JPH01189549A - Detecting device of defect of glass - Google Patents

Detecting device of defect of glass

Info

Publication number
JPH01189549A
JPH01189549A JP1351588A JP1351588A JPH01189549A JP H01189549 A JPH01189549 A JP H01189549A JP 1351588 A JP1351588 A JP 1351588A JP 1351588 A JP1351588 A JP 1351588A JP H01189549 A JPH01189549 A JP H01189549A
Authority
JP
Japan
Prior art keywords
glass
light
run
dimensional
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1351588A
Other languages
Japanese (ja)
Inventor
Hideto Tani
秀人 谷
Shinji Kobayashi
小林 進二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1351588A priority Critical patent/JPH01189549A/en
Publication of JPH01189549A publication Critical patent/JPH01189549A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod

Abstract

PURPOSE:To enable the detection of a defect of glass with high resolution and at a high speed, by a method wherein a light from a light source provided linearly is projected into the glass through a slit. CONSTITUTION:Glass 2 is irradiated by a light of a light source, e.g. a halogen lamp 7, through a slit 6. In the case when a defect exist inside or one the surface of the glass 2, a normal part thereof is bright and a defect part is dark when the light is applied to the glass 2. The intensity of the light therefrom is sensed by a one- dimensional camera 1, converted into an electric signal and transmitted to a prepara tory processing element 11. The glass 2 is carried at a prescribed speed by a carrying device 5 driven by a motor 3, and an information on the position of the glass 2 is detected by a rotary encoder 4 fitted to a driving system and sent likewise to the preparatory processing element 11. In the preparatory processing element 11, a video signal from the camera 1 is transformed into one-dimensional binary-coded data and further it is subjected to run-length coding and transmitted to an after processing element 12. In the after processing element 12, one-dimensional signal is converted into a two-dimensional signal on the basis of the run-length data and a position signal from a carrying control element 10, and thereafter the dimensions of the defect part are calculated to determine the quality of the glass 2.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、硝子欠点検出装置に関するものである。[Detailed description of the invention] [Industrial application fields] The present invention relates to a glass defect detection device.

[従来の技術] 従来、1次元カメラの信号を取り込み、2次元信号に変
換して画像処理する硝子欠点装置は知られているか、実
時間で画像処理てきない点で不充分であった。
[Prior Art] Conventionally, a glass defect apparatus that captures a one-dimensional camera signal, converts it into a two-dimensional signal, and processes the image has been known, but it has been insufficient in that it cannot perform image processing in real time.

[発明が解決しようとする課8] 従来の硝子欠点検出システムでは、2次元カメラを用い
たものがあるが、カメラ1台当りの分解能が小さいため
、検出領域を大きく取ろうとすると、カメラの台数か増
え、画像処理装置も大型化し、高価格になるという問題
点を有していた。また、1次元カメラを用いたものでは
1.1次元信号のまま処理するために、欠点像(2次元
像)が正確に認識できない、という問題点を有していた
[Problem 8 to be solved by the invention] Some conventional glass defect detection systems use two-dimensional cameras, but the resolution per camera is small, so if you try to increase the detection area, the number of cameras will increase. The problem is that the number of image processing devices increases, the size of the image processing device increases, and the price becomes high. Further, in the case of using a one-dimensional camera, since the 1.1-dimensional signal is processed as it is, there is a problem that the defect image (two-dimensional image) cannot be accurately recognized.

更に、1次元カメラの信号を取込み、2次元信号に変換
する技術を用いた画像処理装置は、1次元信号をデータ
圧縮する事なく、全データをメモリに保存する方式を用
いているために、高分解能化しようとすると、データ数
が増え、必要とするメモリ量か増加し、取込みか可能な
データ量に制限を受け、処理速度も遅くなる。
Furthermore, image processing devices that use technology to capture one-dimensional camera signals and convert them into two-dimensional signals use a method that stores all data in memory without compressing the one-dimensional signal. If you try to increase the resolution, the amount of data will increase, the amount of memory required will increase, the amount of data that can be captured will be limited, and the processing speed will slow down.

