JPH01196817A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01196817A
JPH01196817A JP2316588A JP2316588A JPH01196817A JP H01196817 A JPH01196817 A JP H01196817A JP 2316588 A JP2316588 A JP 2316588A JP 2316588 A JP2316588 A JP 2316588A JP H01196817 A JPH01196817 A JP H01196817A
Authority
JP
Japan
Prior art keywords
ion implantation
semiconductor substrate
pattern
chip
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2316588A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yadoiwa
宿岩 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2316588A priority Critical patent/JPH01196817A/en
Publication of JPH01196817A publication Critical patent/JPH01196817A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the breakdown of an insulator due to a charge-up phenomenon caused by ion implantation, by using a conductive film as a material of a mask pattern resistant to the ion implantation, and by interconnecting parts of the pattern throughout an entire area of a semiconductor substrate. CONSTITUTION:A mask pattern for resisting ion implantation is formed of a conductive film throughout an entire area of a semiconductor substrate. The mask pattern for resisting the ion implantation is formed for each chip, and it is made up of chip patterns 2, 3, 4 and 5 to which a pattern 1 of each chip is adjacent and patterns 6 interconnecting the chip patterns 1, 2, 3, 4 and 5 respectively. When ions are implanted in this state, a charge caused by the ion implantation can be made run off through the periphery of the semiconductor substrate. Thereby the breakdown of an insulator due to a charge-up phenomenon caused by the ion implantation is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に係り、特にイオン注入
の耐マスク膜の性質とパターン形状に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to the properties and pattern shape of a mask film for ion implantation.

〔従来の技術〕[Conventional technology]

近年、半導体装置は、高密度化、高速化を図る為にスケ
ーリングによる微細パターン化を進める必要があるので
、浅い拡散層、及び非常に薄い絶縁膜を用いる技術を利
用している。しかし、これらの薄い絶縁膜、浅い拡散層
を用いると、半導体装置の絶縁耐圧低下を招き、静電気
による半導体装置の破壊が問題となってきている。
In recent years, in semiconductor devices, it is necessary to advance fine patterning through scaling in order to achieve higher densities and higher speeds, so techniques using shallow diffusion layers and very thin insulating films are used. However, when these thin insulating films and shallow diffusion layers are used, the dielectric breakdown voltage of the semiconductor device is lowered, and damage to the semiconductor device due to static electricity has become a problem.

特にMO8型ダイナミックRAM等では、微少な電荷を
容量部分に蓄え、この電荷を信号として取扱っているの
で高密度化が進み、パターンが微細になってきても出来
るだけ多くの電荷を蓄積し大きな信号量を取り出す為に
非常に薄い絶縁膜を利用している。
In particular, in MO8 type dynamic RAM, etc., a small amount of charge is stored in a capacitor and this charge is handled as a signal, so even as the density increases and patterns become finer, as much charge as possible is stored and large signals are generated. A very thin insulating film is used to extract the amount.

ところで、従来からMO8型半導体装置の製造工程では
、不純物の導入量が正確にコントロールできること、半
導体基板を加熱せずに不純物を注入できるので浅い拡散
層を形成することが可能なこと等の理由でイオン注入技
術が多用されている。
By the way, conventionally, in the manufacturing process of MO8 type semiconductor devices, the amount of introduced impurities can be accurately controlled, and since the impurities can be implanted without heating the semiconductor substrate, it is possible to form a shallow diffusion layer. Ion implantation technology is often used.

