JPS62148838A - Defect recognizing method - Google Patents

Defect recognizing method

Info

Publication number
JPS62148838A
JPS62148838A JP60289418A JP28941885A JPS62148838A JP S62148838 A JPS62148838 A JP S62148838A JP 60289418 A JP60289418 A JP 60289418A JP 28941885 A JP28941885 A JP 28941885A JP S62148838 A JPS62148838 A JP S62148838A
Authority
JP
Japan
Prior art keywords
contour
circuit pattern
binary
shape
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60289418A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ikeda
和弘 池田
Toshitaka Mizuno
水野 寿孝
Kazuo Nagai
和雄 永井
Takahiro Nishino
西野 高廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP60289418A priority Critical patent/JPS62148838A/en
Publication of JPS62148838A publication Critical patent/JPS62148838A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To recognize a quantity indicating features of a defect by reducing the line width of a binary-coded contour part, further tracking this contour part and finding a shape feature curve, and comparing it with a predetermined value and recognizing the contour part. CONSTITUTION:When an image is inputted, an object is lighted and reflected light is photodetected by an image pickup means, and the two-dimensional video signal of the object circuit pattern is obtained through photoelectric conversion. Then, the input image is further converted into a binary signal. Light is reflected irregularly owing to the inclination of the contour part 7 of the circuit pattern, so a part 17 is different in density from a part 15 corresponding to a base material part 5 and a part 16 corresponding to the circuit pattern part 6. The binary image is obtained on the basis of the density. Line thinning processing 2 reduce the line width of the binary pattern of the contour part 7 to one picture element as preprocessing for tracking the shape of the contour and converting it into feature data. Data conversion processing 3 detects the tracking start address of the binary pattern of the contour part 7 reduced in line width to one picture element and calculates the feature data while tracking the contour, thereby generating a linear shape feature curve.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は回路パターンの外観上の欠陥を検出する欠陥検
出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a defect detection method for detecting defects in the appearance of a circuit pattern.

(従来の技術) 被検査物体の形状の欠陥を認識する従来の装置としては
、たとえば特開昭59−214984号公報に開示され
たものがある。この文献の装置では、被検査物体をTV
カメラ等で撮像して物体の2値画像を求め、その2値画
像中の物体と背景との境界線を順次追跡して境界線上の
すべての境界点のアドレスを検出し、そのデータに基づ
いて境界線の接線の角度変化を求め、そのピーク値など
から物体の形状の欠陥を検出する方法をとっている。
(Prior Art) A conventional device for recognizing defects in the shape of an object to be inspected is disclosed in, for example, Japanese Patent Laid-Open No. 59-214984. In the device of this document, the object to be inspected is
Obtain a binary image of the object by capturing it with a camera, etc., sequentially trace the boundary line between the object and the background in the binary image, detect the addresses of all boundary points on the boundary line, and then A method is used to find the angular change of the tangent to the boundary line and detect defects in the shape of the object from its peak value.

、  (発明が解決しようとする問題点)しかしながら
、以上述べた従来の欠陥認識方法では、たとえば回路パ
ターンの欠陥検査において注目すべき欠陥の高さや深さ
を知ることが出来ず、回路パターン欠陥検査装置として
適用するのは難しいという問題があった。
(Problems to be Solved by the Invention) However, with the conventional defect recognition methods described above, it is not possible to know the height and depth of defects that should be noted in, for example, circuit pattern defect inspection. There was a problem that it was difficult to apply it as a device.

本発明は、このような従来技術の問題点を解決するため
になされたものであって、回路パターンの輪郭形状から
、その欠陥の高さや深さのような欠陥の特徴を表す量で
もって欠陥を認識することのできる欠陥認識方法を提供
することを目的とする。
The present invention has been made in order to solve the problems of the prior art. The purpose of this invention is to provide a defect recognition method that can recognize defects.

