JPH0119094B2 - - Google Patents

Info

Publication number
JPH0119094B2
JPH0119094B2 JP56079261A JP7926181A JPH0119094B2 JP H0119094 B2 JPH0119094 B2 JP H0119094B2 JP 56079261 A JP56079261 A JP 56079261A JP 7926181 A JP7926181 A JP 7926181A JP H0119094 B2 JPH0119094 B2 JP H0119094B2
Authority
JP
Japan
Prior art keywords
nozzle
ultrasonic
flaw detection
saddle
reflection source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56079261A
Other languages
Japanese (ja)
Other versions
JPS57194349A (en
Inventor
Kimio Kanda
Tatsukuma Hosono
Akisuke Naruse
Kazuo Takaku
Akira Akasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP56079261A priority Critical patent/JPS57194349A/en
Publication of JPS57194349A publication Critical patent/JPS57194349A/en
Publication of JPH0119094B2 publication Critical patent/JPH0119094B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2638Complex surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は原子炉圧力容器等のノズル部の超音波
探傷法に係り、特に、ノズル外表面鞍形部から探
傷を行うに好適なノズル部の超音波探傷法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection method for a nozzle portion of a nuclear reactor pressure vessel, etc., and particularly to an ultrasonic flaw detection method for a nozzle portion suitable for performing flaw detection from a saddle-shaped portion on the outer surface of the nozzle.

従来原子炉圧力容器ノズルコーナ部の外表面か
らの超音波探傷法には下記の3つの方法がある。
Conventionally, there are the following three methods of ultrasonic flaw detection from the outer surface of the nozzle corner of a reactor pressure vessel.

(1) 圧力容器側からの探傷 (2) ノズル補強部平坦面からの探傷 (3) ノズル外表面鞍形部からの探傷 しかるに、上記(1),(2)に関しては、 (i) 探傷距離が長く、感度が悪くなる。(1) Flaw detection from the pressure vessel side (2) Flaw detection from the flat surface of the nozzle reinforcement part (3) Flaw detection from the saddle-shaped part on the outer surface of the nozzle However, regarding (1) and (2) above, (i) The flaw detection distance is long and the sensitivity is poor.

(ii) 欠陥の面と超音波ビームのなす角が鋭角とな
り、反射効率が悪くなる。
(ii) The angle between the defect surface and the ultrasonic beam becomes an acute angle, resulting in poor reflection efficiency.

(iii) ノズル外表面鞍形部に超音波ビームを投入す
ることが難かしい。
(iii) It is difficult to inject the ultrasonic beam into the saddle-shaped portion on the outer surface of the nozzle.

(iv) 一方向探傷のため、能率が悪い 等の欠点があつた。(iv) Inefficient due to unidirectional flaw detection There were other drawbacks.

また、上記(3)に関しては、 (i) 探触子のノズル軸方向位置、入射角、路程等
から欠陥の位置を標定するもので、精度が悪
い。
Regarding (3) above, (i) the position of the defect is determined from the position of the probe in the nozzle axis direction, the angle of incidence, the path length, etc., and the accuracy is low.

(ii) 一方向探傷のため、能率が悪い。(ii) Inefficient due to unidirectional flaw detection.

等の欠点があつた。There were other drawbacks.

本発明は上記欠点を改善することを目的として
なされたもので、ノズル外表面鞍形部からの探傷
に関し、欠陥位置標定精度の向上、能率向上を図
つたノズル部の探傷法を提供するにある。
The present invention has been made for the purpose of improving the above-mentioned drawbacks, and it is an object of the present invention to provide a flaw detection method for a nozzle portion that improves defect positioning accuracy and efficiency with respect to flaw detection from the saddle-shaped portion on the outer surface of the nozzle. .