そのため、従来の装置を硝子の欠点検出システムに応用
する場合、リアルタイムに処理てきないという問題点を
有していた。
Therefore, when the conventional device is applied to a glass defect detection system, there is a problem that processing cannot be performed in real time.

[課題を解決するための手段コ 本発明は、前述の問題点を解決すべくなされたものであ
り、硝子を搬送制御する機構と、線状に配置した光源か
らの光をスリットを通して、硝子に投光することにより
、硝子の内部欠点、表面欠点を光の陰影として、1次元
カメラにて電気信号に変換する信号検出部と、1次元カ
メラからの電気信号をアナログ/ディジタル変換後、フ
ィルタリング、二値化し、二値データをランレングス符
号へ変換して、ランレングス符号を伝送する前処理部と
、ランレングス符号より、1次元データを2次元データ
に変換し、リアルタイムに欠点形状を測定し、硝子の良
否を判定する後処理部とからなる硝子欠点検出装置を提
供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes a mechanism for controlling the conveyance of glass, and a mechanism for transmitting light from a linearly arranged light source to the glass through a slit. By projecting light, a signal detection unit converts the internal defects and surface defects of the glass into electrical signals using a one-dimensional camera as shadows of light, and after analog/digital conversion of the electrical signals from the one-dimensional camera, filtering, A preprocessing unit that binarizes, converts the binary data into a run-length code, and transmits the run-length code, and converts the one-dimensional data into two-dimensional data from the run-length code and measures the defect shape in real time. The present invention provides a glass defect detection device comprising a post-processing section that determines the quality of glass.

以下、本発明に係る硝子欠点装置の好ましい実施例を図
面に従って詳説する。第1図は光の照射方法として透過
の場合を示している。硝子2はスリット6を通った光源
例えばハロゲンランプ7の光により照射される。光を硝
子2に照射されると、硝子の内部又は表面に欠点がある
場合には、正常部は明るく、欠点部は暗くなるので、こ
の光の強弱を一次元カメラ(ラインイメージセンサ)1
にて受光し、電気信号(ビデオ信号)に変換して前処理
部へ伝送する。
Preferred embodiments of the glass defect apparatus according to the present invention will be described in detail below with reference to the drawings. FIG. 1 shows the case of transmission as the light irradiation method. The glass 2 is illuminated by light from a light source such as a halogen lamp 7 that has passed through the slit 6 . When light is irradiated onto the glass 2, if there is a defect inside or on the surface of the glass, the normal area will be bright and the defective area will be dark.
It receives the light, converts it into an electrical signal (video signal), and transmits it to the preprocessing section.

硝子2はモーター3により駆動される搬送装置5により
一定速度で搬送され、硝子2の位置情報は駆動系に取り
つけられたロータリーエンコーダ4により検出され、同
様に前処理部へ伝送される。前処理部ては前記−次元カ
メラ1からのビデオ信号を1次元の二値化データに直し
、更にこのデータをランレングス符号化し、後処理部へ
伝送する。後処理部では、ランレングスデータと搬送制
御部からの位置信号をもとに、1次元信号を2次元信号
に変換後、欠点部の大きさを計算し硝子2の良否判定を
行う。
The glass 2 is transported at a constant speed by a transport device 5 driven by a motor 3, and position information of the glass 2 is detected by a rotary encoder 4 attached to the drive system and similarly transmitted to the preprocessing section. The pre-processing section converts the video signal from the -dimensional camera 1 into one-dimensional binary data, further performs run-length encoding on this data, and transmits it to the post-processing section. The post-processing section converts the one-dimensional signal into a two-dimensional signal based on the run length data and the position signal from the conveyance control section, calculates the size of the defective part, and determines the quality of the glass 2.

次に、第2図を用いて前処理部の詳細な説明を行う。Next, the preprocessing section will be explained in detail using FIG. 2.

