JPH01192795A - Silicon single crystal and its production - Google Patents

Silicon single crystal and its production

Info

Publication number
JPH01192795A
JPH01192795A JP1475188A JP1475188A JPH01192795A JP H01192795 A JPH01192795 A JP H01192795A JP 1475188 A JP1475188 A JP 1475188A JP 1475188 A JP1475188 A JP 1475188A JP H01192795 A JPH01192795 A JP H01192795A
Authority
JP
Japan
Prior art keywords
crystal
growth
single crystal
silicon single
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1475188A
Other languages
Japanese (ja)
Inventor
Osamu Suzuki
修 鈴木
Shinichiro Takasu
高須 新一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP1475188A priority Critical patent/JPH01192795A/en
Publication of JPH01192795A publication Critical patent/JPH01192795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To reduce the stacking fault density of a silicon single crystal by specifying the ratio of the average speed of pulling up the crystal to the fluctuating range of the pulling up speed. CONSTITUTION:Melted polysilicon is pulled up so that the ratio of the average speed of pulling up the crystal to the fluctuation range d of the pulling up speed satisfies the relation: v/d>=1.8 to obtain a silicon single crystal for production of silicon wafers satisfying the equation, when the maximum width of growth stripe in the growing direction is represented by Wmax, the minimum width, by Wmin, and the average width of the growth stripe, by Wave.

Description

【発明の詳細な説明】 の この発明は、シリコンウェーハ作成用のシリコン単結晶
とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silicon single crystal for producing silicon wafers and a method for manufacturing the same.

」Lへ11 シリコン単結晶からシリコンウェーハを作成し、このシ
リコンウェーハに鏡面研磨を施す。そしてこの鏡面研磨
したシリコンウェーハをたとえば蒸気で熱処理すると、
熱酸化してシリコンウェーハ表面に積層欠陥(O8F)
が誘起される。従来シリコンウェーハ表面には積層欠陥
が数10ケ/ c+e2程度のオーダで発生した。
11 A silicon wafer is created from a silicon single crystal, and this silicon wafer is mirror-polished. Then, when this mirror-polished silicon wafer is heat-treated with steam, for example,
Stacking faults (O8F) on the silicon wafer surface due to thermal oxidation
is induced. Conventionally, stacking faults have occurred on the surface of silicon wafers on the order of several dozen defects/c+e2.

この  が ゛しよ とする この積層欠陥は、部分的な電圧降伏やリーク電流の原因
となるなど、デバイス特性を劣化させる大きな原因とな
る。しかし、シリコン単結晶の育成条件と積層欠陥発生
との因果関係が明確になっていない。ゆえに積層欠陥密
度の低減化をする事が非常に難しい。にもかかわらず、
ユーザからはシリコンウェー八積層欠陥密度が10ケ/
’ca+2以下であることが要求されている。
These stacking faults that occur are a major cause of deterioration of device characteristics, such as partial voltage breakdown and leakage current. However, the causal relationship between the growth conditions of silicon single crystals and the occurrence of stacking faults is not clear. Therefore, it is very difficult to reduce the stacking fault density. in spite of,
Users reported that the silicon wafer stacking fault density was 10/8.
'ca+2 or less is required.

11へ1江 この発明は、積層欠陥密度を大幅に低減できるシリコン
ウェー八作成用のシリコン単結晶及びその製造方法を提
供することを目的とする。
To 11 This invention aims to provide a silicon single crystal for producing a silicon wafer and a method for manufacturing the same, which can significantly reduce the stacking fault density.

この発明は特許請求の範囲を要旨としている。The invention is summarized in the claims.