本発明の方法は、ノズルの鞍形部外表面の曲率
半径Rと、前記ノズル軸心とノズルの鞍形部外表
面の曲率中心との距離Fとが既知であるノズルの
鞍形部の外表面に沿わせて前記曲率の中心を回転
中心として、超音波探触子シユーの設定により定
まる超音波ビームの法線に対する屈折角θが既知
である超音波探傷装置の超音波探触子を回転走査
して前記ノズル内面に交叉するように超音波ビー
ムを入射し、前記ノズル材質中の反射源からの反
射ビームを受信し、前記受信データを前記超音波
探傷装置の処理装置で処理して少なくとも超音波
入射点と反射点との距離Tを演算してその反射源
の位置を表示装置に表示するまでの処理を行う超
音波探傷方法において、前記超音波探触子の前記
ノズルの鞍形部外表面の曲面に沿つて回転する角
度φを回転角度検出機構で検出し、前記検出角度
φと前記既知の各データR,F,θ,Tとを前記
処理装置に設定し、座標系として前記ノズルの軸
方向をX、前記超音波ビーム入射点を含む前記ノ
ズルの径方向をY、前記Y方向と直交する前記ノ
ズルの径方向をZとして、前記処理装置により、
断面図上の前記反射源の座標位置〔X,Y〕を
〔(Rsinφ+Tcosθ・sinφ)、(F−Rcosθ−
Tcosθ・cosφ)〕として演算して求め、前記処理
装置により、側面図上の前記反射源の座標位置
〔Z,Y〕を〔(Tsinφ)、(F−Rcosθ−Tcosθ・
cosφ)〕として演算して求め、次に前記演算して
求められた前記座標位置を前記表示装置に反射源
の座標として表示することを特徴としたノズル部
の超音波探傷法であつて、この方法によれば、超
音波ビーム入射点から三次元方向へ傾斜した方向
に超音波ビームを入射して反射源と出来るだけ直
交させても、断面図上の座標位置と側面図上の座
標位置とを求めて、その反射源の三次元的位置標
定が成せる。
The method of the present invention provides a method for forming an outer saddle-shaped part of a nozzle in which the radius of curvature R of the outer surface of the saddle-shaped part of the nozzle and the distance F between the nozzle axis and the center of curvature of the outer surface of the saddle-shaped part of the nozzle are known. Rotate the ultrasonic probe of an ultrasonic flaw detection device with a known refraction angle θ to the normal to the ultrasonic beam, which is determined by the settings of the ultrasonic probe shoe, around the center of curvature along the surface. An ultrasonic beam is scanned so as to intersect the inner surface of the nozzle, a reflected beam from a reflection source in the nozzle material is received, and the received data is processed by a processing device of the ultrasonic flaw detection device to at least In an ultrasonic flaw detection method in which a distance T between an ultrasonic wave incidence point and a reflection point is calculated and the position of the reflection source is displayed on a display device, a saddle-shaped portion of the nozzle of the ultrasonic probe is provided. An angle φ of rotation along the curved surface of the outer surface is detected by a rotation angle detection mechanism, and the detected angle φ and each of the known data R, F, θ, T are set in the processing device, and the coordinate system is set as the coordinate system. With the axial direction of the nozzle being X, the radial direction of the nozzle including the ultrasonic beam incident point being Y, and the radial direction of the nozzle orthogonal to the Y direction being Z, the processing device:
The coordinate position [X, Y] of the reflection source on the cross-sectional diagram is defined as [(Rsinφ+Tcosθ・sinφ), (F−Rcosθ−
The processing device calculates the coordinate position [Z, Y] of the reflection source on the side view as [(Tsinφ), (F−Rcosθ−Tcosθ・
cos φ)], and then displays the coordinate position obtained by the calculation on the display device as the coordinates of the reflection source. According to the method, even if the ultrasonic beam is incident in a direction tilted in a three-dimensional direction from the ultrasonic beam incidence point and made as perpendicular to the reflection source as possible, the coordinate position on the cross-sectional view and the coordinate position on the side view are different. By determining this, the three-dimensional position of the reflection source can be determined.

第1図に本発明のノズル部の超音波探傷法の説
明を示す。
FIG. 1 shows an explanation of the ultrasonic flaw detection method for a nozzle portion of the present invention.

1は原子炉圧力容器等のノズル部を含む胴体
部、2はノズルで、圧力容器胴体部1に溶接され
ている。3はノズル外表面鞍形部の曲面に設置し
た超音波探触子である。
Reference numeral 1 denotes a body including a nozzle portion of a reactor pressure vessel, etc., and 2 a nozzle, which is welded to the pressure vessel body 1. 3 is an ultrasonic probe installed on the curved surface of the saddle-shaped portion on the outer surface of the nozzle.

いま、座標系として、ノズルの軸方向をX、径
方向にY,Zをとり、Y軸上にノズル外表面鞍形
部の一方の曲率中心Nをとると、とのな
す角度φは超音波探触子の回転角である。
Now, as a coordinate system, if we take the axial direction of the nozzle as X, the radial direction as Y and Z, and take the center of curvature N of one of the saddle-shaped parts of the nozzle outer surface on the Y axis, the angle φ between them is the ultrasonic wave. This is the rotation angle of the probe.