信号検出部より受けたビデオ信号は、r A/D変換」
部にてディジタル信号(多値)に変えられ、次に「フィ
ルター」部によりノイズ除去を行った後、「二値化」部
にて、正常部の明るい部分を「白」、欠点部の暗い部分
を「黒」とする二値データに変換される。さらに、「ラ
ンレングス符号」部にて、「白」 「黒」それぞれの長
さを表すランレングスデータに変換され、ランレングス
メモリ切換えスイッチ8を経由して「ランレングスメモ
リ」への記憶が行われる。
The video signal received from the signal detection section is A/D converted.
The signal is converted into a digital signal (multi-level) in the ``filter'' section, and then noise is removed in the ``filter'' section, and then in the ``binarization'' section, bright areas in the normal area are converted to ``white'' and dark areas in the defective area are converted to ``white''. It is converted to binary data with the part as "black". Furthermore, in the "run length code" section, it is converted into run length data representing the length of "white" and "black", and stored in the "run length memory" via the run length memory changeover switch 8. be exposed.

搬送制御部からの位置信号を受けた「位置信号検出1部
は、−次元カメラをスキャンさせるスキャン信号を「カ
メラ駆動回路」部へ送る。また、位置信号をもとにして
、ランレングスデータ転送信号を発生し、ランレングス
メモリー切換えスイッチ8及び「ランレングスメモリー
」を制御する。「ランレングスメモリー」を2式用いて
、両者を切換えて使用するのは、「ランレングスメモリ
ー」から後処理部へのデータ転送時間を考慮したものて
、転送中に前段から入力されるランレングスデータの取
りこぼしを防ぎ、リアルタイム連続処理を可能とするた
めの機構である。この機構の動作を以下に説明する。■
切換えスイッチ8か、rNo、1ランレンクスメモリー
」に接続されていて、データが記憶されている状態を考
える。■ランレングスデータ転送信号により、まず切換
えスイッチ8がr No、2ランレングスメモリ」に切
換えられデータの記憶は、r No、2ランレングスメ
モリ」にて行われる。
The position signal detection unit 1, which receives the position signal from the transport control unit, sends a scan signal that causes the -dimensional camera to scan to the camera drive circuit unit. Also, based on the position signal, a run length data transfer signal is generated to control the run length memory changeover switch 8 and the "run length memory". The reason for using two sets of "run-length memories" and switching between them is to take into consideration the time required to transfer data from the "run-length memory" to the post-processing section. This mechanism prevents data from being lost and enables real-time continuous processing. The operation of this mechanism will be explained below. ■
Let us consider a state in which data is stored and connected to changeover switch 8, rNo., 1 run length memory. (2) In response to the run-length data transfer signal, the selector switch 8 is first switched to "r No. 2 run length memory" and data is stored in "r No. 2 run length memory".

この時の切換えは、「ランレングス符号化」部から送ら
れてくるデータとデータの間の空時器内に行われるので
、「ランレングスメモリ」の切換えを行う事によりデー
タを失う事はない。■切換えスイッチ8が、  r  
No、2ランレンクスメモリ」に切換えられた後、rN
o、1ランレングスメモリ」のデータは、マイクロプロ
セッサの制御により、バスを経由して、「通信ボート」
に送られ、後処理部へ伝送される。この時に用する伝送
時間を、片側の「ランレングスメモリ」に記憶てきるデ
ータ量を取込む時間(測定時間)より短くする事により
、2式の「ランレングスメモリ」を順次切換えて、リア
ルタイムに、ランレングスデータを、後処理部へ伝送可
能となる。
The switching at this time is done in the timer between the data sent from the "run-length encoding" section, so there is no loss of data by switching the "run-length memory". . ■The selector switch 8 is set to r
After switching to "No. 2 run length memory", rN
The data in the ``1 run length memory'' is transferred to the ``communication boat'' via the bus under the control of the microprocessor.
and then transmitted to the post-processing section. By making the transmission time used at this time shorter than the time (measuring time) to capture the amount of data stored in the "run-length memory" on one side, the two "run-length memories" can be sequentially switched, allowing real-time measurement. , run length data can be transmitted to the post-processing section.

