JPH01191101A - Reflection preventive film - Google Patents

Reflection preventive film

Info

Publication number
JPH01191101A
JPH01191101A JP63016201A JP1620188A JPH01191101A JP H01191101 A JPH01191101 A JP H01191101A JP 63016201 A JP63016201 A JP 63016201A JP 1620188 A JP1620188 A JP 1620188A JP H01191101 A JPH01191101 A JP H01191101A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
thickness
conductive film
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63016201A
Other languages
Japanese (ja)
Inventor
Junji Terada
順司 寺田
Takeshi Sekiguchi
威 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63016201A priority Critical patent/JPH01191101A/en
Priority to US07/297,349 priority patent/US4957358A/en
Publication of JPH01191101A publication Critical patent/JPH01191101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To realize the reflection preventive film which has high transmissivity and provides excellent heat generation as a cloud-preventive film by specifying the film thickness of the transparent conductive film of the reflection preventive film including the transparent conductive film. CONSTITUTION:The reflection preventive film consists of films 1-3 provided on an optical element 4, and one layer among the films is the transparent conductive film 3, whose film thickness is 45-120nm. Thus, the conductive film 3 among the reflection preventive films 1, 2, and 3 is formed to <=120nm thickness, so the light absorption by the transparent conductive film 3 is reduced to obtain sufficient transmissivity which is used for the optical element 4. Further, the film thickness range is set to 45-120nm, and consequently the surface resistance is smaller than before and suitable for the heat generation of the optical element 4 such as an optical lens, thereby realizing the reflection preventive films 1-3 including the transparent conductive film 3 which is used excellently as the cloud preventive film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学素子表面に形成され、光学素子の特性を向
上させる光学薄膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical thin film that is formed on the surface of an optical element and improves the characteristics of the optical element.

(従来の技術) 光学素子の特性、特に光透過率を上げる事は複数の光学
素子より成る、カメラレンズ系、半導体露光装置光学系
などでは入射光の効率を上げる為に必須である。
(Prior Art) Increasing the characteristics of optical elements, especially the light transmittance, is essential in order to increase the efficiency of incident light in camera lens systems, semiconductor exposure apparatus optical systems, etc., which are composed of a plurality of optical elements.

従来、光学素子の透過率を上げる為には光学素子上に単
層膜あるいは複数の膜で構成された反射防止膜を形成し
、これによって光学素子表面で反射する光を減少させて
いた。
Conventionally, in order to increase the transmittance of an optical element, an antireflection film composed of a single layer or a plurality of films was formed on the optical element, thereby reducing the light reflected on the surface of the optical element.

最近I n20s 、5n02等の透明導電膜を液晶パ
ネルの透明電極や窓ガラスの結露防止用加熱膜(防曇膜
)などとして使用する事が多くなってきた。この透明導
電膜は単体では透過率が充分には高くない(In203
で90%、SnO2で85%)透明導電膜を形成したガ
ラス等の反射率を減少させる方法としては、基板面に形
成する多層反射防止膜の一構成膜として透明導電膜を高
屈折率層の代りに用いる膜構成が知られている。
Recently, transparent conductive films such as In20s and 5n02 have been increasingly used as transparent electrodes of liquid crystal panels, heating films for preventing dew condensation (anti-fog films) on window glasses, and the like. This transparent conductive film alone does not have a sufficiently high transmittance (In203
(90% for SnO2, 85% for SnO2) A method for reducing the reflectance of glass, etc. on which a transparent conductive film is formed is to use a transparent conductive film as a component film of a multilayer antireflection film formed on the substrate surface as a high refractive index layer. Alternative membrane configurations are known.

例えばλ。を反射防止の中心波長として、整数層(λ。For example, λ. Let be the center wavelength of anti-reflection and integer layer (λ.

の1/4の整数倍の光学的膜厚(実際の膜厚×屈折率)
を有する層)からなる膜構成とする、 (1)基板ガラス−InzOs(λ。/2)−Mg’F
2’(λ。/4) (2)基板ガラス−AjZ2os(λ。/4)−In、
03 (λo / 2 ) −M g F 2(λ。/
4) (()内は光学的膜厚) が知られている。
Optical film thickness that is an integral multiple of 1/4 of (actual film thickness x refractive index)
(1) Substrate glass-InzOs(λ./2)-Mg'F
2'(λ./4) (2) Substrate glass-AjZ2os(λ./4)-In,
03 (λo/2) −M g F 2(λ./
4) (The optical film thickness is in parentheses) is known.