(問題点を解決するための手段) 本発明の第1の方法は、貯泥従来技術の問題点を解決す
るため、光電変換により得られる検査対象回路パターン
の2次元画像を2値化し、回路パターン部の輪郭部とそ
れ以外の部分との2値画像を得、次に2値化された輪郭
部の線幅を細線化し、さらに細線化された輪郭部の追跡
を行い、輪郭形状の特徴データを算出して形状特徴曲線
を求め、そして形状特徴曲線の示す値を予め決められた
しきい値と比較し、前者の値が後者の値以上となる場合
を欠陥として認識するようにした。
(Means for Solving the Problems) In order to solve the problems of the conventional mud storage technology, the first method of the present invention binarizes a two-dimensional image of a circuit pattern to be inspected obtained by photoelectric conversion, and Obtain a binary image of the outline of the pattern part and other parts, then thin the line width of the binarized outline, and trace the thinned outline to determine the characteristics of the outline shape. The data is calculated to obtain a shape characteristic curve, and the value indicated by the shape characteristic curve is compared with a predetermined threshold value, and when the former value is greater than or equal to the latter value, it is recognized as a defect.

また本発明の第2の方法では、第1の方法にて形状特徴
曲線の示す値としきい値との比較により欠陥を認識する
ことに代えて、回路パターンの形状特徴曲線と予め求め
た正常な輪郭部の形状特徴曲線とを比較して欠陥部を検
出するようにした。
In addition, in the second method of the present invention, instead of recognizing defects by comparing the value indicated by the shape characteristic curve with a threshold value in the first method, the shape characteristic curve of the circuit pattern and a predetermined normal Defects are detected by comparing the shape characteristic curve of the contour.

(作用) 本発明の第1の方法によれば、先ず、検査対象の回路パ
ターンが照光され、その反射光を光電変換して2次元映
像信号が得られ、人力画像として入力される。そしてこ
の人力画像は2値化されるが、この時パターンの輪郭部
では光が乱反射しているためその部分だけ他の部分と異
なった濃度となり輪郭パターンが得られる。次に、後の
処理のためにこの輪郭パターンの線幅の細線化処理がな
される。この細線化処理はたとえば複数画素より成る線
幅を1画素の線幅にすることにより行われる。そして細
線化された輪郭部のある一点から輪郭追跡が順次行われ
、輪郭形状の特徴を反映した1次元の形状特徴曲線が求
められる。次に、得られた形状特徴曲線の示す値を所定
のしきい値と比較し、前者の値が所定のしきい値より大
きい場合にはそれを欠陥と認識する。この時、形状特徴
曲線の示す値は欠陥の高さ、深さ等に対応しているので
、定量的な欠陥認識が可能となる。
(Operation) According to the first method of the present invention, first, a circuit pattern to be inspected is illuminated, and the reflected light is photoelectrically converted to obtain a two-dimensional video signal, which is input as a human image. This human image is then binarized, but at this time, light is diffusely reflected at the contour of the pattern, so that a contour pattern is obtained with a density that is different from that of the other portions. Next, the line width of this contour pattern is thinned for later processing. This line thinning process is performed, for example, by reducing a line width consisting of a plurality of pixels to a line width of one pixel. Then, contour tracing is performed sequentially from a certain point on the thinned contour, and a one-dimensional shape characteristic curve reflecting the characteristics of the contour shape is obtained. Next, the value indicated by the obtained shape characteristic curve is compared with a predetermined threshold value, and if the former value is larger than the predetermined threshold value, it is recognized as a defect. At this time, since the value indicated by the shape characteristic curve corresponds to the height, depth, etc. of the defect, quantitative defect recognition becomes possible.

一方、本発明の第2の方法によれば、輪郭追跡を行い形
状特徴曲線を得るまでの作用は同じであるが、それ以降
は次のようになる。すなわち、得られた形状特徴曲線は
欠陥のない標準的な形状特徴曲線と比較される。この場
合、両者の一次元的位置決めをするだけで容易に比較を
行うことができ、両者の差により欠陥の定量的検出が可
能となる。
On the other hand, according to the second method of the present invention, the operations up to contour tracing and obtaining the shape characteristic curve are the same, but the operations thereafter are as follows. That is, the obtained shape feature curve is compared with a standard feature curve without defects. In this case, a comparison can be easily made simply by one-dimensional positioning of the two, and defects can be detected quantitatively based on the difference between the two.

(実施例) 以下本発明の一実施例を図面に基づき詳細に説明する。(Example) An embodiment of the present invention will be described in detail below based on the drawings.