次に、第3図を用いて、後処理部の説明を行う。伝送さ
れてきたランレングスデータは、l走査毎に取り込まれ
、前回走査分と比較し、暗部の連続性がチエツクされる
。このチエツクの結果、暗部か新たに始ったと理解され
る場合(第3図 No、x+1走査、y+6〜y+10
の領域)は、領域を区別するために番号づけがされる(
例えばN)。このとき、暗部の開始位ご(x+l  、
y+6)、終了位置(x+ 1 。
Next, the post-processing section will be explained using FIG. The transmitted run length data is captured every l scans and compared with the previous scan to check the continuity of dark areas. As a result of this check, if it is understood that a dark area or a new beginning has started (Fig. 3, No, x+1 scan, y+6 to y+10
areas) are numbered to distinguish between areas (
For example, N). At this time, at the starting position of the dark part (x+l,
y+6), end position (x+1.

y+IO)、fflさ(5)かランレングスデータより
求められ記憶される。暗部か前回走査から連続している
と理解された場合、(第3図 No。
y+IO), ffl(5) is determined from the run length data and stored. If the dark area is understood to be continuous from the previous scan (No. 3 in Figure 3).

x+2〜x+7走査の暗部)は、開始位置を走査No、
はそのまま、ビットNo、のみより小さい方にと更新し
、終了位置を走査No、とともに、ビットNo、のより
大きい方にと更新し、長さは、前回の長さに加算するこ
とにより面積と読み換え、これらの値を記憶する。暗部
か孤立したと理解された場合、(第3図 NO,x+8
走査)暗領域Nは、開始点座標(第3図 5=(X+1
.y+1)) 、終了点座標(第3図E= (x+17
 、y+lo) ) 、面積(第3図 暗ピロセル数=
47)の特徴データを持ち、これらをもとに、有効径を
以下の手順で求める。
x+2 to x+7 scan dark area), scan the start position with No.
is updated as it is to the smaller bit number only, the end position is updated to the larger bit number along with the scan number, and the length is added to the previous length to calculate the area. Reread and memorize these values. If it is understood that the dark part is isolated, (Fig. 3 NO, x + 8
scanning) dark area N is the starting point coordinates (Fig. 3 5=(X+1
.. y+1)), end point coordinates (Fig. 3 E= (x+17
, y+lo) ), area (Fig. 3 Number of dark pyrocells =
47), and based on these, the effective diameter is determined by the following procedure.

(1) S〜Eの対角線距離を、あらかじめ求められて
いる換算係数を乗することで、物理単位系の距離として
求める。
(1) Multiplying the diagonal distance of S to E by a conversion coefficient determined in advance is obtained as a distance in the physical unit system.

(2)面積(第3図の場合、47)をあらかじめ求めら
れている換算係数を乗することで、物理単位系の面積と
して求める。
(2) Multiply the area (47 in the case of FIG. 3) by a conversion factor determined in advance to obtain the area in the physical unit system.

(3)求められた対角線距離を長軸長とする楕円を欠点
とみなし、楕円の短軸長を面積が(2)て求めた値に一
致するものとして求める。
(3) An ellipse whose major axis length is the obtained diagonal distance is regarded as a defect, and the short axis length of the ellipse is determined by assuming that the area matches the value obtained in (2).

(4)欠点の有効径は、(3)で求めた長軸長と短軸長
との和の値の1/2として求める。
(4) The effective diameter of the defect is determined as 1/2 of the sum of the major axis length and minor axis length determined in (3).

(5) (4)で求められた有効径をもとに、あらかじ
め定められた基準に従って、欠点の大きさのクラス分け
もしくは良否を判定し、その結果を外部に出力する。
(5) Based on the effective diameter determined in (4), classify the size of the defect or determine whether it is good or bad according to predetermined criteria, and output the results to the outside.

