JPH0927618A - Manufacture of mos semiconductor device - Google Patents
Manufacture of mos semiconductor deviceInfo
- Publication number
- JPH0927618A JPH0927618A JP17336195A JP17336195A JPH0927618A JP H0927618 A JPH0927618 A JP H0927618A JP 17336195 A JP17336195 A JP 17336195A JP 17336195 A JP17336195 A JP 17336195A JP H0927618 A JPH0927618 A JP H0927618A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- gate electrode
- manufacturing
- thin film
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、MOS型半導体装置の
製造方法、特にソ−ス・ドレイン領域形成の為に半導体
基板へN型もしくはP型不純物をド−ピングする際の改
良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a MOS type semiconductor device, and more particularly to an improvement in doping an N type or P type impurity into a semiconductor substrate for forming a source / drain region.
【0002】[0002]
【従来の技術】従来より、N型もしくはP型不純物を半
導体基板へド−ピングする方法としては、そのド−ピン
グ量およびド−ピング深さの制御精度の高さから、イオ
ン注入法が重用されている。従来のMOS型半導体装置
の製造方法における、ド−ピングおよびその前後の工程
を、図2を用い説明する。2. Description of the Related Art Conventionally, as a method of doping N-type or P-type impurities into a semiconductor substrate, an ion implantation method is important because of its high control accuracy of the doping amount and the doping depth. Has been done. Doping and steps before and after it in a conventional method for manufacturing a MOS semiconductor device will be described with reference to FIG.
【0003】まず、半導体基板1上に素子分離用厚膜酸
化膜2とゲ−ト酸化膜3を介したゲ−ト電極4とが形成
された状態で(a)、次工程のイオン注入用マスクとし
て、素子分離用厚膜酸化膜2上にフォトレジストパタ−
ン5を形成する(b)。なお、ゲ−ト電極4をフォトレ
ジストパタ−ンでマスク保護することは、その位置精度
の問題から、現状では行われていない。次に、イオン注
入法により、正にイオン化したN型不純物もしくはP型
不純物を、高電圧を印加することにより、それが取り付
けられている装置を介してア−ス電位になっている半導
体基板1に向かって加速し、図(c)に示す矢印方向か
ら半導体基板1の上方全面に照射することによりド−ピ
ングして、ソ−ス、ドレイン領域6を形成した(c)
後、酸素プラズマでフォトレジストパタ−ン5を除去す
る(d)といった具合に行っていた。First, with the thick oxide film 2 for element isolation and the gate electrode 4 via the gate oxide film 3 formed on the semiconductor substrate 1 (a), for ion implantation in the next step. As a mask, a photoresist pattern is formed on the element isolation thick oxide film 2.
To form the film 5 (b). It should be noted that mask protection of the gate electrode 4 with a photoresist pattern has not been performed at present because of the problem of its positional accuracy. Next, by applying a high voltage to the positively ionized N-type impurity or P-type impurity by the ion implantation method, the semiconductor substrate 1 is at the ground potential through the device to which it is attached. Source and drain regions 6 are formed by accelerating toward and irradiating the entire upper surface of the semiconductor substrate 1 in the direction of the arrow shown in FIG.
After that, the photoresist pattern 5 was removed by oxygen plasma (d).
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記し
た従来の製造方法では、ゲ−ト酸化膜3で半導体基板1
と絶縁されているゲ−ト電極4は、照射された正のイオ
ン化不純物によりその全体が正に帯電するので、ゲ−ト
電極4とア−ス電位の半導体基板1との間で電界が生
じ、しかも、ゲ−ト酸化膜3はその厚みが10〜15n
mと非常に薄いため、この帯電によってゲ−ト電極と半
導体基板との間の電界強度が異常に高まり、その結果、
放電が起こり、ゲ−ト酸化膜の破壊若しくは同膜の耐圧
低下を招くといった問題があった。なお、素子分離用厚
膜酸化膜5に関しては、それがフォトレジストパタ−ン
5で保護されておりまたその厚みも約500nmと厚い
ので、上記したような問題は生じない。However, in the above-mentioned conventional manufacturing method, the semiconductor substrate 1 is formed by the gate oxide film 3.