つまり、正確にトス量が電流値としてカウントできるの
でMOS)ランジスタの量も重要なパラメータであるV
TMを決める半導体基板表面の不純物濃度のコントロー
ルには、10〜150KeVのエネルギーで、1010
〜1013atom/cniの不純物イオンを半導体基
板に注入し、所望のVTMを得ている。さらに、MOS
)ランジスタのソース、ドレイン拡散層の形成、ポリシ
リコンへの不純物ドープ、半導体基板への酸素、窒素等
の導入による半導体基板内での絶縁物の形成等には10
〜200KeVのエネルギーで1014〜10 ”at
om/adのイオン注入を行っており、半導体装置製造
には必要不可欠な技術として利用されている。
In other words, since the amount of toss can be accurately counted as the current value, the amount of transistor (MOS) is also an important parameter.
To control the impurity concentration on the surface of the semiconductor substrate, which determines TM, 1010
Impurity ions of ~1013 atoms/cni are implanted into the semiconductor substrate to obtain the desired VTM. Furthermore, the M.O.S.
) For forming source and drain diffusion layers of transistors, doping polysilicon with impurities, and forming insulators within semiconductor substrates by introducing oxygen, nitrogen, etc. into semiconductor substrates, etc.
1014~10” at ~200KeV energy
Om/ad ion implantation is performed and is used as an essential technology for semiconductor device manufacturing.

そして、第2図(a)に半導体ウェノ・−を示し、第2
図(b)にその一部を拡大して示しであるように、これ
らのイオン注入の場合、多くは、イオン注入の耐マスク
性の材質としてはパターンを形成したレジストが、その
まま用いられていた。一般には、イオン注入工程の為の
フォトリングラフィ工程、(レジスト塗布、目合わせ露
光、現像焼しめ)を経て、半導体基板上に形成されたレ
ジストパターンをそのまま耐イオン注入のマスクとして
用いている。
FIG. 2(a) shows the semiconductor wafer, and the second
As shown in Figure (b), a part of which is enlarged, in the case of these ion implantations, in most cases, resist with a pattern formed thereon was used as it is as a mask-resistant material for ion implantation. . Generally, a resist pattern formed on a semiconductor substrate through a photolithography process (resist coating, alignment exposure, development and baking) for the ion implantation process is used as it is as a mask for ion implantation.

〔発明が解決しようとする問題点〕 上述した従来法によるイオン注入技術では、耐イオン注
入用のマスクとして絶縁物であるレジストを用いている
為、電荷粒子によるイオン注入を行うと、レジスト表面
に電荷がチャージアップし、レジスト端部と半導体基板
の間で放電が起り、半導体基板上に形成された絶縁物が
破壊されてしまうという重大な欠点がある。
[Problems to be solved by the invention] In the conventional ion implantation technology described above, a resist, which is an insulator, is used as a mask for ion implantation, so when ions are implanted using charged particles, the surface of the resist is damaged. There is a serious drawback that charges build up and discharge occurs between the resist edge and the semiconductor substrate, destroying the insulator formed on the semiconductor substrate.

従来の半導体装置では、例えばMO8型半導体装置のゲ
ート絶縁膜は500〜1000人程度であり、上述した
ようなイオン注入のチャージアップによる破壊は見られ
なかったが、近年パターンの微細化に伴うスケーリング
が行われ、特にMO3型ダイナミックRAM等の容量絶
縁膜は100人前後の膜厚が用いられているので、上述
したイオン注入によるチャージアップで容量絶縁膜はす
べて破壊されてしまった。又、この問題を解決するた為
に、耐イオン注入用のマスク材として、絶縁物であるレ
ジストから導電性のある金属に変更してみたが、前述し
た100人の容量絶縁膜のほとんどは、破壊されており
、半導体装置を製造することが出来ないという致命的な
欠陥がある。
In conventional semiconductor devices, for example, the gate insulating film of an MO8 type semiconductor device has a thickness of about 500 to 1000, and no damage was seen due to charge-up during ion implantation as described above. Particularly, since the capacitive insulating film of MO3 type dynamic RAM and the like has a film thickness of about 100 μm, the capacitive insulating film is completely destroyed by the charge-up caused by the above-mentioned ion implantation. Also, in order to solve this problem, we tried changing the mask material for ion implantation from resist, which is an insulator, to a conductive metal, but most of the capacitive insulating films of the 100 people mentioned above, It has been destroyed and has a fatal defect that makes it impossible to manufacture semiconductor devices.