以上の演算処理が、信号検出部の1走査周期以内に終了
することにより、欠点検出システムとしてリアルタイム
処理が可衡となる。
By completing the above arithmetic processing within one scanning period of the signal detection section, real-time processing becomes possible as a defect detection system.

な3本発明において、硝子表面又は、内部欠陥との境界
面で生じる屈折光、及び反射光の微細な変化を、カメラ
視野内の光量変化としてとらえているが、線状の白色光
を投光することは欠陥部以外からの光の影響を少なくす
るように働くことによって、S/N比を増大させる効果
を生しる。
3 In the present invention, minute changes in the refracted light and reflected light that occur on the glass surface or at the interface with internal defects are considered as changes in the amount of light within the camera field of view, but linear white light is projected. This has the effect of increasing the S/N ratio by reducing the influence of light from sources other than the defective portion.

[発明の効果] 本発明は以上述べられたように構成されているので、硝
子の欠点を高分解能、高速度に検出することかてき、各
種の硝子に生じる微細な欠点をリアルタイムで検出可能
である。而も欠点は大きさとして検出することができる
ので、予め基準を設定しておけば、この基準と対比して
判断される。従って、この基準を硝子の種類などを考慮
して要求される検出の程度に合せて調整することにより
、適当なレベルての欠点検出がてきる。
[Effects of the Invention] Since the present invention is configured as described above, defects in glass can be detected with high resolution and at high speed, and minute defects that occur in various types of glass can be detected in real time. be. Moreover, defects can be detected in terms of size, so if a standard is set in advance, the judgment can be made by comparing with this standard. Therefore, by adjusting this standard in accordance with the required level of detection in consideration of the type of glass, etc., defects can be detected at an appropriate level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る硝子欠点検出装置のブロック図
であり、第2図は第1図の前処理部の構成図であり、第
3図は第1図の後処理部の処理方法の説明図である。
FIG. 1 is a block diagram of the glass defect detection device according to the present invention, FIG. 2 is a block diagram of the pre-processing section shown in FIG. 1, and FIG. 3 is a processing method of the post-processing section shown in FIG. 1. FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)硝子を搬送制御する機構と、線状に配置した光源
からの光をスリットを通して、硝子に投光することによ
り、硝子の内部欠点、表面欠点を光の陰影として、1次
元カメラにて電気信号に変換する信号検出部と、1次元
カメラからの電気信号をアナログ/ディジタル変換後、
フィルタリング、二値化し、二値データをランレングス
符号に変換して、ランレングス符号を伝送する前処理部
と、ランレングス符号より、1次元データを2次元デー
タに変換し、リアルタイムに欠点形状を測定し、硝子の
良否を判定する後処理部とからなる硝子欠点検出装置。
(1) By using a mechanism that controls the transport of glass and projecting light from a linearly arranged light source onto the glass through a slit, a one-dimensional camera can detect the internal defects and surface defects of the glass as shadows of light. After converting the signal detection unit into an electrical signal and the electrical signal from the one-dimensional camera from analog to digital,
A preprocessing unit that filters, binarizes, converts the binary data into a run-length code, and transmits the run-length code, and converts one-dimensional data into two-dimensional data from the run-length code, and detects defect shapes in real time. A glass defect detection device comprising a post-processing section that measures and determines the quality of glass.
JP1351588A 1988-01-26 1988-01-26 Detecting device of defect of glass Pending JPH01189549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1351588A JPH01189549A (en) 1988-01-26 1988-01-26 Detecting device of defect of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1351588A JPH01189549A (en) 1988-01-26 1988-01-26 Detecting device of defect of glass

Publications (1)

Publication Number Publication Date
JPH01189549A true JPH01189549A (en) 1989-07-28

Family

ID=11835287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1351588A Pending JPH01189549A (en) 1988-01-26 1988-01-26 Detecting device of defect of glass

Country Status (1)