を  ゛     た  の この発明のシリコンウェー八作成用のシリコン単結晶は
、結晶成長方向の成長縞の最大幅をWIaX 、成長縞
の最小幅をWm1nそして成長縞の幅の平均値をWav
eとすると、結晶成長方向の成長縞のバラツキが、 Wmax −W++in ×100≦56  ave を満たすのである。
In the silicon single crystal for producing the silicon wafer of this invention, the maximum width of the growth stripe in the crystal growth direction is WIaX, the minimum width of the growth stripe is Wm1n, and the average value of the width of the growth stripe is Wav.
e, the variation in the growth stripes in the crystal growth direction satisfies Wmax - W++in x100≦56 ave.

また、この発明のシリコン単結晶の製造方法では、シリ
コンウェー八作成用のシリコン単結晶の製造方法におい
て、結晶引上速度平均wivと結晶引上速度変動幅dが v/d≧1.8 となるように引上げるのである。
Further, in the method of manufacturing a silicon single crystal of the present invention for manufacturing a silicon wafer, the crystal pulling speed average wiv and the crystal pulling speed variation width d are such that v/d≧1.8. I will raise it so that it becomes true.

さらに詳細に説明する。This will be explained in more detail.

シリコン単結晶の結晶引上の際に、シリコン単結晶の直
径は一般に次のとおりに設定される。
When pulling a silicon single crystal, the diameter of the silicon single crystal is generally set as follows.

第1図に示すように、直径信号と設定直径を参照してP
ID演算し、その出力を結晶引上速度にフィードバック
して、結晶引上速度を制御することによりシリコン単結
晶の直径を設定する方式が一般に採用されている。すな
わち、引上速度は常に変動しながら、定形部が育成され
る事になる。
As shown in Figure 1, P
Generally, a method is adopted in which the diameter of the silicon single crystal is set by calculating the ID, feeding back the output to the crystal pulling speed, and controlling the crystal pulling speed. In other words, the regular shaped part is grown while the pulling speed is constantly changing.

本発明では、第2図に示す任意の時間【(例えば、シリ
コン単結晶がウェーハの厚さ分だけ成長する時間)にお
いて、第3図で示すように結晶引上速度平均値Vと結晶
引上速度変動幅dの比が次の関係を満す場合、積層欠陥
密度を低減させる事ができる。
In the present invention, at an arbitrary time shown in FIG. When the ratio of the speed fluctuation width d satisfies the following relationship, the stacking fault density can be reduced.

v/d≧1.8 この時ウェーハ単結晶の外周部近傍の結晶成長方向の成
長縞を観察すると、成長縞の間隔Wの最大値w wax
及び最小値Wminそして成長縞の幅の平均W ave
は次の関係を有する。
v/d≧1.8 At this time, when observing the growth stripes in the crystal growth direction near the outer periphery of the wafer single crystal, the maximum value of the interval W between the growth stripes w wax
and the minimum value Wmin and the average width of the growth stripes W ave
has the following relationship.

Wmax  −Wmin x100≦56 Wave この関係から得られる値を成長縞バラツキという。Wmax -Wmin x100≦56 Wave The value obtained from this relationship is called growth stripe variation.

たとえば第4図ではシリコンウェー八に切断したものの
成長縞Rが一例として示しである。この第4図では成長
縞Rの幅の一例がWで示しである。
For example, FIG. 4 shows a growth stripe R cut into a silicon wafer as an example. In FIG. 4, an example of the width of the growth stripes R is indicated by W.

V/dの値と成長縞バラツキの関係が第5図に示しであ
る。v/dの値が1.8のときに成長縞バラツキは56
となる。そしてV/dの値が1.8より大きくなると成
長縞バラツキは減少してゆく。
The relationship between the value of V/d and the variation in growth stripes is shown in FIG. When the value of v/d is 1.8, the growth stripe variation is 56
becomes. When the value of V/d becomes larger than 1.8, the growth stripe variation decreases.

一例として直径16インチの石英ルツボに45[k(1
1のポリシリコンを溶融し、方位(100)、直径5イ
ンチN型単結晶を育成した。
As an example, 45 [k(1
Polysilicon No. 1 was melted to grow an N-type single crystal with a (100) orientation and a diameter of 5 inches.