The gate electrode 4 which is insulated from the gate electrode 4 is positively charged in its entirety by the irradiated positive ionized impurities, so that an electric field is generated between the gate electrode 4 and the semiconductor substrate 1 at the ground potential. Moreover, the gate oxide film 3 has a thickness of 10 to 15 n.
Since it is very thin, the electric field strength between the gate electrode and the semiconductor substrate is abnormally increased by this charging, and as a result,
There is a problem in that discharge occurs and the gate oxide film is destroyed or the breakdown voltage of the film is reduced. Since the element isolation thick oxide film 5 is protected by the photoresist pattern 5 and has a large thickness of about 500 nm, the above problem does not occur.
【0005】上述した問題は、近年、いっそう集積度を
増す半導体集積回路にあって、ますますゲ−ト電極が微
細化し、ゲ−ト酸化膜が薄膜化する中で、さらに顕著に
なってきている。本発明は、上記問題点および背景に鑑
み、ゲ−ト酸化膜の耐圧低下や破壊を効果的に防止する
ことができるMOS型半導体装置の製造方法を提供する
ことを目的とする。The above-mentioned problems have become more prominent in recent years in semiconductor integrated circuits that are becoming more and more integrated, with the gate electrodes becoming finer and the gate oxide film becoming thinner. There is. In view of the above problems and background, it is an object of the present invention to provide a method of manufacturing a MOS type semiconductor device capable of effectively preventing a breakdown voltage of the gate oxide film from being lowered or broken.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
め、請求項1記載のMOS型半導体装置の製造方法は、
半導体基板と、絶縁層を介して前記半導体基板上に設け
られたゲ−ト電極と、前記半導体基板に設けられ、ドレ
イン・ソ−ス領域を接続するドレイン・ソ−ス電極とか
らなるMOS型半導体装置の製造方法において、前記ゲ
−ト電極を前記絶縁層を介して前記半導体基板上に設け
た後、イオン注入法を用いたN型不純物もしくはP型不
純物のド−ピングによって前記ドレイン・ソ−ス領域を
形成する前に、導電性薄膜を少なくとも前記ゲ−ト電極
露出面と前記半導体基板露出面とを架橋するように被覆
し、前記ドレイン・ソ−ス領域形成後、前記ドレイン・
ソ−ス電極取付前に、前記導電性薄膜を除去することを
特徴としている。In order to achieve the above object, a method of manufacturing a MOS type semiconductor device according to claim 1 includes:
MOS type including a semiconductor substrate, a gate electrode provided on the semiconductor substrate via an insulating layer, and a drain / source electrode provided on the semiconductor substrate and connecting a drain / source region In a method of manufacturing a semiconductor device, the gate electrode is provided on the semiconductor substrate via the insulating layer, and then the drain / soap is formed by doping N-type impurities or P-type impurities using an ion implantation method. -Before forming the source region, a conductive thin film is coated so as to bridge at least the gate electrode exposed surface and the semiconductor substrate exposed surface, and after forming the drain / source region, the drain / source region is formed.
It is characterized in that the conductive thin film is removed before the source electrode is attached.
【0007】また、請求項2記載のMOS型半導体装置
の製造方法は、請求項1記載のMOS型半導体装置の製
造方法に対して、導電性薄膜をゲ−ト電極の全露出面お
よびドレイン・ソ−ス領域を含む半導体基板の前記ゲ−
ト電極取付側の全露出面に被覆することを特徴としてい
る。また、請求項3記載のMOS型半導体装置の製造方
法は、請求項1または2記載のMOS型半導体装置の製
造方法に対して、導電性薄膜は膜厚が10〜100nm
のカ−ボン薄膜であることを特徴としている。The method of manufacturing a MOS semiconductor device according to a second aspect of the present invention is the same as the method of manufacturing a MOS semiconductor device according to the first aspect, in which a conductive thin film is formed on the entire exposed surface of the gate electrode and the drain. The gate of the semiconductor substrate including the source region
It is characterized in that the entire exposed surface on the side where the electrode is attached is covered. The method for manufacturing a MOS semiconductor device according to claim 3 is different from the method for manufacturing a MOS semiconductor device according to claim 1 or 2 in that the conductive thin film has a thickness of 10 to 100 nm.
It is characterized by being a carbon thin film.
