAs cladding layer, 16...n type G
aA s contact layer, 17...p5Zn diffusion region, W...stripe width. Name of agent: Patent attorney Toshio Nakao and 1 other person71
--'t & bottle a (qa As substrate 72, -C
raAs t< buffer layer/3-- P'JLA1(ra
As Crat Layer/4--・Multiple Quantum Well Rokuji Drinking Viewpoint 15--- Type 72 A1ξAs7 Rad 1, 萱#)---
-n-type GaAs: I>9'7 t41'1---PriZ
n Diffusion area 1B ---P I! Lipe 1 food Figure 1 1'1-77 messenger jt @ 7--Ki insulating column CraAs substrate 2-°° elevation hole AI! 6tzAs layer 3--P type s, Scattered horizontal bar 4--71 type #,, contact area S--multiple doji kita air temperature] 1 6 =-at resistance AI Cra AsM9--n type electrode 10...-P type electrode

Claims (1)

【特許請求の範囲】[Claims] 凹部を有する半絶縁性基板の前記凹部内に、前記凹部の
幅より狭い幅のストライプ状で、量子井戸構造の活性層
と活性層に隣接して活性層より禁止帯幅の大きいクラッ
ド層を含む多層薄膜が構成され、前記ストライプ状多層
薄膜以外の前記凹部の領域には、一導電型の二重ヘテロ
接合を含む多層薄膜が構成され、さらに前記ストライプ
状多層薄膜領域を除き前記多層薄膜に隣接して前記一導
電型の領域が形成され、前記ストライプ状多層薄膜表面
に、前記ストライプ幅より狭い幅のストライプ状電極と
、前記一導電型の多層薄膜上にストライプ状電極を有す
ることを特徴とする半導体レーザ装置。
In the recess of a semi-insulating substrate having a recess, an active layer having a quantum well structure and a cladding layer adjacent to the active layer having a bandgap width larger than that of the active layer are included in a stripe shape having a width narrower than the width of the recess. A multilayer thin film is formed, and a multilayer thin film including a double heterojunction of one conductivity type is formed in a region of the recess other than the striped multilayer thin film, and further, a multilayer thin film including a double heterojunction of one conductivity type is formed adjacent to the multilayer thin film except for the striped multilayer thin film region. The region of one conductivity type is formed, and the stripe-shaped multilayer thin film has striped electrodes having a width narrower than the stripe width on the surface of the striped multilayer thin film, and striped electrodes on the multilayer thin film of one conductivity type. Semiconductor laser equipment.
JP2308888A 1988-02-02 1988-02-02 Semiconductor laser device Pending JPH01196890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2308888A JPH01196890A (en) 1988-02-02 1988-02-02 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2308888A JPH01196890A (en) 1988-02-02 1988-02-02 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH01196890A true JPH01196890A (en) 1989-08-08

Family

ID=12100672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2308888A Pending JPH01196890A (en) 1988-02-02 1988-02-02 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH01196890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047885A (en) * 1990-04-25 1992-01-13 Nec Corp Semiconductor laser device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929484A (en) * 1982-08-12 1984-02-16 Fujitsu Ltd Semiconductor light emitting device
JPS61125189A (en) * 1984-11-22 1986-06-12 Fujitsu Ltd Manufacture of semiconductor light-emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929484A (en) * 1982-08-12 1984-02-16 Fujitsu Ltd Semiconductor light emitting device
JPS61125189A (en) * 1984-11-22 1986-06-12 Fujitsu Ltd Manufacture of semiconductor light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047885A (en) * 1990-04-25 1992-01-13 Nec Corp Semiconductor laser device

Similar Documents

Publication Publication Date Title
JPS62130581A (en) Semiconductor laser
JPH01196890A (en) Semiconductor laser device
JP3801410B2 (en) Semiconductor laser device and manufacturing method thereof
JPS6356977A (en) Semiconductor laser
JP3472739B2 (en) Manufacturing method of semiconductor laser
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS61164286A (en) Quantum well structure semiconductor laser
JP3143105B2 (en) Method for manufacturing semiconductor laser device
JPS62179192A (en) Semiconductor light emitting device
JPH01166592A (en) Semiconductor laser element
JPS62179790A (en) Semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPH02237190A (en) Semiconductor laser
JPH01298786A (en) Semiconductor laser device and manufacture thereof
JPS63306684A (en) Manufacture of semiconductor laser
JPH04130692A (en) Semiconductor laser and manufacture thereof
JPH05121823A (en) Manufacture of semiconductor laser device
JPH01103890A (en) Semiconductor laser device
JPS63181392A (en) Buried semiconductor laser element
JPH01220882A (en) Semiconductor laser
JPH0878770A (en) Semiconductor laser device
JPH01103894A (en) Semiconductor laser device
JPS6179284A (en) Semiconductor laser
JPS63153882A (en) Semiconductor laser device
JPH04296081A (en) Visible beam semiconductor laser