Country Link
JP (1) JPH01189549A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469555A (en) * 1990-07-10 1992-03-04 Kubota Corp Rush inspection device
US5452079A (en) * 1992-06-26 1995-09-19 Central Glass Company, Limited Method of and apparatus for detecting defect of transparent sheet as sheet glass
US5691811A (en) * 1995-02-10 1997-11-25 Central Glass Company, Limited Method of and apparatus for detecting defect of transparent sheet as sheet glass
JP2002286656A (en) * 2001-01-22 2002-10-03 Hitachi Electronics Eng Co Ltd Substrate inspection apparatus
US20140049778A1 (en) * 2012-08-16 2014-02-20 Beijing Boe Display Technology Co., Ltd. Device And A Method For Detecting A Transmittivity Spectrum Of A Light Guiding Plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616542A (en) * 1979-07-20 1981-02-17 Akishima Kagaku Kogyo Kk Stabilized chlorine-containing resin composition
JPS56126748A (en) * 1980-03-12 1981-10-05 Toshiba Corp Optical detecting device
JPS5995676A (en) * 1982-11-24 1984-06-01 Pentel Kk Visual discrimination system
JPS60103487A (en) * 1983-11-09 1985-06-07 Ckd Corp Form recognizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616542A (en) * 1979-07-20 1981-02-17 Akishima Kagaku Kogyo Kk Stabilized chlorine-containing resin composition
JPS56126748A (en) * 1980-03-12 1981-10-05 Toshiba Corp Optical detecting device
JPS5995676A (en) * 1982-11-24 1984-06-01 Pentel Kk Visual discrimination system
JPS60103487A (en) * 1983-11-09 1985-06-07 Ckd Corp Form recognizer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469555A (en) * 1990-07-10 1992-03-04 Kubota Corp Rush inspection device
US5452079A (en) * 1992-06-26 1995-09-19 Central Glass Company, Limited Method of and apparatus for detecting defect of transparent sheet as sheet glass
US5691811A (en) * 1995-02-10 1997-11-25 Central Glass Company, Limited Method of and apparatus for detecting defect of transparent sheet as sheet glass
JP2002286656A (en) * 2001-01-22 2002-10-03 Hitachi Electronics Eng Co Ltd Substrate inspection apparatus
US20140049778A1 (en) * 2012-08-16 2014-02-20 Beijing Boe Display Technology Co., Ltd. Device And A Method For Detecting A Transmittivity Spectrum Of A Light Guiding Plate
US9442068B2 (en) * 2012-08-16 2016-09-13 Boe Technology Group Co., Ltd. Device and a method for detecting a transmittivity spectrum of a light guiding plate

Similar Documents

Publication Publication Date Title
JPH0736001B2 (en) Bottle defect inspection method
JPH0244202A (en) Apparatus for detecting end position of object
JPH04220551A (en) Method and apparatus for inspecting flaw of transparent body
JPH01189549A (en) Detecting device of defect of glass
PL311015A1 (en) Method and device for testing an object, especially a bottle
JPH11248643A (en) Detection device for foreign matter in transparent film
JP2002303583A (en) Inspection method for container and inspection device for container
JPS60205683A (en) Method and device for discrminating external appearance
KR100241006B1 (en) Apparatus for detecting surface defects of thick plate using image processing
JPS58115975A (en) Picture discriminator
JPH0224543A (en) Visual inspection method of bottle
JPS6026973B2 (en) Object surface inspection method and device
JPS6177707A (en) Direction judging device of semiconductor integrated circuit device
JPS62148838A (en) Defect recognizing method
SU955126A1 (en) Mask flaw recognition device
JPH02141877A (en) Image pre-processing method
JPH06100551B2 (en) Defect detection method
JPS60114705A (en) Visual sensor
JPS6128175A (en) Image input device
JPS6310780B2 (en)
JPS63122229A (en) Inspecting device for pattern of thick film ic
JPH02231553A (en) Soldering inspection device
JPH0224544A (en) Visual inspection apparatus for bottle
JPH0434345A (en) Reading system for image for printed circuit board inspecting apparatus
JPS5994006A (en) Appearance inspector