超音波探触子3はP点において超音波ビームを
投入するが、その方向は第2図に示すで示さ
れる三次元要素を含む方向になる。
The ultrasonic probe 3 injects an ultrasonic beam at point P, and its direction is a direction that includes the three-dimensional element shown in FIG.

第2図で、は法線であり、とのなす
角θは超音波の被検体中の屈折である。
In FIG. 2, is the normal line, and the angle θ between and is the refraction of the ultrasound wave in the subject.

したがつて、もし、U点に超音波の反射源があ
る場合は、断面図においてはQの位置に、また、
側面図においてはWの位置に表示される。
Therefore, if there is an ultrasonic reflection source at point U, it will be at position Q in the cross-sectional view, and
It is displayed at the W position in the side view.

この関係を以下に示す。 This relationship is shown below.

与えられる数値としてはF,R,φ,θ,Tが
ある。
The given numerical values include F, R, φ, θ, and T.

F:ノズル軸心とノズル外表面鞍形部曲率中心と
の距離であり、ノズル毎に与えられる。
F: Distance between the nozzle axis and the center of curvature of the saddle-shaped portion on the outer surface of the nozzle, which is given for each nozzle.

R:ノズル鞍形部の曲率半径であり、ノズル毎に
与えられる。
R: Radius of curvature of the nozzle saddle, given for each nozzle.

φ:超音波探触子のノズル外表面鞍形部の曲面に
そつて回転する角度であり、回転角度検出機構
によつて検出される。
φ: An angle at which the ultrasonic probe rotates along the curved surface of the saddle-shaped portion on the outer surface of the nozzle, and is detected by a rotation angle detection mechanism.

θ:超音波ビームの法線に対する屈折角であり、
超音波探触子シユーの選定により定まる。
θ: refraction angle with respect to the normal of the ultrasound beam,
Determined by selection of ultrasound probe.

T:超音波入射点Pと反射源Uとの距離であり、
超音波の往復伝ぱん時間をt、音速をVs,Vl
とすると T=t/2Vs ……(1) T=t/2Vl ……(2) で表わされる。
T: distance between the ultrasound incident point P and the reflection source U,
The round-trip propagation time of the ultrasonic wave is t, and the sound speed is Vs, Vl.
Then, it is expressed as T=t/2Vs...(1) T=t/2Vl...(2).

これらの数値を用いると断面図上の反射源Qは (x,y)Q=〔(Rsinφ+Tcosθ・sinφ),(F−
Rcosφ−Tcosθ・cosφ)〕……(3) また、側面図上の反射源Wは (z,y)W=〔(Tsinθ),(F−Rcosφ−Tcosθ
・cosφ)〕……(4) で示される。
Using these values, the reflection source Q on the cross section is (x, y) Q = [(Rsinφ+Tcosθ・sinφ), (F−
Rcosφ−Tcosθ・cosφ)]……(3) Also, the reflection source W on the side view is (z, y) W = [(Tsinθ), (F−Rcosφ−Tcosθ
・cosφ)]...(4)

このように、本発明のノズル外表面鞍形部の曲
面において、超音波探触子の回転角φを検出して
超音波反射源の位置Q,Wを求める方法による
と、容易に、しかも精度良く行える。
As described above, according to the method of the present invention for determining the positions Q and W of the ultrasonic reflection sources by detecting the rotation angle φ of the ultrasonic probe on the curved surface of the saddle-shaped portion on the outer surface of the nozzle, it is possible to easily and accurately obtain the positions Q and W of the ultrasonic reflection sources. I can do it well.

第1図においては超音波探触子3が1個の場合
について説明したが、複数個の場合を示すと第3
図、または、第4図となる。
In Fig. 1, the case where the number of ultrasonic probes 3 is one was explained, but if the case where there are multiple ultrasonic probes is shown, the third
or Fig. 4.

第3図は超音波探触子3,4,5の3個独立し
て設け、超音波探触子3から送出される超音波ビ
ーム6を反時計方向に、超音波探触子4から送出
される超音波ビーム7を時計方向になるように設
定した場合である。超音波ビームは互に遠ざかる
ように設定される。ただし、超音波探触子5のビ
ームは垂直に投入される。
In Figure 3, three ultrasonic probes 3, 4, and 5 are provided independently, and the ultrasonic beam 6 sent out from the ultrasonic probe 3 is sent out from the ultrasonic probe 4 in a counterclockwise direction. This is a case where the ultrasonic beam 7 is set to be directed clockwise. The ultrasound beams are set to move away from each other. However, the beam of the ultrasonic probe 5 is applied vertically.