この時、v/clの値が0.5.1.2.3゜4になる
ようパラメーターを調整し、各々の条件に対し、1本ず
つ結晶を育成した。
At this time, the parameters were adjusted so that the v/cl value was 0.5.1.2.3°4, and one crystal was grown for each condition.

育成した結晶の成長方向を代表して3つの部位からシリ
コンウェーハをサンプリングし、鏡面研磨した後、11
00℃で90分間蒸気中で熱処理を施した。
The silicon wafer was sampled from three locations representing the growth direction of the grown crystal, and after mirror polishing,
Heat treatment was performed in steam at 00°C for 90 minutes.

熱処理においてできた酸化膜を弗酸で除去した。その後
、選択エツチングを行ない、光学顕微鏡により鏡面上の
積層欠陥密度を計測した。この結果、積層欠陥密度は平
均80ケ/c+a2〜平均3ケ/cm2程度と大幅に低
減した。
The oxide film formed during the heat treatment was removed with hydrofluoric acid. After that, selective etching was performed, and the stacking fault density on the mirror surface was measured using an optical microscope. As a result, the stacking fault density was significantly reduced to an average of about 80/c+a2 to an average of about 3/cm2.

又、同シリコンウェーハのサンプルをへき開し、(11
0)面をエツチングした後、光学顕微鏡で結晶成長縞を
観察した。この時の結晶成長方向の成長縞バラツキは、
たとえば30〜50程度であった。
In addition, a sample of the same silicon wafer was cleaved (11
0) After etching the surface, crystal growth stripes were observed using an optical microscope. At this time, the growth stripe variation in the crystal growth direction is
For example, it was about 30 to 50.

以上説明したように、請求項1のシリコン単結晶におい
ては、積層欠陥密度が低減する。
As explained above, in the silicon single crystal of the first aspect, the stacking fault density is reduced.

このためシリコンウI−への品質の向上が図れこのシリ
コンウェーハはたとえば超高集積度のデイバス用に最適
である。
Therefore, the quality of silicon wafers can be improved, and these silicon wafers are most suitable for devices with ultra-high integration, for example.

また請求項2の製造方法においては、積層欠陥密度の低
いシリコンウェーハを作成するためのシリコン単結晶が
容易にかつ確実に得られる。
Moreover, in the manufacturing method of claim 2, a silicon single crystal for creating a silicon wafer with a low stacking fault density can be easily and reliably obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般に行われている結晶直径ill m方法を
示す図、第2図は結晶引上速度Vの変化を示す図、第3
図はv/dと積層欠陥密度との関係を示す図、第4図は
シリコンウェーへの一部を示す断面図、第5図はv/d
と成長縞バラツキとの関係を示す図である。 第1図 第2図 第4図 第3区 第5m v/d
Figure 1 is a diagram showing a commonly used crystal diameter ill m method, Figure 2 is a diagram showing changes in crystal pulling speed V, and Figure 3 is a diagram showing changes in crystal pulling speed V.
The figure shows the relationship between v/d and stacking fault density, Figure 4 is a cross-sectional view showing a part of the silicon wafer, and Figure 5 is v/d.
FIG. 3 is a diagram showing the relationship between growth stripe variation and growth stripe variation. Figure 1 Figure 2 Figure 4 Figure 3 Section 5m v/d

Claims (1)