【0008】[0008]
【作用】請求項1記載のMOS型半導体装置の製造方法
によれば、イオン注入法を用いたN型もしくはP型不純
物のド−ピングの際、イオン電荷を有した前記不純物は
半導体基板だけではなくゲ−ト電極にも照射されるの
で、ゲ−ト電極は帯電しようとするが、イオン電荷は、
ゲ−ト電極露出面と半導体基板露出面とを架橋するよう
に被覆した導電性薄膜を介して、ゲ−ト電極と半導体基
板との間を自由に移動することができるので、ゲ−ト電
極と半導体基板との間には、電位差が生じ無いか、生じ
ても極僅かであり、ゲ−ト電極と半導体基板の間の絶縁
層の破壊若しくは同層の耐圧低下を招くほど強い電界は
発生しない。According to the method of manufacturing a MOS type semiconductor device of claim 1, when doping N-type or P-type impurities using an ion implantation method, the impurities having an ionic charge are not limited to the semiconductor substrate. Since the gate electrode is also irradiated without it, the gate electrode tries to be charged, but the ionic charge is
Since the gate electrode and the semiconductor substrate can freely move between the gate electrode and the semiconductor substrate through the conductive thin film covering the exposed surface of the gate electrode and the exposed surface of the semiconductor substrate, the gate electrode can be freely moved. Between the semiconductor substrate and the semiconductor substrate, or a potential difference between them is very small, and a strong electric field is generated that causes the breakdown of the insulating layer between the gate electrode and the semiconductor substrate or the breakdown voltage of the same layer. do not do.
【0009】請求項2記載のMOS型半導体装置の製造
方法によれば、イオン注入法を用いたN型もしくはP型
不純物のド−ピングの際、イオン電荷を有した前記不純
物は半導体基板だけではなくゲ−ト電極にも照射される
ので、ゲ−ト電極は帯電しようとするが、イオン電荷
は、ゲ−ト電極の全露出面およびドレイン・ソ−ス領域
を含む半導体基板のゲ−ト電極取付側の全露出面に被覆
した導電性薄膜を介して、ゲ−ト電極と半導体基板との
間を自由に移動することができるので、ゲ−ト電極と半
導体基板との間には、電位差が生じ無いか、生じても極
僅かであり、ゲ−ト電極と半導体基板の間の絶縁層の破
壊若しくは同層の耐圧低下を招くほど強い電界は発生し
ない。According to the method of manufacturing the MOS type semiconductor device of the second aspect, when the N type or P type impurity is doped by the ion implantation method, the impurity having the ionic charge is not limited to the semiconductor substrate. The gate electrode tries to be charged because it is also irradiated to the gate electrode, but the ionic charge causes the gate electrode of the semiconductor substrate including the entire exposed surface of the gate electrode and the drain source region. Since it is possible to freely move between the gate electrode and the semiconductor substrate through the conductive thin film covering the entire exposed surface on the electrode mounting side, between the gate electrode and the semiconductor substrate, The potential difference does not occur, or even if it occurs, it is extremely small, and a strong electric field that causes destruction of the insulating layer between the gate electrode and the semiconductor substrate or reduction of breakdown voltage of the same layer is not generated.
【0010】請求項3記載のMOS型半導体装置の製造
方法によれば、イオン注入法を用いたN型もしくはP型
不純物のド−ピングの際、イオン電荷を有した前記不純
物は半導体基板だけではなくゲ−ト電極にも照射される
ので、ゲ−ト電極は帯電しようとするが、イオン電荷
は、膜厚が10〜100nmのカ−ボン薄膜を介して、
ゲ−ト電極と半導体基板との間を自由に移動することが
できるので、ゲ−ト電極と半導体基板との間には、電位
差が生じ無いか、生じても極僅かであり、ゲ−ト電極と
半導体基板の間の絶縁層の破壊若しくは同層の耐圧低下
を招くほど強い電界は発生しない。なお、膜厚を10〜
100nmとしたのは、膜厚が10nm以上であれば、
ゲ−ト電極と半導体基板との間の十分な導電性が確保で
き、また、100nm以下であれば、不純物ド−ピング
時の同不純物の同膜通過性を十分に保証できるからであ
る。According to the method of manufacturing the MOS type semiconductor device of the third aspect, at the time of doping the N type or P type impurity by the ion implantation method, the impurity having the ionic charge is not limited to the semiconductor substrate. Since the gate electrode is also irradiated without it, the gate electrode tries to be charged, but the ionic charge is generated by the carbon thin film having a film thickness of 10 to 100 nm.