上述したように従来技術でもイオン注入のチャージアッ
プによる絶縁破壊対策としてイオン注入の耐マスク材と
して導電性のある物質を用いる試みを行ってみたが、絶
縁物の膜厚が非常に薄くなる(シリコン酸化膜で300
Å以下)と効果が無いことを発見した。さらに、パター
ンの微細化(パターン幅が1μ前後)に伴い、縮少露光
でパターン形成を行う場合、従来技術ではパターン設計
が容易となるので第2図(d)に示すようにそれぞれの
チップ単位でパターン形成を行っており、また、高額な
縮少露光装置を有効稼働される為に完全にチップが形成
できる領域のみを露光し、第2図(c)に示すように半
導体基板全域に渡ってパターン形成を行っていなかった
が、本発明では、それぞれのチップ間もパターンで繋ぎ
、半導体基板全域に渡ってパターンを形成するという従
来技術には無い新規性を有する。
As mentioned above, attempts have been made in the prior art to use conductive materials as masking materials for ion implantation to prevent dielectric breakdown caused by charge-up during ion implantation, but the film thickness of the insulator becomes extremely thin (silicon 300 with oxide film
Å or less) and found that it had no effect. Furthermore, with the miniaturization of patterns (pattern width is around 1μ), when pattern formation is performed using reduced exposure, pattern design is easier with conventional technology, so each chip is In addition, in order to effectively operate the expensive reduction exposure equipment, only the area where a chip can be completely formed is exposed, and as shown in Figure 2(c), the entire semiconductor substrate is exposed. However, the present invention has the novelty of connecting each chip with a pattern and forming a pattern over the entire semiconductor substrate, which is not found in the prior art.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の製造方法においては、先ず第1にイオン注入の
耐マスク性物質が導電性を有すること、第2に半導体基
板上にパターンを形成された前述の耐マスク性物質が半
導体基板全域に渡ってそれぞれのパターンの一部もしく
は全部が繋っていることである。
In the manufacturing method of the present invention, firstly, the mask-resistant material for ion implantation has conductivity, and secondly, the above-mentioned mask-resistant material patterned on the semiconductor substrate is spread over the entire area of the semiconductor substrate. This means that some or all of the respective patterns are connected.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して簡単に説
明する。
Embodiments of the present invention will be briefly described below with reference to the drawings.

本発明の半導体装置の製造方法では、まずイオン注入の
耐マスクパターンを形成する工程において、半導体基板
上に導電性被膜、例えばアルミニュウム膜を約1μ被着
し、通常のフォトリングラフィ技術を用いて、前述の導
電性被膜上にフォトレジストでイオン注入の耐マスクパ
ターンを形成する。次に、前述のフォトレジストパター
ンをマスクとしてエツチングを行い、導電性被膜で耐イ
オン注入用のマスクパターンを形成した後、導電性被膜
のエツチングマスクに用いたレジストを除去する。この
様子を示すのが第1図である。第1図(a)では、半導
体基板全域に渡って、導電性被膜による耐イオン注入用
マスクパターンが形成されている。第1図(b)は、第
1図(a)の一部分の拡大図で、チップ単位に耐イオン
注入用マスクパターンが形成されており、そのチップ単
位のパターン1が隣接するチップ2,3,4.5とチッ
プ間を連結するパターン6によって繋っている。
In the method for manufacturing a semiconductor device of the present invention, first, in the step of forming a mask pattern for ion implantation, a conductive film, for example, an aluminum film of about 1 μm is deposited on a semiconductor substrate, and then an ordinary photolithography technique is used to deposit a conductive film, for example, an aluminum film of about 1 μm. Then, a mask pattern for resisting ion implantation is formed using photoresist on the above-mentioned conductive film. Next, etching is performed using the aforementioned photoresist pattern as a mask to form a mask pattern for resisting ion implantation using the conductive film, and then the resist used as the etching mask for the conductive film is removed. FIG. 1 shows this situation. In FIG. 1(a), an ion implantation-resistant mask pattern made of a conductive film is formed over the entire semiconductor substrate. FIG. 1(b) is an enlarged view of a part of FIG. 1(a), in which an ion implantation-resistant mask pattern is formed on a chip-by-chip basis. 4.5 and the chips are connected by a pattern 6 that connects them.