【特許請求の範囲】 1、シリコンウェーハ作成用のシリコン単 結晶において、結晶成長方向の成長縞の最大幅をW_m
_a_x、成長縞の最小幅をW_m_i_nそして成長
縞の幅の平均値をW_a_v_eとすると、結晶成長方
向の成長縞のバラツキが (W_m_a_x−W_m_i_n)/W_a_v_e
×100≦56を満たすシリコン単結晶。 2、シリコンウェーハ作成用のシリコン単 結晶の製造方法において、結晶引上速度平均値りと結晶
引上速度変動幅dが v/d≧1.8 となるように引上げるシリコン単結晶の製造方法。
[Claims] 1. In silicon single crystal for silicon wafer production, the maximum width of growth stripes in the crystal growth direction is W_m.
_a_x, the minimum width of the growth stripe is W_m_i_n, and the average value of the width of the growth stripe is W_a_v_e, then the variation of the growth stripe in the crystal growth direction is (W_m_a_x - W_m_i_n)/W_a_v_e
A silicon single crystal that satisfies ×100≦56. 2. A method for producing a silicon single crystal for producing a silicon wafer, in which the average crystal pulling speed and the fluctuation width d of the crystal pulling speed are pulled so that v/d≧1.8. .
JP1475188A 1988-01-27 1988-01-27 Silicon single crystal and its production Pending JPH01192795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1475188A JPH01192795A (en) 1988-01-27 1988-01-27 Silicon single crystal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1475188A JPH01192795A (en) 1988-01-27 1988-01-27 Silicon single crystal and its production

Publications (1)

Publication Number Publication Date
JPH01192795A true JPH01192795A (en) 1989-08-02

Family

ID=11869815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1475188A Pending JPH01192795A (en) 1988-01-27 1988-01-27 Silicon single crystal and its production

Country Status (1)

Country Link
JP (1) JPH01192795A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286094A (en) * 2002-03-27 2003-10-07 Sumitomo Mitsubishi Silicon Corp Method of manufacturing semiconductor silicon substrate
WO2005080647A1 (en) * 2004-02-19 2005-09-01 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for manufacturing single crystal semiconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283395A (en) * 1985-10-08 1987-04-16 Mitsubishi Metal Corp Method for controlling diameter of single crystal pulling-up device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283395A (en) * 1985-10-08 1987-04-16 Mitsubishi Metal Corp Method for controlling diameter of single crystal pulling-up device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286094A (en) * 2002-03-27 2003-10-07 Sumitomo Mitsubishi Silicon Corp Method of manufacturing semiconductor silicon substrate
WO2005080647A1 (en) * 2004-02-19 2005-09-01 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for manufacturing single crystal semiconductor
US7767020B2 (en) 2004-02-19 2010-08-03 Sumco Techxiv Corporation Method for manufacturing single crystal semiconductor

Similar Documents

Publication Publication Date Title
JPH06103714B2 (en) Method for inspecting electrical characteristics of silicon single crystal
JPS5893221A (en) Semiconductor thin film structure and preparation thereof
JPWO2006033292A1 (en) Manufacturing method of semiconductor wafer
JP2001192300A (en) Nitride-based compound semiconductor substrate and method of producing the same
JPH10256169A (en) Manufacture of semiconductor device
JPH05217893A (en) Manufacture of semiconductor substrate
JP2785918B2 (en) Method of manufacturing semiconductor device having growth layer on insulating layer
JPH01192795A (en) Silicon single crystal and its production
JP5533869B2 (en) Epitaxial silicon wafer and manufacturing method thereof
JPS59202640A (en) Treatment for semiconductor wafer
JP4510997B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JPH10223641A (en) Manufacture of semiconductor silicon epitaxial wafer and semiconductor device
JPS6142855B2 (en)
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JP2000012467A (en) Method for forming gaas layer
JPS5852843A (en) Manufacture of semiconductor integrated circuit device
JP2002064102A (en) Single-crystal silicon substrate, epitaxial silicon wafer, and method of manufacturing the same
JPH05267270A (en) Manufacture of porous semiconductor and porous semiconductor substrate
JPH1143393A (en) Silicon single crystal wafer and its production
JP2000277404A (en) Silicon wafer
JPS61154121A (en) Manufacture of semiconductor device
JP3573243B2 (en) Bonded single crystal silicon substrate and method of manufacturing the same
JPS59124711A (en) Manufacture of semiconductor device
JP4112654B2 (en) Method for manufacturing silicon wafer
JPH0645249A (en) Growth method of gaas layer