第4図は超音波探触子3と4を互に入れ換えた
場合である。このようにすると、超音波ビーム
6,8は互に接近するようになる。
FIG. 4 shows a case where the ultrasonic probes 3 and 4 are interchanged. In this way, the ultrasound beams 6 and 8 come closer to each other.

このように、本発明の複数個の超音波触子を設
置する方式によれば、時計方向及び反時計方向の
2方向の探傷を1回の走査で行うことができ、能
率を大幅に向上できる。
As described above, according to the method of installing a plurality of ultrasonic probes of the present invention, flaw detection in two directions, clockwise and counterclockwise, can be performed in one scan, and efficiency can be greatly improved. .

探触子5から送出される超音波ビームは法線上
に投入されるが、底面が入射面と平行でない場合
は底面エコーは戻らない。
The ultrasonic beam sent out from the probe 5 is thrown on the normal line, but if the bottom surface is not parallel to the incident surface, no bottom echo will return.

したがつて、底面エコーを観察できるところは
第1図において、超音波探触子の回転角φが0゜の
場合、ノズルコーナ部に超音波が投入されている
場合、回転角φが90゜の場合の3点である。
Therefore, in Figure 1, the bottom echo can be observed when the rotation angle φ of the ultrasonic probe is 0°, when the ultrasonic wave is injected into the nozzle corner, and when the rotation angle φ is 90°. There are three points in this case.

このため、垂直に投入される超音波ビームのエ
コーを観測することにより、ノズルコーナ部に超
音波ビームが到達しているか否かを知ることがで
き、非常に有効である。
Therefore, by observing the echoes of the vertically applied ultrasonic beam, it is possible to know whether or not the ultrasonic beam has reached the nozzle corner, which is very effective.

また、ノズルの場合は円筒で厚肉のため第5図
に示すように特殊な探傷法となる。
Furthermore, since the nozzle is cylindrical and has a thick wall, a special flaw detection method is required as shown in FIG.

すなわち、横波の超音波ビームをノズル内
面に交叉するように投入すると、それにつれて、
縦波の超音波ビーム′にも投入される。
In other words, when a transverse ultrasonic beam is applied so as to cross the inner surface of the nozzle, the
It is also injected into the longitudinal ultrasound beam'.

そこで、本発明ではこれら両ビームを積極的に
用いて探傷を行うものである。
Therefore, in the present invention, both of these beams are actively used for flaw detection.

いま、第6図に示すように、例えば入射角θiを
θi1とすると横波Sの屈折角θrはθrs1となり、縦波
Lの屈折角θrはθrl1となる。
Now, as shown in FIG. 6, for example, if the incident angle θi is θi 1 , the refraction angle θr of the transverse wave S becomes θrs 1 , and the refraction angle θr of the longitudinal wave L becomes θrl 1 .

そこで、ノズルの円筒部を探傷する場合は横波
Sの超音波ビームを用い、ノズルコーナ部の胴体
側の探傷を行う場合は第7図に示すように縦波L
の超音波ビームを用いる。
Therefore, when testing the cylindrical part of the nozzle, an ultrasonic beam with a transverse wave S is used, and when testing the body side of the nozzle corner, an ultrasonic beam with a longitudinal wave L is used as shown in Figure 7.
using an ultrasonic beam.

このようにすると、ノズル側のように比較的細
い円筒部から、胴体側のように平板に近い範囲ま
での広範囲を超音波探触子を交換せずに探傷を行
うことが可能となる。
In this way, it becomes possible to perform flaw detection over a wide range from a relatively thin cylindrical part like the nozzle side to a range close to a flat plate like the body side without changing the ultrasonic probe.

なお、横波Sの超音波ビームから縦波Lの超音
波ビームに乗り替える時点は超音波ビームがノズ
ルコーナ部を通過した時点が適当である。
Note that the appropriate time to switch from the ultrasonic beam of the transverse wave S to the ultrasonic beam of the longitudinal wave L is when the ultrasonic beam passes through the nozzle corner.