Since it can freely move between the gate electrode and the semiconductor substrate, there is no potential difference between the gate electrode and the semiconductor substrate or the potential difference is very small. An electric field that is so strong as to cause the breakdown of the insulating layer between the electrode and the semiconductor substrate or the reduction of the breakdown voltage of the same layer is not generated. The film thickness is 10
100 nm means that if the film thickness is 10 nm or more,
This is because sufficient conductivity can be ensured between the gate electrode and the semiconductor substrate, and when the thickness is 100 nm or less, the same film passability of the same impurity at the time of impurity doping can be sufficiently ensured.
【0011】[0011]
【実施例】以下、本発明の実施例について、図面を用い
て詳細に説明する。図1は、本発明の製造方法に係る製
造工程図である。図に示すように、まず、Si(珪素)
からなる半導体基板7上に素子分離用厚膜として膜厚約
500nmの酸化膜8と膜厚10〜15nmのゲ−ト酸
化膜9を介した多結晶シリコン膜からなるゲ−ト電極1
0とを形成した状態で(a)、素子分離用厚膜酸化膜8
上にフォトレジストパタ−ン11を形成する(b)。こ
こまでの工程は、公知の手法を用いることにより簡単に
実現できるので、ここでは詳細な説明は省略する。Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a manufacturing process diagram according to the manufacturing method of the present invention. As shown in the figure, first, Si (silicon)
A gate electrode 1 made of a polycrystalline silicon film with an oxide film 8 having a thickness of about 500 nm and a gate oxide film 9 having a thickness of 10 to 15 nm as a thick film for element isolation on a semiconductor substrate 7 made of
In the state where 0 and (a) are formed, the element isolation thick oxide film 8 is formed.
A photoresist pattern 11 is formed thereon (b). Since the steps up to this point can be easily realized by using a known method, detailed description thereof will be omitted here.
【0012】つづいて、真空蒸着法を用い、(c)に示
すように、フォトレジストパタ−ン11およびゲ−ト電
極10を含む半導体基板7上に、膜厚10〜100nm
のカ−ボン薄膜12を形成する。膜厚を10〜100n
mとしたのは、10nmより薄いと、その形成過程で、
ゲ−ト電極10の側壁10aにカ−ボン薄膜が形成され
にくくなり、そのため、ゲ−ト電極10と半導体基板7
の間の導電性が悪くなり、100nmより厚いと、後述
するP型不純物のド−ピングの際に、P型不純物がカ−
ボン薄膜12を通過しにくくなるためである。Then, using a vacuum deposition method, as shown in (c), a film thickness of 10 to 100 nm is formed on the semiconductor substrate 7 including the photoresist pattern 11 and the gate electrode 10.
The carbon thin film 12 is formed. Film thickness 10-100n
If m is less than 10 nm, the process of forming
It becomes difficult to form a carbon thin film on the side wall 10a of the gate electrode 10, and therefore the gate electrode 10 and the semiconductor substrate 7 are formed.
If the conductivity is deteriorated and the thickness is thicker than 100 nm, the P-type impurities will be covered during the doping of the P-type impurities described later.
This is because it becomes difficult to pass through the Bonn thin film 12.
【0013】カ−ボン薄膜12が形成された状態で、イ
オン注入法により、(d)に示すように、矢印の方向か
ら正にイオン化されたB(ホウ素)(P型不純物)を照
射する。このとき、イオン化されたB(ホウ素)は、カ
−ボン薄膜12を突き抜け、図(d)に示すようにソ−
ス、ドレイン領域6を形成する。一方、フォトレジスト
パタ−ン12で被覆されている素子分離用厚膜酸化膜1
2には、B(ホウ素)は達しない。また、ゲ−ト電極1
0に達したB(ホウ素)の有するイオン電荷は、カ−ボ
ン薄膜12を経由して、半導体基板1に流れ、さらに
は、半導体基板1が取り付けられている装置に抜けてい
く。したがって、ゲ−ト電極10と半導体基板1との間
で電界が発生することは無く、よって、放電によりゲ−
ト酸化膜9が損傷されることは無い。With the carbon thin film 12 formed, the positively ionized B (boron) (P-type impurity) is irradiated from the direction of the arrow by the ion implantation method as shown in (d). At this time, the ionized B (boron) penetrates through the carbon thin film 12, and as shown in FIG.