第1図は本実施例の欠陥認識方法の処理手順を示すブロ
ック図であり、画像入力・2値化処理1、細線化処理2
、データ変換処理3及び比較処理4から成る。各処理に
ついては後にそれぞれ詳述する。第2図(a)は本実施
例の方法の対象となる回路パターン例を示す図で、図中
5は基材部、6は回路パターン部、7は回路パターンの
輪郭部である。第2図(a)に示す例は、基材部5と回
路パターン部6との間に反射特性の差がなく、回路パタ
ーンがその立体性でしか判別出来ないために一般の欠陥
認識方法の適用が難しい例である。第2図(b)は第2
図(a)に示す対象回路パターンの人力画像を示す図で
1図中15は基材部5に対応する部分、16は回路パタ
ーン部6に対応する部分、17は輪郭部7に対応する部
分である。
FIG. 1 is a block diagram showing the processing procedure of the defect recognition method of this embodiment, including image input/binarization processing 1, thinning processing 2
, data conversion processing 3 and comparison processing 4. Each process will be explained in detail later. FIG. 2(a) is a diagram showing an example of a circuit pattern to which the method of the present embodiment is applied. In the figure, 5 is a base material portion, 6 is a circuit pattern portion, and 7 is an outline portion of the circuit pattern. In the example shown in FIG. 2(a), there is no difference in reflection characteristics between the base material part 5 and the circuit pattern part 6, and the circuit pattern can only be distinguished by its three-dimensionality, so it cannot be used in a general defect recognition method. This is an example that is difficult to apply. Figure 2(b) shows the second
This is a diagram showing a human image of the target circuit pattern shown in FIG. It is.

先ず、画像人力・2値化処理1について述べる。First, the manual image binarization process 1 will be described.

画像入力は、第2図(a)の矢印で示すように対象を照
明しその反射光をTV左カメラの撮像手段(図示せず)
で受光し、光電変換を介して対象回路パターンの2次元
映像信号を得ることによりなされる。入力画像には更に
2値化処理が施される。第2図(a)に示すような対象
では回路パターンの輪郭部7に存在する傾斜によフて光
が乱反射するため、入力画像において、輪郭部7に対応
する部分17の濃度は他の部分すなわち基材部5に相当
する部分15及び回路パターン部6に相当する部分16
の濃度と異なる(第2図(b))。この濃度の際に基づ
き対象回路パターンの2値画像を得る。
Image input is performed by illuminating the object as shown by the arrow in Fig. 2 (a) and capturing the reflected light by the imaging means (not shown) of the TV left camera.
This is done by receiving light and obtaining a two-dimensional image signal of the target circuit pattern through photoelectric conversion. The input image is further subjected to binarization processing. In the object shown in FIG. 2(a), light is diffusely reflected due to the slope existing in the contour part 7 of the circuit pattern, so in the input image, the density of the part 17 corresponding to the contour part 7 is different from that of other parts. That is, a portion 15 corresponding to the base material portion 5 and a portion 16 corresponding to the circuit pattern portion 6
(Fig. 2(b)). A binary image of the target circuit pattern is obtained based on this density.

細線化処理2では、回路パターンの輪郭の形状を追跡し
特徴データに変換するための前処理として、上記処理1
で得られた輪郭部7の2値パターンの線幅を1画素にす
る処理を行う。
In the thinning process 2, the above process 1 is performed as a preprocess for tracking the contour shape of the circuit pattern and converting it into feature data.
Processing is performed to set the line width of the binary pattern of the contour portion 7 obtained in step 1 to 1 pixel.

データ変換処理3では、線幅が1画素になった輪郭部7
の2値パターンの追跡開始アドレスを検出し、そのアド
レス位置を開始点として輪郭追跡を行ないながら特徴デ
ータを算出して1次元の形状特徴曲線を求める処理を行
う。
In data conversion process 3, the outline portion 7 whose line width is 1 pixel is
The tracking start address of the binary pattern is detected, and feature data is calculated while contour tracking is performed using the address position as a starting point, thereby obtaining a one-dimensional shape feature curve.