本発明では第2図、第3図に示すように、超音
波探触子を複数個用い、時計方向、垂直方向、反
時計方向に超音波ビームを送出し、該超音波ビー
ムが交叉または接近する場合、さらに該超音波ビ
ームが遠ざかる場合について示したが、超音波探
触子をさらに、4個、5個と多くしたり、胴体側
用探触子を加えたり、一探触子をマルチ型の探触
子としても同様の効果を得ることが可能である。
In the present invention, as shown in FIGS. 2 and 3, multiple ultrasound probes are used to send out ultrasound beams in clockwise, vertical, and counterclockwise directions, and the ultrasound beams cross or approach each other. The case where the ultrasonic beam moves further away is shown above, but the number of ultrasonic probes may be increased to 4 or 5, a probe for the body side may be added, or one probe may be Similar effects can be obtained using a type probe.

上述の本発明の方法を実施する装置の構成の一
例を以下に説明する。
An example of the configuration of an apparatus for implementing the above-described method of the present invention will be described below.

第8図、第9図において、ノズル2のセーフエ
ンド11には環状の軌道10が取付けられる。こ
の軌道10にはセーフエンド11の周りをY方向
へ周回走行自在に駆動装置12が据付けられる。
駆動装置12にはアーム13が駆動装置12内の
図示していないモータによりノズル2の軸方向で
あるX方向に移動自在に装備されている。このア
ーム13の左端部には探触子3,4,5の回転中
心Nとなる回転中心軸16の高さを調整する調整
機構14が取付けられる。この調整機構14から
水平に突き出されたフレーム21には回転中心軸
16が取り付く。このフレーム21にはモータ1
9が取り付けられており、このモータ19の駆動
ピニオン18が回転中心軸16に取付けたギア1
7と噛みあわされている。このため、モータ19
を駆動すると回転中心軸16が回転されて、押し
付け用エアシリンダ15もろとも探触子3,4,
5を矢印φ角度方向に回動できる。さらには、モ
ータ19の反駆動ピニオン18側のモータ回転軸
端には探触子3,4,5の回転角を検出するため
に回転角検出機構としてエンコーダ20が取付け
られる。回転中心軸16には、さらに探触子3,
4,5の押し付け用エアシリンダ15の上端部が
固定され、押し付け用エアシリンダ15は探触子
3,4,5をノズル2に押し付けている。22は
接触式のセンサであり、検出方向を水平方向にし
て、フレーム21の先端から接触触覚端を突き出
してある。30は超音波探傷器であり、探触子
3,4,5に電気的パルスを供給し欠陥等からの
反射エコー信号を増幅して、波高値31、路程値
32をデータ収録装置34へ出力する。33は駆
動制御装置であり、X,Y,Z,φ方向の駆動制
御を司り、X,Y,φ方向に係る位置信号をデー
タ収録装置34へ出力する。データ収録装置34
ではトリガ信号35,超音波探傷器30のゲイン
補正信号36を送出して波高値31、路程値3
2、X,Y,φ方向に係る位置信号を収録する。
37は記憶媒体であり、データ収録装置34で収
録された探傷データを記憶する。40はデータ処
理装置であり、記憶媒体37の探傷データを入力
して、解析、処理して各種図表データを出力す
る。41はターミナルであり、データ処理装置4
0の探傷データ入力、解析、処理、結果の出力等
の指令を行う。42はグラフイクデイスプレイで
あり、データ処理装置40からの出力内容に基づ
き探傷検査断面図、側面図、評価リスト等の各種
図表を表示する。43はハードコピーであり、デ
ータ処理装置40からの出力内容に基づき探傷検
査断面図、側面図、評価リスト等の各種図表を紙
面上に作画がする。
8 and 9, an annular track 10 is attached to the safe end 11 of the nozzle 2. As shown in FIGS. A drive device 12 is installed on this track 10 so as to be able to run freely around the safe end 11 in the Y direction.
The drive device 12 is equipped with an arm 13 that is movable in the X direction, which is the axial direction of the nozzle 2, by a motor (not shown) within the drive device 12. An adjustment mechanism 14 is attached to the left end of the arm 13 to adjust the height of a rotation center shaft 16 that is the rotation center N of the probes 3, 4, and 5. A rotation center shaft 16 is attached to a frame 21 that projects horizontally from the adjustment mechanism 14. This frame 21 has a motor 1
9 is attached, and the drive pinion 18 of this motor 19 connects to the gear 1 attached to the rotation center shaft 16.
It is intertwined with 7. For this reason, the motor 19
When driven, the rotation center shaft 16 is rotated, and the pressing air cylinder 15 as well as the probes 3, 4,
5 can be rotated in the direction of the arrow φ angle. Further, an encoder 20 is attached to the end of the motor rotation shaft of the motor 19 on the side opposite to the drive pinion 18 as a rotation angle detection mechanism in order to detect the rotation angles of the probes 3, 4, and 5. The rotation center shaft 16 further includes a probe 3,
The upper ends of the pressing air cylinders 15 4 and 5 are fixed, and the pressing air cylinders 15 press the probes 3 , 4 , and 5 against the nozzle 2 . Reference numeral 22 denotes a contact type sensor, whose detection direction is horizontal, and a contact tactile end protrudes from the tip of the frame 21. 30 is an ultrasonic flaw detector that supplies electrical pulses to the probes 3, 4, and 5, amplifies reflected echo signals from defects, etc., and outputs a wave height value 31 and a path value 32 to a data recording device 34. do. A drive control device 33 controls drive in the X, Y, Z, and φ directions, and outputs position signals related to the X, Y, and φ directions to the data recording device 34. Data recording device 34
Then, the trigger signal 35 and the gain correction signal 36 of the ultrasonic flaw detector 30 are sent out to obtain a wave height value of 31 and a path value of 3.
2. Record position signals in the X, Y, and φ directions.
A storage medium 37 stores the flaw detection data recorded by the data recording device 34. 40 is a data processing device which inputs the flaw detection data of the storage medium 37, analyzes and processes it, and outputs various chart data. 41 is a terminal, and data processing device 4
Inputs 0 flaw detection data, analyzes, processes, outputs results, etc. A graphic display 42 displays various charts such as a flaw detection cross-sectional view, a side view, and an evaluation list based on the output contents from the data processing device 40. Reference numeral 43 denotes a hard copy, in which various charts such as a flaw detection cross-sectional view, a side view, and an evaluation list are drawn on paper based on the output contents from the data processing device 40.