And a drain region 6 are formed. On the other hand, the element isolation thick oxide film 1 covered with the photoresist pattern 12
2 does not reach B (boron). Also, the gate electrode 1
The ionic charge of B (boron) reaching 0 flows to the semiconductor substrate 1 via the carbon thin film 12, and further escapes to the device to which the semiconductor substrate 1 is attached. Therefore, no electric field is generated between the gate electrode 10 and the semiconductor substrate 1, and therefore the gate is generated by the discharge.
The oxide film 9 is not damaged.
【0014】次いで、酸素プラズマでカ−ボン薄膜12
およびフォトレジストパタ−ン11を灰化除去する
(e)。これ以降、ソ−ス電極、ドレイン電極の取り付
け等の工程を経て、MOS型半導体装置が完成するが、
それらの工程も公知の手法を用いることにより簡単に実
現できるので、ここでは詳細な説明は省略する。Next, the carbon thin film 12 is exposed to oxygen plasma.
Then, the photoresist pattern 11 is removed by ashing (e). After that, the MOS type semiconductor device is completed through steps such as the attachment of the source electrode and the drain electrode.
Since these steps can be easily realized by using a known method, detailed description thereof will be omitted here.
【0015】なお、上記実施例では、カ−ボン薄膜の形
成に、真空蒸着法を用いたが、これに限定されるもので
はなく、例えば、スパッタリング法や化学的気層成長法
(CVD法)を用いてもよい。また、上記実施例では、
P型不純物をド−ピングする場合を示したが、N型不純
物、例えばP(リン)、As(ひ素)のド−ピングも同
様の方法で実施可能である。In the above embodiment, the vacuum vapor deposition method was used to form the carbon thin film, but the present invention is not limited to this. For example, a sputtering method or a chemical vapor deposition method (CVD method) is used. May be used. In the above embodiment,
Although the case of doping P-type impurities is shown, the doping of N-type impurities such as P (phosphorus) and As (arsenic) can also be performed by the same method.
【0016】[0016]
【発明の効果】以上、請求項1記載の発明に係るMOS
型半導体装置の製造方法によれば、ゲ−ト電極を絶縁層
を介して半導体基板上に設けた後、イオン注入法を用い
たN型不純物もしくはP型不純物のド−ピングによって
ドレイン・ソ−ス領域を形成する前に、導電性薄膜を少
なくとも前記ゲ−ト電極露出面と前記半導体基板露出面
とを架橋するように被覆するので、イオン注入法により
P型もしくはN型不純物をド−ピングする際、ゲ−ト電
極が帯電せず、よって、ゲ−ト電極と半導体基板との間
の放電によるゲ−ト電極と半導体基板との間の絶縁層の
耐圧低下および破壊を防止することができる。As described above, the MOS according to the invention described in claim 1
According to the method of manufacturing a type semiconductor device, a gate electrode is provided on a semiconductor substrate via an insulating layer, and a drain / soap is formed by doping an N type impurity or a P type impurity using an ion implantation method. Before forming the gate region, the conductive thin film is coated so as to bridge at least the gate electrode exposed surface and the semiconductor substrate exposed surface, so that P-type or N-type impurities are doped by the ion implantation method. In this case, the gate electrode is not charged, and therefore it is possible to prevent the breakdown voltage and the breakdown of the insulating layer between the gate electrode and the semiconductor substrate due to the discharge between the gate electrode and the semiconductor substrate. it can.
【0017】以上、請求項2記載の発明に係るMOS型
半導体装置の製造方法によれば、ゲ−ト電極を絶縁層を
介して半導体基板上に設けた後、イオン注入法を用いた
N型不純物もしくはP型不純物のド−ピングによってド
レイン・ソ−ス領域を形成する前に、導電性薄膜をゲ−
ト電極の全露出面およびドレイン・ソ−ス領域を含む半
導体基板のゲ−ト電極取付側の全露出面に被覆するの
で、請求項1記載のMOS型半導体装置の製造方法の効
果と同じものが得られる。As described above, according to the method of manufacturing the MOS type semiconductor device of the present invention, the gate electrode is provided on the semiconductor substrate via the insulating layer, and then the N type is formed by the ion implantation method. Before forming the drain source region by doping impurities or P-type impurities, the conductive thin film is gated.