〔発明が解決しようとしている問題点〕しかしながら、
これらの構成では透明導電膜の持つ反射率を減少させる
事はできるが、膜自身の持つ光吸収を減少させる事はで
きなかった。透明導電膜を構成している材質は電子が価
電子帯から導電帯に励起しやすい、この励起の際に光エ
ネルギーを吸収するので透明導電膜は普通の光学膜、例
えばMgF2 、Zf”02 、An20s等より光を
吸収しやすい。この透明導電膜を反射防止膜中で中心波
長λ。に対しλ6/2に相当する厚みに設けなければな
らない。λo=SOOとした場合屈折率1.9のITO
膜は132%m必要で、光吸収による透過率減少も無視
できない程度に大きく、透過率が100%近くまで必要
な光学素子に、例えば防曇膜として用いるのは困難であ
った。
[Problem that the invention is trying to solve] However,
With these configurations, it is possible to reduce the reflectance of the transparent conductive film, but it is not possible to reduce the light absorption of the film itself. The material constituting the transparent conductive film is such that electrons are easily excited from the valence band to the conductive band, and absorbs light energy during this excitation, so the transparent conductive film is a common optical film, such as MgF2, Zf"02, It absorbs light more easily than An20s etc. This transparent conductive film must be provided in the anti-reflection film with a thickness corresponding to λ6/2 with respect to the center wavelength λ.If λo = SOO, the refractive index is 1.9. ITO
The film requires a thickness of 132%, and the decrease in transmittance due to light absorption is so large that it cannot be ignored, making it difficult to use it in optical elements that require a transmittance of nearly 100%, for example, as an anti-fog film.

本願は、前述の問題に鑑み、透明導電膜を含んでいても
           充分高い光透過性が得られる反
射防止膜を提供する事を特徴とする。
In view of the above-mentioned problems, the present application is characterized by providing an antireflection film that can obtain sufficiently high light transmittance even if it includes a transparent conductive film.

〔問題を解決するための手段及び作用〕本発明は透明導
電膜を含む反射防止膜の透明導電膜の膜厚が120%m
以下になる様に構成しているので、透明導電膜による光
吸収を小さくして光学素子に使用するのに充分な透過率
を得る事ができる。又、膜厚範囲を45〜120%mと
する事で従来のものより面抵抗が大きくなり、光学レン
ズ等の光学素子において発熱に適切な面抵抗が得られ、
防曇膜として使用するのに良好な透明導電膜を含む反射
防止膜が可能になる。
[Means and effects for solving the problem] The present invention provides an anti-reflection film including a transparent conductive film whose thickness is 120% m.
Since the structure is as follows, it is possible to reduce light absorption by the transparent conductive film and obtain sufficient transmittance for use in an optical element. In addition, by setting the film thickness range to 45% to 120% m, the sheet resistance is larger than that of conventional ones, and an appropriate sheet resistance for heat generation can be obtained in optical elements such as optical lenses.
An antireflection film containing a transparent conductive film that is suitable for use as an antifogging film becomes possible.

尚、本明細書において、光学的膜厚λ/4゜λ/2は総
称であり、厳密には使用する光学素子に必要な特性に応
じて多少膜厚がこの値からずれる。各膜厚の範囲を具体
的に述べると、膜厚λ/4:0.18λ以上、0.27
λ以下膜厚λ/2:0.39λ以上、0.6λ以下であ
る。
In this specification, the optical film thickness λ/4°λ/2 is a general term, and strictly speaking, the film thickness deviates from this value to some extent depending on the characteristics required for the optical element used. Specifically describing the range of each film thickness, film thickness λ/4: 0.18λ or more, 0.27
λ or less film thickness λ/2: 0.39λ or more and 0.6λ or less.