第10図では、このような装置において、探傷
データを波形で示したものである。第10図の3
5はトリガ信号35であり、ここでは、0゜、時計
方向(CW)、反時計方向(CCW)の順で示し
た。31,32はエコー信号の波高値をA1,A2
路程値をT1,T2で表している。このようにして、
各超音波ビームについて複数のエコーを取り込ん
でいる。第11図は、データ収録のフローであ
る。51はゲイン制御で、距離振幅特性の補正を
行う。52はデータ取り込みで、各ビームのエコ
ー信号の波高値、路程値、探触子位置を取り込
む。53は軌跡表示、探触子の軌跡を表示し、距
離振幅特性補正100%を越えるエコーがある場合
は輝度を変えて表示する。54はデータ収録であ
り、例えば、フロツピーデイスク等に収録する。
第12図はデータ処理のフローである。60では
フロツピーデイスク等から探傷データを入力す
る。61ではグルーピングで、入力したデータを
反射源ごとにグルーピングする。62ではグルー
ピングしたデータの位置標定を行い、ノズルの断
面又は側面に関する座標に変換する。63,6
4,65では断面図、側面図、評価リストを出力
する。
FIG. 10 shows flaw detection data in waveforms in such an apparatus. Figure 10 3
5 is a trigger signal 35, which is shown here in the order of 0°, clockwise (CW), and counterclockwise (CCW). 31 and 32 are the peak values of the echo signals A 1 , A 2 ,
The travel distance values are expressed as T 1 and T 2 . In this way,
Multiple echoes are captured for each ultrasound beam. FIG. 11 is a flowchart of data recording. Reference numeral 51 denotes a gain control for correcting distance amplitude characteristics. Reference numeral 52 denotes data capture, which captures the wave height value, path value, and probe position of the echo signal of each beam. 53 is a locus display, which displays the locus of the probe, and if there is an echo whose distance amplitude characteristic correction exceeds 100%, the brightness is changed and displayed. 54 is data recording, for example, recorded on a floppy disk or the like.
FIG. 12 is a flowchart of data processing. At 60, flaw detection data is input from a floppy disk or the like. At 61, in grouping, input data is grouped for each reflection source. At 62, the grouped data is positioned and converted into coordinates regarding the cross section or side surface of the nozzle. 63,6
4 and 65 output a sectional view, side view, and evaluation list.