このように半導体基板全域に渡って導電性被膜で形成さ
れた耐イオン注入マスクパターンがその一部で連結され
ている状態でイオン注入を行えば、非常に薄い絶縁膜を
用いた半導体装置でもイオン注入工程におけるチャージ
アップによる絶縁膜の破壊を防ぐことができる。
In this way, if ion implantation is performed with the ion implantation resistant mask pattern formed of a conductive film covering the entire semiconductor substrate connected at some parts, ion implantation can be performed even in a semiconductor device using a very thin insulating film. Breakdown of the insulating film due to charge-up during the implantation process can be prevented.

尚、本発明では連結パターン6はチップ単位のパターン
の接続が可能であれば、どのようなパターンでも良く、
又、チップ単位内ではすべてのパターンが接続してなく
てもその効果は同じように良いことが確認できている。
Incidentally, in the present invention, the connection pattern 6 may be any pattern as long as it is possible to connect patterns on a chip-by-chip basis.
Moreover, it has been confirmed that the effect is equally good even if all the patterns are not connected within a chip unit.

〔発明の効果〕〔Effect of the invention〕

本発明の効果について図面を用いて簡単に説明する。 The effects of the present invention will be briefly explained using the drawings.

第3図は、半導体基板としてシリコン基板上に、また絶
縁膜としてシリコン熱酸化膜をそれぞれ500人、30
0人、100人形成し、本発明による製造方法でイオン
注入工程を経た後、前記熱酸化膜の絶縁耐圧を調査した
結果である。また、第4図は、第3図と同一の熱酸化膜
を形成した後、従来法によるイオン注入工程を行い、前
述と同様に酸化膜の絶縁耐圧を調査した結果である。
Figure 3 shows 500 people and 30 people depositing a silicon thermal oxide film on a silicon substrate as a semiconductor substrate and a silicon thermal oxide film as an insulating film, respectively.
These are the results of investigating the dielectric strength of the thermal oxide film after forming it by 0 and 100 people and undergoing an ion implantation process using the manufacturing method according to the present invention. Furthermore, FIG. 4 shows the results of an ion implantation process using the conventional method after forming the same thermal oxide film as in FIG. 3, and investigating the dielectric breakdown voltage of the oxide film in the same manner as described above.

第3図から解るように、本発明の製造方法によってイオ
ン注入工程を行えば、酸化膜厚が100人と極めて薄く
なっても絶縁耐圧の劣化が見られない。一方策4図の従
来法では、酸化膜が500人と厚い場合は、本発明のそ
の絶縁耐圧に大きな差は認められないが、酸化膜が30
0人、100人と絶縁耐圧は劣化し、100人となると
ほとんど破壊しており実使用にはとても耐えない。
As can be seen from FIG. 3, if the ion implantation process is performed according to the manufacturing method of the present invention, no deterioration in dielectric breakdown voltage will be observed even if the oxide film thickness becomes extremely thin by 100 mm. On the other hand, with the conventional method shown in Figure 4, if the oxide film is 500 thick, there is no significant difference in the dielectric strength of the present invention;
The dielectric strength deteriorates as the number of people increases from 0 to 100, and when the number of people reaches 100, it is almost destroyed and cannot withstand actual use.

以上説明したように、本発明は耐イオン注入マスクパタ
ーンの材質として導電性被膜を用い、かつ、そのパター
ンの一部が半導体基板全域に渡って連結していることに
より、イオン注入によって生じたチャージを半導体基板
周辺を通して逃がすことができ、非常に薄い絶縁物を用
いた半導体装置でもイオン注入によるチャージアップ現
象で絶縁物が破壊されることを防ぐことができた。
As explained above, the present invention uses a conductive film as the material of the ion implantation-resistant mask pattern, and a part of the pattern is connected over the entire semiconductor substrate, so that the charge generated by ion implantation can be avoided. This allows the insulator to escape through the periphery of the semiconductor substrate, and even in semiconductor devices using very thin insulators, it is possible to prevent the insulator from being destroyed by the charge-up phenomenon caused by ion implantation.