〔実施例〕〔Example〕

第1図は本発明の第1実施例の反射防止膜の構成模式図
であり、同図に於いて1は反射防止中心波長λ。に対し
、光学的膜厚がλo / 4の低屈折率な膜で、屈折率
1.38のMgF、膜、2と3は反射防止中心波長λ。
FIG. 1 is a schematic diagram of the structure of an antireflection film according to a first embodiment of the present invention, in which 1 represents the antireflection center wavelength λ. On the other hand, films 2 and 3 are low refractive index films with an optical thickness of λo/4, and have a refractive index of 1.38. Films 2 and 3 have antireflection center wavelengths λ.

に対し、その光学的膜厚の和がλ。/2と等傭な高屈折
率層即ち等価膜で、2は3の透明導電膜より屈折率が高
く、屈折率2.1’2のZ r O2膜、3は2より屈
折率が低い透明導電膜で屈折率1.9の酸化スズ含有酸
化インジウム膜(以下ITO膜で総称する)、4はせ 3の透明導電膜に通電さ勉光学レンズ表面を加熱して結
露を防ぐ為の電源である。
The sum of their optical thicknesses is λ. /2 is a high refractive index layer, that is, an equivalent film, where 2 is a Z r O2 film with a refractive index higher than the transparent conductive film of 3 and has a refractive index of 2.1'2, and 3 is a transparent film with a refractive index lower than that of 2. This is a conductive film with a tin oxide-containing indium oxide film (hereinafter collectively referred to as ITO film) with a refractive index of 1.9, and is a power supply that heats the surface of the study lens and prevents condensation. be.

電源6から電流を電極5を通じて光学レンズ4に設けた
反射防止膜のITO膜3に供給すると、I−To膜3が
発熱し反射防止膜の最外層であるMgF、膜1に熱が伝
わり、MgF2膜1の表面への露結が防止される。
When a current is supplied from the power supply 6 through the electrode 5 to the ITO film 3 of the anti-reflection film provided on the optical lens 4, the I-To film 3 generates heat and the heat is transmitted to the MgF film 1, which is the outermost layer of the anti-reflection film. Dew condensation on the surface of the MgF2 film 1 is prevented.

ここで、SnO,の混合重量比が5%で膜厚を変化させ
て製作したITO膜の波長400゜450.650%m
の光に対する透過損失率及び面抵抗を第7図に示す(破
線が面抵抗値)。
Here, the wavelength of the ITO film manufactured by varying the film thickness with a mixed weight ratio of SnO of 5% is 400°450.650% m.
The transmission loss rate and sheet resistance for light are shown in FIG. 7 (the broken line is the sheet resistance value).

透過損失率は、この図より膜厚120nm以下であれば
可視光域で低い値になっているのがわかる。又、面抵抗
値が、膜厚45nm以下では急激に上昇しており、電圧
を大きくしなければ充分な発熱が得られなくなっている
。従ってITO膜の膜厚は45〜120%mの範囲に設
定するのが効果的である。
It can be seen from this figure that the transmission loss rate is a low value in the visible light region when the film thickness is 120 nm or less. Further, the sheet resistance value increases rapidly when the film thickness is 45 nm or less, and sufficient heat generation cannot be obtained unless the voltage is increased. Therefore, it is effective to set the thickness of the ITO film in the range of 45 to 120% m.

例えば、第1図の反射防止膜の膜構成として中心波長λ
−552nmに対し、各層の光学的膜厚を光学レンズ側
から190.55.138%mとし、基材4として屈折
率1.52の光学レンズとした時の反射防止特性を第2
図に示す、この時のITO膜の実際の膜厚は1100n
である。
For example, for the film structure of the antireflection film shown in Figure 1, the center wavelength λ
-552 nm, the optical thickness of each layer is 190.55.138% m from the optical lens side, and the anti-reflection properties when an optical lens with a refractive index of 1.52 is used as the base material 4 are as follows.
The actual thickness of the ITO film shown in the figure is 1100n.
It is.