本発明によれば、形状複雑なノズル鞍形部から
の自動探傷が可能であり、特に、原子炉圧力容器
のノズル部に適用した場合、信頼性が向上し、検
査員の被曝量を大幅に低減でき、能率を大幅に向
上できる等、工業的に大きな利益が期待できる。
According to the present invention, automatic flaw detection is possible from the nozzle saddle section, which has a complicated shape.In particular, when applied to the nozzle section of a nuclear reactor pressure vessel, reliability is improved and the amount of radiation exposure for inspectors is significantly reduced. It is expected that there will be great industrial benefits, such as the ability to reduce the amount of water used and greatly improve efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bおよび第2図は、本発明のノズル
部の超音波探傷法の概念説明図、第3図a,b及
び第4図a,bはそれぞれ異なる実施例を示す
図、第5図〜第7図は横波及び縦波の2つの超音
波ビームを利用した場合の超音波探傷法の実施例
を示す図、第8図は本発明の方法を実施する探傷
装置の全体図、第9図は第8図のA―A矢視図、
第10図は探傷データを波形で示した図、第11
図は収録データのフロー図、第12図はデータ処
理のフロー図である。 2…ノズル、3〜5…超音波探触子、6〜8…
超音波ビーム。
Figures 1a, b and 2 are conceptual explanatory diagrams of the ultrasonic flaw detection method of the nozzle part of the present invention, Figures 3a and b and Figures 4a and b are diagrams showing different embodiments, respectively. 5 to 7 are diagrams showing an example of an ultrasonic flaw detection method using two ultrasonic beams, a transverse wave and a longitudinal wave, and FIG. 8 is an overall view of a flaw detection apparatus that implements the method of the present invention. Figure 9 is a view taken along arrow A-A in Figure 8.
Figure 10 shows flaw detection data in waveforms, Figure 11
The figure is a flowchart of recorded data, and FIG. 12 is a flowchart of data processing. 2... Nozzle, 3-5... Ultrasonic probe, 6-8...
Ultrasonic beam.

Claims (1)

【特許請求の範囲】 1 ノズルの鞍形部外表面の曲率半径Rと、前記
ノズルの軸心とノズルの鞍形部外表面の曲率中心
との距離Fとが既知であるノズルの鞍形部の外表
面に沿わせて前記曲率の中心を回転中心として、
超音波探触子シユーの設定により定まる超音波ビ
ームの法線に対する屈折角θが既知である超音波
探傷装置の超音波探触子を回転走査して前記ノズ
ル内面に交叉するように超音波ビームを入射し、
前記ノズル材質中の反射源からの反射ビームを受
信し、前記受信データを前記超音波探傷装置の処
理装置で処理して少なくとも超音波入射点と反射
点との距離Tを演算してその反射源の位置を表示
装置に表示するまでの処理を行う超音波探傷方法
において、前記超音波探触子の前記ノズルの鞍形
部外表面の曲面に沿つて回転する角度φを回転角
度検出機構で検出し、前記検出角度φと前記既知
の各データR,F,θ,Tとを前記処理装置に設
定し、座標系として前記ノズルの軸方向をX、前
記超音波ビーム入射点を含む前記ノズルの径方向
をY、前記Y方向と直交する前記ノズルの径方向
をZとして、前記処理装置により、断面図上の前
記反射源の座標位置〔X,Y〕を〔(Rsinφ+
Tcosθ・sinφ)、(F−Rcosθ−Tcosθ・cosφ)〕
として演算して求め、前記処理装置により、側面
図上の前記反射源の座標位置〔Z,Y〕を
〔(Tsinφ)、(F−Rcosθ−Tcosθ・cosφ)〕とし
て演算して求め、次に前記演算して求められた前
記座標位置を前記表示装置に反射源の座標として
表示することを特徴としたノズル部の超音波探傷
法。
[Scope of Claims] 1. A saddle-shaped portion of a nozzle in which the radius of curvature R of the outer surface of the saddle-shaped portion of the nozzle and the distance F between the axis of the nozzle and the center of curvature of the outer surface of the saddle-shaped portion of the nozzle are known. with the center of curvature as the center of rotation along the outer surface of
The ultrasonic probe of an ultrasonic flaw detection device whose refraction angle θ with respect to the normal to the ultrasonic beam determined by the settings of the ultrasonic probe is known is rotated and scanned so that the ultrasonic beam intersects the inner surface of the nozzle. is incident,
A reflected beam from a reflection source in the nozzle material is received, and the received data is processed by a processing device of the ultrasonic flaw detection device to calculate at least a distance T between an ultrasonic incident point and a reflection point, and the reflection source is In an ultrasonic flaw detection method that performs processing up to displaying the position of the nozzle on a display device, a rotation angle detection mechanism detects an angle φ of rotation along a curved surface of an outer surface of a saddle-shaped portion of the nozzle of the ultrasonic probe. Then, the detection angle φ and the known data R, F, θ, and T are set in the processing device, and the axial direction of the nozzle is set to X as a coordinate system, and the nozzle including the ultrasonic beam incident point is set as a coordinate system. Assuming that the radial direction is Y and the radial direction of the nozzle perpendicular to the Y direction is Z, the processing device converts the coordinate position [X, Y] of the reflection source on the cross-sectional view into [(Rsinφ+
Tcosθ・sinφ), (F−Rcosθ−Tcosθ・cosφ)]
The processing device calculates and calculates the coordinate position [Z, Y] of the reflection source on the side view as [(Tsinφ), (F−Rcosθ−Tcosθ・cosφ)], and then An ultrasonic flaw detection method for a nozzle portion, characterized in that the coordinate position obtained by the calculation is displayed on the display device as a coordinate of a reflection source.
JP56079261A 1981-05-27 1981-05-27 Ultrasonic flaw detecting method for nozzle part Granted JPS57194349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56079261A JPS57194349A (en) 1981-05-27 1981-05-27 Ultrasonic flaw detecting method for nozzle part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56079261A JPS57194349A (en) 1981-05-27 1981-05-27 Ultrasonic flaw detecting method for nozzle part