ここで上記特徴データの算出方法を第3図により説明す
る。第3図は欠陥部Aを含む輪郭部7の2値パターンで
あり、図中P1は追跡によって得られた最新の位置、P
2はPlよりdだけ前の位置、P3はP2よりさらにd
だけ前の位置、Bは追跡方向である。今、P、とP3を
結ぶ弦P、l−を考え、この弦[[とP2との距離2を
P2における特徴データとする。そして第4図の(1)
から(4)に示すように順次追跡を行いその時の特徴デ
ータ文の値を次々に求めて、第5図のごとき1次元の形
状特徴曲線を得る。第5図は、第3図に示すような直線
部に欠陥部Aが生じた場合に、dを欠陥部Aの周長fよ
り長くとったときの形状特徴曲線を示している。
Here, a method for calculating the above feature data will be explained with reference to FIG. FIG. 3 shows a binary pattern of the contour part 7 including the defective part A, and in the figure P1 is the latest position obtained by tracking, P
2 is a position d before Pl, P3 is further d before P2
B is the tracking direction. Now, consider a string P, l- that connects P and P3, and let the distance 2 between this string [[ and P2 be the feature data for P2. And (1) in Figure 4
As shown in (4), tracing is performed sequentially and the values of the feature data sentences at that time are obtained one after another to obtain a one-dimensional shape feature curve as shown in FIG. FIG. 5 shows a shape characteristic curve when d is set longer than the circumferential length f of the defective portion A when the defective portion A occurs in a straight line portion as shown in FIG.

図中(1)〜(4)及び12.it4は第3図で用いた
ものに対応している。第5図の曲線において、24は欠
陥部Aの高さ、曲線(:l) −(4) −(5)は欠
陥部Aの形状に対応している。また曲線(1) −(2
) −(3)及び(5) −(6) −(7)はp、、
p3が欠陥部Aを通過するときに発生する虚像とみるこ
とが出来る。これらの曲線の高さ12.1aは欠陥部A
の真の高さf14の約%と小さいため、後の比較処理4
にとって大きな障害とはならない。
(1) to (4) and 12. it4 corresponds to that used in FIG. In the curve shown in FIG. 5, 24 corresponds to the height of the defective part A, and the curve (:l)-(4)-(5) corresponds to the shape of the defective part A. Also, the curve (1) −(2
) −(3) and (5) −(6) −(7) are p,
It can be seen as a virtual image generated when p3 passes through the defective part A. The height 12.1a of these curves is the defect area A
Because it is small, about % of the true height f14, later comparison process 4
It's not a big hindrance.

上記例は直線部に欠陥が生じた場合であったが、次に曲
線部に欠陥が生じた場合について第6図及び第7図によ
り説明する。第6図は曲線部に欠陥部Cが生じた場合の
輪郭部7の2値パターンである。図中点線は正常であっ
たときの輪郭を示す。この場合、特徴データLは欠陥部
Cの実際の高さすなわち正常な輪郭に対する欠陥部Cの
高さLoと、正常な輪郭の曲率によるオフセットし”と
を加えたものとなる。第7図は第6図の例で得られる形
状特徴曲線である。
The above example deals with a case where a defect occurs in a straight portion, but next, a case where a defect occurs in a curved portion will be explained with reference to FIGS. 6 and 7. FIG. 6 shows a binary pattern of the contour portion 7 when a defective portion C occurs in the curved portion. The dotted line in the figure shows the contour when normal. In this case, the feature data L is the actual height of the defect C, that is, the height Lo of the defect C with respect to the normal contour, plus the offset due to the curvature of the normal contour. This is a shape characteristic curve obtained in the example of FIG. 6.

次ニ、比較処理4では、データ変換処理3で求めた形状
特徴曲線により欠陥の認識を行う。この欠陥の認識には
、得られた形状特徴曲線の示す値と予め与えられたしき
い値とを比較する第1の方法、又は得られた形状特徴曲
線と正常な場合の形状特徴曲線とを比較する方法が用い
られる。
Next, in comparison process 4, defects are recognized using the shape characteristic curve obtained in data conversion process 3. To recognize this defect, the first method is to compare the value indicated by the obtained shape characteristic curve with a predetermined threshold, or the first method is to compare the obtained shape characteristic curve with a normal shape characteristic curve. A comparative method is used.