The entire exposed surface of the gate electrode and the entire exposed surface of the semiconductor substrate including the drain / source region on the side where the gate electrode is attached are covered, so that the same effect as the method of manufacturing the MOS type semiconductor device according to claim 1 is obtained. Is obtained.
【0018】以上、請求項3記載の発明に係るMOS型
半導体装置の製造方法によれば、導電性薄膜が膜厚10
〜100nmのカ−ボン薄膜なので、請求項1記載のM
OS型半導体装置の製造方法の効果に加えて、イオン注
入法によるP型もしくはN型不純物のド−ピング時の、
ゲ−ト電極と半導体基板との間の十分な導電性とP型も
しくはN型不純物の導電性薄膜の十分な通過性とを確保
できるといった効果が得られる。As described above, according to the method of manufacturing the MOS type semiconductor device of the present invention, the conductive thin film has a film thickness of 10
The carbon thin film having a thickness of about 100 nm, the M according to claim 1.
In addition to the effect of the manufacturing method of the OS type semiconductor device, when doping the P type or N type impurity by the ion implantation method,
It is possible to obtain sufficient conductivity between the gate electrode and the semiconductor substrate and sufficient permeability of the conductive thin film of P-type or N-type impurities.
【図1】(a)は、本発明の製造方法による1工程を示
した図である。(b)は、本発明の製造方法による1工
程を示した図である。(c)は、本発明の製造方法によ
る1工程を示した図である。(d)は、本発明の製造方
法による1工程を示した図である。(e)は、本発明の
製造方法による1工程を示した図である。FIG. 1A is a diagram showing one step according to the manufacturing method of the present invention. (B) is a figure showing 1 process by a manufacturing method of the present invention. (C) is a figure showing 1 process by a manufacturing method of the present invention. (D) is a figure showing 1 process by a manufacturing method of the present invention. (E) is a figure showing 1 process by a manufacturing method of the present invention.
【図2】(a)は、従来の製造方法による1工程を示し
た図である。(b)は、従来の製造方法による1工程を
示した図である。(c)は、従来の製造方法による1工
程を示した図である。(d)は、従来の製造方法による
1工程を示した図である。FIG. 2A is a diagram showing one step by a conventional manufacturing method. (B) is a figure showing 1 process by the conventional manufacturing method. (C) is a figure showing 1 process by the conventional manufacturing method. (D) is a figure showing 1 process by the conventional manufacturing method.
7 半導体基板 8 素子分離用厚膜酸化膜 9 ゲ−ト酸化膜 10 ゲ−ト電極 11 フォトレジストパタ−ン 12 カ−ボン薄膜 13 ドレイン・ソ−ス領域 7 Semiconductor substrate 8 Thick oxide film for element isolation 9 Gate oxide film 10 Gate electrode 11 Photoresist pattern 12 Carbon thin film 13 Drain / source region
Claims (3)
体基板上に設けられたゲ−ト電極と、前記半導体基板に
設けられ、ドレイン・ソ−ス領域を接続するドレイン・
ソ−ス電極とからなるMOS型半導体装置の製造方法に
おいて、 前記ゲ−ト電極を前記絶縁層を介して前記半導体基板上
に設けた後、イオン注入法を用いたN型不純物もしくは
P型不純物のド−ピングによって前記ドレイン・ソ−ス
領域を形成する前に、導電性薄膜を少なくとも前記ゲ−
ト電極露出面と前記半導体基板露出面とを架橋するよう
に被覆し、 前記ドレイン・ソ−ス領域形成後、前記ドレイン・ソ−
ス電極取付前に、前記導電性薄膜を除去することを特徴
とするMOS型半導体装置の製造方法。1. A semiconductor substrate, a gate electrode provided on the semiconductor substrate via an insulating layer, and a drain electrode provided on the semiconductor substrate for connecting a drain source region.