従って本発明を用いれば非常に薄い絶縁物を用いた半導
体装置が実現でき、さらに高集積化した半導体装置の製
造が可能となり、2年で4倍という集積度の向上が要求
されているメモリーデバイスの実用化にも大きく貢献で
きる。
Therefore, if the present invention is used, it is possible to realize a semiconductor device using a very thin insulator, and it is also possible to manufacture a semiconductor device with a higher degree of integration.Memory devices, which are required to increase the degree of integration by four times in two years, are now possible. It can also greatly contribute to the practical application of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示す図で、第1(a)は、
半導体基板全域に渡って本発明による耐イオン注入マス
クパターンが形成されている様子を示し、第1図(b)
は第1図(a)の一部分の拡大図である。 第1図において、1,2,3,4.5は、それぞれチッ
プ単位のパターン、6は、連結パターンである。 第2図は、従来法による実施例を示す図で第2図(a)
は半導体基板上にチップ単位の耐イオン注入マスクパタ
ーンが形成されている様子を示す。 第2図(b)は、第2図(a)の一部分の拡大図で、従
来法では、耐イオン注入マスクパターンがそhぞれのチ
ップ単位で形成されていることを示す図である。 第3図は、本発明の効果を示す図で、シリコン基板上に
形成した熱酸化膜の絶縁耐圧を示す図である。第3図に
おいて、縦軸は発生率、横軸は絶縁耐圧を示す。第3図
(a)、 (b)、 (c)はそれぞれ、熱酸化膜が5
00人、300人、100人の場合、本発明の耐イオン
注入マスクパターンを形成して、イオン注入を行った後
の熱酸化膜の絶縁耐圧を示す図である。 第4図は、本発明の効果を比較するために1第3図と同
一構造で、従来法による耐イオン注入マスクパターンを
形成して、イオン注入を行った場合の絶縁耐圧を示す図
である。第4図において、縦軸、横軸は第3図と同じで
ある。第4図(a)。 (b)、 (c)ハ(−れぞれ熱酸化膜が500人、3
00人。 100人と第3図(a)、 (b)、 (c)と同一構
成で、前述したように従来法による耐イオン注入マスク
のパターンを用いてイオン注入を行った場合の熱酸化膜
の絶縁耐圧を示す図である。 代理人 弁理士  内 原   音 (肺 (α〕 第1 圀 ルノ (a、)  ZTE 1MEAKD014/N FxELD M3回
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 1(a) is a diagram showing an embodiment of the present invention.
FIG. 1(b) shows how the ion implantation resistant mask pattern according to the present invention is formed over the entire semiconductor substrate.
is an enlarged view of a portion of FIG. 1(a). In FIG. 1, 1, 2, 3, and 4.5 are patterns in chip units, and 6 is a connected pattern. Fig. 2 is a diagram showing an example of the conventional method. Fig. 2(a)
1 shows how a chip-by-chip ion implantation resistant mask pattern is formed on a semiconductor substrate. FIG. 2(b) is an enlarged view of a portion of FIG. 2(a), showing that in the conventional method, an ion implantation-resistant mask pattern is formed for each chip. FIG. 3 is a diagram showing the effect of the present invention, and is a diagram showing the dielectric strength of a thermal oxide film formed on a silicon substrate. In FIG. 3, the vertical axis shows the incidence rate, and the horizontal axis shows the dielectric strength voltage. Figures 3 (a), (b), and (c) show that the thermal oxide film is
FIG. 4 is a diagram showing the dielectric breakdown voltage of a thermal oxide film after ion implantation is performed by forming the ion implantation resistant mask pattern of the present invention in the case of 00, 300, and 100 people. FIG. 4 is a diagram showing the dielectric breakdown voltage when ion implantation is performed using the same structure as FIG. 1 and FIG. 3 by forming an ion implantation-resistant mask pattern using the conventional method, in order to compare the effects of the present invention. . In FIG. 4, the vertical and horizontal axes are the same as in FIG. 3. Figure 4(a). (b), (c) C (-500 thermal oxide films, 3
00 people. Insulation of the thermal oxide film when ion implantation was performed using the conventional ion implantation mask pattern as described above with 100 people and the same configuration as in Figures 3 (a), (b), and (c). FIG. 3 is a diagram showing breakdown voltage. Agent Patent Attorney Oto Uchihara (Lung (α) 1st Runo Kuni (a,) ZTE 1MEAKD014/N FxELD M3 times