比較の為、第1図のλ。/2膜、ITO膜3とZrO,
膜2とを光学的膜厚λ。/2のITO膜1層に置き換え
た反射防止膜の反射防止特性を第6図に示す。両者を比
較すると光学レンズにおいて重要な450〜650nm
の範囲において、本実施例のもので充分な反射防止特性
が得られているのがわかる。又比較用膜ではITO膜の
膜厚が132nmもある0本実施例では1100nであ
る。ITO膜の光吸収量は膜厚に応じて増加するので、
本実施例の方が光吸収が少なく、高透過率が得られる。
For comparison, λ in Figure 1. /2 film, ITO film 3 and ZrO,
Film 2 has an optical thickness λ. FIG. 6 shows the antireflection properties of the antireflection film replaced with a single layer of ITO film of /2. Comparing the two, 450-650 nm is important for optical lenses.
It can be seen that sufficient antireflection properties are obtained in this example in the range of . In addition, the thickness of the ITO film in the comparative film is 132 nm, while in the present example it is 1100 nm. The amount of light absorbed by an ITO film increases depending on the film thickness, so
This example has less light absorption and higher transmittance.

実際にシート抵抗20Ω/sqのITO膜に0.5Aの
電流を流した時の膜表面温度は通電後約10分で40℃
まで加熱され、25℃の環境温度で湿度が過飽和状態に
おいて光学レンズに曇りの発生が見られず、防曇効果が
確認出来た。尚、光学レンズに要求される満足な反射防
止機能が維持された。
When a current of 0.5 A was actually applied to an ITO film with a sheet resistance of 20 Ω/sq, the film surface temperature reached 40°C approximately 10 minutes after the current was applied.
The optical lens was heated to a temperature of 25° C. and the humidity was supersaturated, and no fogging was observed on the optical lens, confirming the antifogging effect. In addition, the satisfactory antireflection function required for optical lenses was maintained.

第1図の反射防止膜の膜構成の変形例として、屈折率1
.52.直径50mmの光学レンズ4に中心波長λ。=
476nmの光に対し、透明導電膜としてITO膜の光
学的膜厚を90nm、これより高い屈折率2.1のZr
O□膜の光学的膜厚を194nmとしてこれら2つの膜
でλo / 2膜を形成し、最終層の低屈折率1.38
のM g F 2膜の光学的膜厚を119nmとし、こ
れをλ/4膜とした膜構成による反射防止特性を第3図
に示す。反射防止特性は良好なまま、ITO膜厚を47
nmと薄くしている。第3図を第2図と比較して反射防
止特性が変化しているのがわかる。この様にITO膜の
膜厚を45〜120nmの間で変化させて、基本膜構成
を変える事なく、即ち、反射防止特性を大巾に変化させ
る事なく特性の微調整が可能である。
As a modification of the film structure of the antireflection film shown in FIG.
.. 52. An optical lens 4 with a diameter of 50 mm has a center wavelength λ. =
For light of 476 nm, the optical thickness of the ITO film as a transparent conductive film is 90 nm, and Zr with a higher refractive index of 2.1 is used as a transparent conductive film.
With the optical thickness of the O□ film being 194 nm, these two films form a λo/2 film, and the final layer has a low refractive index of 1.38.
FIG. 3 shows the antireflection properties of the M g F 2 film having an optical thickness of 119 nm and a λ/4 film. The ITO film thickness was increased to 47 mm while maintaining good anti-reflection properties.
It is as thin as nm. Comparing FIG. 3 with FIG. 2, it can be seen that the antireflection properties have changed. In this way, by changing the thickness of the ITO film between 45 and 120 nm, it is possible to finely adjust the characteristics without changing the basic film configuration, that is, without significantly changing the antireflection characteristics.

実際にITO膜に安定化電源より電流を0.3A供給す
ると膜の表面温度が通電後約10分で40℃に加熱され
、25℃の温度雰囲気で湿度が過飽和状態になっても光
学レンズに曇りは発生せず、満足な反射防止機能を維持
した。
In fact, when a current of 0.3 A is supplied from a stabilized power supply to an ITO film, the surface temperature of the film is heated to 40°C in about 10 minutes after the current is applied, and even when the humidity reaches a supersaturated state in an atmosphere at a temperature of 25°C, the optical lens remains intact. No fogging occurred and satisfactory anti-reflection function was maintained.