In a method of manufacturing a MOS type semiconductor device including a source electrode, an N type impurity or a P type impurity using an ion implantation method after the gate electrode is provided on the semiconductor substrate via the insulating layer. A conductive thin film before forming the drain source region by doping at least one of the gates.
The exposed surface of the semiconductor substrate so as to bridge the exposed surface of the semiconductor substrate, and after forming the drain / source region, the drain / source is formed.
A method of manufacturing a MOS type semiconductor device, characterized in that the conductive thin film is removed before attaching the electrode.
出面および前記ドレイン・ソ−ス領域を含む前記半導体
基板の前記ゲ−ト電極取付側の全露出面に被覆すること
を特徴とする請求項1記載のMOS型半導体装置の製造
方法。2. The conductive thin film is coated on the entire exposed surface of the gate electrode and the exposed surface of the semiconductor substrate including the drain / source region on the gate electrode mounting side. The method of manufacturing a MOS semiconductor device according to claim 1.
mのカ−ボン薄膜であることを特徴とする請求項1また
は2記載のMOS型半導体装置の製造方法。3. The conductive thin film has a thickness of 10 to 100 n.
3. A method for manufacturing a MOS type semiconductor device according to claim 1, wherein the carbon thin film is m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17336195A JPH0927618A (en) | 1995-07-10 | 1995-07-10 | Manufacture of mos semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17336195A JPH0927618A (en) | 1995-07-10 | 1995-07-10 | Manufacture of mos semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0927618A true JPH0927618A (en) | 1997-01-28 |
Family
ID=15958985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17336195A Pending JPH0927618A (en) | 1995-07-10 | 1995-07-10 | Manufacture of mos semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0927618A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102437120A (en) * | 2011-08-17 | 2012-05-02 | 上海华力微电子有限公司 | Method for improving source/drain (SD) ultrashallow junction |
CN102437028A (en) * | 2011-11-30 | 2012-05-02 | 上海华力微电子有限公司 | PMOS (p-channel metal-oxide-semiconductor field-effect transistor) source/drain region ion implantation method and corresponding device manufacturing method |
-
1995
- 1995-07-10 JP JP17336195A patent/JPH0927618A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102437120A (en) * | 2011-08-17 | 2012-05-02 | 上海华力微电子有限公司 | Method for improving source/drain (SD) ultrashallow junction |
CN102437028A (en) * | 2011-11-30 | 2012-05-02 | 上海华力微电子有限公司 | PMOS (p-channel metal-oxide-semiconductor field-effect transistor) source/drain region ion implantation method and corresponding device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4149307A (en) | Process for fabricating insulated-gate field-effect transistors with self-aligned contacts | |
JP2880937B2 (en) | Method for forming gate electrode of CMOS device | |
JPS63314868A (en) | Manufacture of mos semiconductor device | |
EP0087472B1 (en) | Process for making electrical contact to semiconductor substrate regions | |
JPH0927618A (en) | Manufacture of mos semiconductor device | |
JP3421005B2 (en) | Method for manufacturing semiconductor device | |
JPS60160168A (en) | Manufacture of mos semiconductor device | |
JP2880885B2 (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
JPS6193641A (en) | Semiconductor device | |
JPS6146964B2 (en) | ||
JPS5896732A (en) | Ion implantation | |
JPH02143461A (en) | Semiconductor device and its manufacture | |
JPH0491422A (en) | Manufacture of semiconductor device | |
JPWO2020137243A1 (en) | Semiconductor devices and their manufacturing methods | |
JPH04184978A (en) | Manufacture of semiconductor device | |
JPH0277161A (en) | Semiconductor device and manufacture thereof | |
JPH04162660A (en) | Semiconductor device | |
JPH05267205A (en) | Manufacture of semiconductor device | |
JPH0395936A (en) | Manufacture of semiconductor device | |
JPH04322423A (en) | Manufacture of semiconductor device | |
JPH06168956A (en) | Manufacture of thin-film transistor | |
JPH05275363A (en) | Manufacture of semiconductor device | |
JPH08204189A (en) | Manufacture of semiconductor device | |
JPH02105518A (en) | Manufacture of semiconductor integrated circuit | |
JPH04165617A (en) | Manufacture of semiconductor device |