Claims (1)

【特許請求の範囲】[Claims]  半導体基板にイオン注入によって不純物を導入する工
程において、耐イオン注入マスク材となる物質が導電性
を有し、かつ、前記耐イオン注入マスク材のパターンが
半導体基板全域に渡って連結していることを特徴とする
半導体装置の製造方法。
In the process of introducing impurities into a semiconductor substrate by ion implantation, the substance serving as the ion implantation resistant mask material has conductivity, and the pattern of the ion implantation resistant mask material is connected over the entire area of the semiconductor substrate. A method for manufacturing a semiconductor device, characterized by:
JP2316588A 1988-02-02 1988-02-02 Manufacture of semiconductor device Pending JPH01196817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2316588A JPH01196817A (en) 1988-02-02 1988-02-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316588A JPH01196817A (en) 1988-02-02 1988-02-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01196817A true JPH01196817A (en) 1989-08-08

Family

ID=12103006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316588A Pending JPH01196817A (en) 1988-02-02 1988-02-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01196817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290709A (en) * 1991-04-16 1994-03-01 Nec Corporation Method of manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160168A (en) * 1984-01-30 1985-08-21 Toshiba Corp Manufacture of mos semiconductor device
JPS61207073A (en) * 1985-03-12 1986-09-13 Seiko Epson Corp Manufacture of active matrix substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160168A (en) * 1984-01-30 1985-08-21 Toshiba Corp Manufacture of mos semiconductor device
JPS61207073A (en) * 1985-03-12 1986-09-13 Seiko Epson Corp Manufacture of active matrix substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290709A (en) * 1991-04-16 1994-03-01 Nec Corporation Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JPS5856268B2 (en) Manufacturing method of semiconductor device
JPH01196817A (en) Manufacture of semiconductor device
US5739059A (en) Method of forming a semiconductor device having high and low resistance polysilicon
US7078294B2 (en) Sealing method for electronic devices formed on a common semiconductor substrate and corresponding circuit structure
JPH11168196A (en) Semiconductor device and manufacture thereof
JPS60160168A (en) Manufacture of mos semiconductor device
JPS62154622A (en) Manufacture of semiconductor device
JPS5955070A (en) Manufacture of semiconductor device
KR0185636B1 (en) Manufacturing method of capacitor improved characteristic of step difference in semiconductor memory device
JPH02143461A (en) Semiconductor device and its manufacture
RU2110870C1 (en) Manufacturing process for storage capacitor of integrated-circuit memory element
JP3783240B2 (en) Manufacturing method of flash memory
KR960013507B1 (en) Method for manufacturing sram
JPS60148118A (en) Semiconductor device
JPH0371625A (en) Manufacture of semiconductor device
JPS61220451A (en) Manufacture of semiconductor device
KR950005461B1 (en) Semiconductor device and manufacturing method thereof
JPH0927618A (en) Manufacture of mos semiconductor device
JPH0491422A (en) Manufacture of semiconductor device
JPH01310534A (en) Manufacture of semiconductor device
JPS6197974A (en) Manufacture of semiconductor device
JPH05267205A (en) Manufacture of semiconductor device
US20070026610A1 (en) Sealing method for electronic devices formed on a common semiconductor substrate and corresponding circuit structure
JPS6445156A (en) Manufacture of semiconductor device
JPH03237720A (en) Manufacture of semiconductor device