第3の実施例として、設計波長λ。に対し、整数層から
なる反射防止膜の膜構成が基材側から基材の屈折率より
高い膜厚λ。/4の層、これより高屈折率からなる膜厚
λ。/2の層、基材より低屈折率からなる膜厚λa /
 4の層の3層で、第1層を非整数層からなる透明導電
膜13とこれより低い屈折率を有する非整数層15に置
き換え、次の第2層を2つの高屈折率からなる非整数層
12a、12bの間にこれより低屈折率の非整数層14
を含めた3つの非整数層からなるものに置き換えた反射
防止膜の構成模式図を第4図に示す。
As a third example, the design wavelength λ. On the other hand, the film thickness λ of the antireflection film consisting of an integral number of layers is higher than the refractive index of the base material from the base material side. /4 layer, the film thickness λ consisting of a layer with a higher refractive index than this. /2 layer, film thickness λa consisting of a lower refractive index than the base material /
4, the first layer is replaced with a transparent conductive film 13 made of a non-integer layer and a non-integer layer 15 with a lower refractive index, and the second layer is replaced with a non-integer layer 15 made of two high refractive index layers. A non-integer layer 14 having a lower refractive index between the integer layers 12a and 12b.
FIG. 4 shows a schematic diagram of the structure of the antireflection film replaced with one consisting of three non-integer layers including .

具体的に中心波長λ。−540nmの光に対し基材の屈
折率1.70各膜の屈折率を基材側からITO透明導電
膜1.9.Au□Os 1.6゜ZrO22,1,Al
1203 1.6.Zr022.1.MgF21.38
で各々の光学的膜厚を90.20,159,23,66
.135nm。
Specifically, the center wavelength λ. -The refractive index of the base material for light of 540 nm is 1.70.The refractive index of each film is 1.9. Au□Os 1.6°ZrO22,1,Al
1203 1.6. Zr022.1. MgF21.38
The respective optical film thicknesses are 90.20, 159, 23, 66.
.. 135nm.

又、基材の直径60mmとした。この膜の反射防止特性
を第5図に示す。
Further, the diameter of the base material was 60 mm. The antireflection properties of this film are shown in FIG.

非整数層からなるITO膜を同じ中間屈折率を有する非
整数層と組み合わせて高屈折率層より低い中間屈折率を
有する整数層と等価にすることで、光学的膜厚を変える
ことなく、良好な反射防止特性を得ている。
By combining an ITO film consisting of a non-integer layer with a non-integer layer having the same intermediate refractive index to make it equivalent to an integer layer having an intermediate refractive index lower than a high refractive index layer, it is possible to achieve good results without changing the optical film thickness. It has excellent anti-reflection properties.

ITO膜に安定化電源より電流を0.35A供給すると
膜の表面温度が通電後約10分で40℃に加熱され、2
5℃の温度雰囲気で湿度が過飽和状態になっても光学レ
ンズに曇りは発生せず、消費電力8Wで効率の良い防曇
機能を示し、充分な反射防止機能を保持した。
When a current of 0.35 A is supplied to the ITO film from a stabilized power supply, the surface temperature of the film is heated to 40°C in about 10 minutes after the current is applied, and the temperature rises to 2.
Even when the humidity was supersaturated in an atmosphere at a temperature of 5°C, the optical lens did not fog up, exhibited efficient anti-fog function with a power consumption of 8 W, and maintained sufficient anti-reflection function.

(発明の効果〕 以上説明した様に透明導電膜を含む反射防止膜の透明導
電膜の膜厚を45〜120nmとする様に構成する事で
、 (1)透過率の高い反射防止膜が可能になる。
(Effects of the invention) As explained above, by configuring the antireflection film including a transparent conductive film so that the thickness of the transparent conductive film is 45 to 120 nm, (1) an antireflection film with high transmittance can be obtained. become.

(2)防曇膜として良好な発熱の得られる反射防止膜が
可能になる。
(2) An anti-reflection film that generates good heat as an anti-fog film becomes possible.