Publications (2)

Publication Number Publication Date
JPS57194349A JPS57194349A (en) 1982-11-29
JPH0119094B2 true JPH0119094B2 (en) 1989-04-10

Family

ID=13684907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56079261A Granted JPS57194349A (en) 1981-05-27 1981-05-27 Ultrasonic flaw detecting method for nozzle part

Country Status (1)

Country Link
JP (1) JPS57194349A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3318748A1 (en) * 1983-05-24 1984-11-29 Kraftwerk Union AG, 4330 Mülheim METHOD FOR THE ULTRASONIC TESTING OF DISC SHRINK BODIES SHRINKED ON SHAFT IN THE AREA OF THE SHRINK SEATS AND DEVICE FOR CARRYING OUT THE METHOD
JP2017167107A (en) * 2016-03-18 2017-09-21 三菱日立パワーシステムズ株式会社 Ultrasonic wave probe sensor and ultrasonic wave probe method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461589A (en) * 1977-10-26 1979-05-17 Hitachi Ltd Ultrasonic locating device for nozzle root

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461589A (en) * 1977-10-26 1979-05-17 Hitachi Ltd Ultrasonic locating device for nozzle root

Also Published As

Publication number Publication date
JPS57194349A (en) 1982-11-29

Similar Documents

Publication Publication Date Title
US6382028B1 (en) Ultrasonic defect detection system
EP0642015B1 (en) Method and apparatus for measuring and controlling refracted angle of ultrasonic waves
CN108414622A (en) Stainless steel tube butt weld phased array ultrasonic detecting method
TW200414229A (en) Method and system for nondestructive inspection of components
US4709582A (en) Inspection device for rotor binding defects in electrical machines
JP2553867B2 (en) Ultrasonic flaw detector
JPH0352825B2 (en)
JPH0119094B2 (en)
JPH0377057A (en) Ultrasonic flaw detecting device
RU2621216C1 (en) Intra tube method of ultrasonic testing of welds
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2002243703A (en) Ultrasonic flaw detector
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
JPS6086462A (en) Ultrasonic flaw detecting system
JP2747825B2 (en) Ultrasonic tomography detection method and apparatus
JPS615463U (en) Ultrasonic flaw detector
JP2755651B2 (en) Ultrasonic flaw detector
JPH0664028B2 (en) Ultrasonic flaw detection method
JPH02154144A (en) Ultrasonic flaw detecting image processor
JPH0412456Y2 (en)
JPS61172055A (en) Apparatus for inspecting interior of piping
JPS6130762A (en) Ultrasonic flaw detection method and apparatus
JPH05172789A (en) Ultrasonic flaw detector
JPH068731B2 (en) Probe position detection method
JPS6196461A (en) Ultrasonic reflectoscope