という効果がある。There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の反射防止膜の膜構成を表
わした模式図、 第2図は第1実施例の膜構成における反射防止特性を示
した図、 第3図は第2実施例の膜構成における反射防止特性を示
した図、 第4図は本発明の第3実施例の反射防止膜の膜構成を表
わした模式図、 第5図は第3実施例の膜構成における反射防止特性を示
した図、 第6図は従来の反射防止膜の反射防止特性を示した図、 第7図はITO膜の膜厚変化による透過損失率特性を示
した図である。 図中、1はM g F 2膜、2はZrO2膜、3はI
TO膜、4は光学ガラス、5は電極、6は電源である。
FIG. 1 is a schematic diagram showing the film structure of the anti-reflection film of the first embodiment of the present invention, FIG. 2 is a diagram showing the anti-reflection properties of the film structure of the first embodiment, and FIG. FIG. 4 is a schematic diagram showing the film structure of the anti-reflection film of the third embodiment of the present invention; FIG. 5 is a diagram showing the film structure of the film structure of the third embodiment of the present invention. FIG. 6 is a diagram showing the antireflection characteristics of a conventional antireflection film. FIG. 7 is a diagram showing the transmission loss rate characteristics due to changes in the thickness of the ITO film. In the figure, 1 is M g F 2 film, 2 is ZrO2 film, 3 is I
4 is an optical glass, 5 is an electrode, and 6 is a power source.

Claims (1)

【特許請求の範囲】[Claims] (1)光学素子上に設けられた複数の膜により構成され
る反射防止膜において、前記複数の膜の一層は透明導電
膜であり、前記透明導電膜の膜厚は45〜120nmで
ある事を特徴とする反射防止膜。
(1) In an antireflection film composed of a plurality of films provided on an optical element, one layer of the plurality of films is a transparent conductive film, and the thickness of the transparent conductive film is 45 to 120 nm. Features an anti-reflection film.
JP63016201A 1988-01-19 1988-01-26 Reflection preventive film Pending JPH01191101A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63016201A JPH01191101A (en) 1988-01-26 1988-01-26 Reflection preventive film
US07/297,349 US4957358A (en) 1988-01-19 1989-01-17 Antifogging film and optical element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63016201A JPH01191101A (en) 1988-01-26 1988-01-26 Reflection preventive film

Publications (1)

Publication Number Publication Date
JPH01191101A true JPH01191101A (en) 1989-08-01

Family

ID=11909895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63016201A Pending JPH01191101A (en) 1988-01-19 1988-01-26 Reflection preventive film

Country Status (1)

Country Link
JP (1) JPH01191101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256811A (en) * 1988-08-22 1990-02-26 Nitto Denko Corp Transparent conductive film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151101A (en) * 1984-08-21 1986-03-13 Toray Ind Inc Coated transparent conductive panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151101A (en) * 1984-08-21 1986-03-13 Toray Ind Inc Coated transparent conductive panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256811A (en) * 1988-08-22 1990-02-26 Nitto Denko Corp Transparent conductive film

Similar Documents

Publication Publication Date Title
CA1201630A (en) Optical article having a conductive anti-reflection coating
RU2117972C1 (en) Electrochromatic device ( variants ) and electrochromatic combination ( variants )
JPH0854507A (en) Conductive contrast-improved filter which can select contrast
US4957358A (en) Antifogging film and optical element using the same
JPH04281403A (en) High visible heat ray reflecting laminate
JPH02245702A (en) Antireflection file and production thereof
JP7203759B2 (en) Optical device having a switchable layer and at least one optical layer
JP2004334012A (en) Antireflection film and optical filter
JPH01191101A (en) Reflection preventive film
JPS6177002A (en) Optical antireflecting film
JPH07209516A (en) Optical multilayer film filter
JPH07296672A (en) Touch panel
JPH052101A (en) Optical component
JP3934742B2 (en) Anti-reflection coating
JPH0534502A (en) Optical member with antireflection film
JP2001013304A (en) Optical parts
JP2000304917A (en) Optical parts, its production and projector device
JP2002372602A (en) Antireflection coating and optical element using the same
JP3013099B2 (en) Optical component having conductive anti-reflection coating
KR102064878B1 (en) Glass for display touch panel
WO2022244768A1 (en) Electrochromic element and spectacle lens
JP2843096B2 (en) Laminated film
JP2003322702A (en) Method of manufacturing antireflective film and antireflective film, and element and device for spatial optical modulation
JP2815949B2 (en) Anti-reflective coating
JPH01191102A (en) Antireflection film