第1の方法は、第8図に示すように、データ変換処理3
で得られた回路パターンの形状特徴曲線が、許容欠陥サ
イズと正常パターンの曲率によるオフセット誤差とによ
って決められたしきい値α以下に収まっているかどうか
を調べる方法である。
The first method is as shown in FIG.
This is a method of checking whether the shape characteristic curve of the circuit pattern obtained in 1 is within the threshold value α determined by the allowable defect size and the offset error due to the curvature of the normal pattern.

同図の場合、しきい値αよりはみ出したD及びEが欠陥
として認識される。この第1の方法は小さな鋭角的な欠
陥に有効である。
In the case of the figure, D and E that exceed the threshold value α are recognized as defects. This first method is effective for small sharp defects.

第2の方法は、回路パターンと欠陥のない標準回路パタ
ーンのそれぞれの形状特徴曲線を比較する方法である。
The second method is to compare the shape characteristic curves of a circuit pattern and a defect-free standard circuit pattern.

即ち、第9図(a)に示す検査対象回路パターンの形状
特徴曲線Fと第9図(b)に示す標準パターンの形状特
徴曲線Gとの1次元的な位置合わせを行い、両者の差を
第9図(C)のHのごとく求めて欠陥の認識を行なう。
That is, the shape characteristic curve F of the circuit pattern to be inspected shown in FIG. 9(a) is one-dimensionally aligned with the shape characteristic curve G of the standard pattern shown in FIG. 9(b), and the difference between the two is calculated. Defects are recognized by finding them as indicated by H in FIG. 9(C).

この第2の方法は、広範囲にわたる滑らかな欠陥や、回
路パターンそのものの形状を検査するのに有効である。
This second method is effective for inspecting smooth defects over a wide range and the shape of the circuit pattern itself.

(発明の効果) 以上、詳細に説明した様に本発明によれば、回路パター
ンの輪郭部のみに着目して欠陥の認識を行っているので
、回路パターンの輪郭部しか明確に現われない様な工程
(例えばフォトリソグラフィー現像後)における検査に
適用できる。また、欠陥の特徴を表すデータを生成しそ
れによって欠陥の認識を行なう方法をとっているので、
小さな鋭角的な欠陥であればその高さや深さという量で
直接認識することが出来る。さらに、正常な回路パター
ンの輪郭部の形状特徴曲線を用意して、被検査回路パタ
ーンの形状特徴曲線と比較することにより、大きい滑ら
かな欠陥も検出する事ができるようになり、しかもこの
場合一般の比較法の様な正確な相互の位置決めは不要で
ある。
(Effects of the Invention) As described above in detail, according to the present invention, defects are recognized by focusing only on the outline of the circuit pattern, so that only the outline of the circuit pattern appears clearly. It can be applied to inspection in a process (for example, after photolithography development). In addition, we use a method that generates data representing the characteristics of defects and uses them to recognize defects.
Small sharp defects can be directly recognized by their height and depth. Furthermore, by preparing a shape characteristic curve of the contour of a normal circuit pattern and comparing it with the shape characteristic curve of the circuit pattern to be inspected, it is now possible to detect even large and smooth defects. Precise mutual positioning as in the comparison method is not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る欠陥認識方法の処理手順を示すブ
ロック図、第2図(a)及び(b)は検査対象となる回
路パターン例及びその人力画像を示す図、第3図はデー
タ変換処理における特徴データの算出方法の説明図、第
4図はデータ変換処理の際の輪郭追跡の様子を示す図、
第5図は被検査対象の直線部に欠陥が生じた場合の形状
特徴曲線を示す図、第6図は被検査対象の曲線部に欠陥
が生じた場合のパターン例を示す図、第7図は被検査対
象の曲線部に欠陥が生じた場合の形状特徴曲線を示す図
、第8図は比較処理における第1の方法の説明図、第9
図は比較処理における第2の方法の説明図である。 1・・・画像人力・2値化処理、2・・・細線化処理、
3・・・データ変換処理    4・−・比較処理、5
・・・基材部、       6・・・回路パターン部
、7・・・輪郭部、      A、C−・・欠陥部、
l・・・特徴データ。
Figure 1 is a block diagram showing the processing procedure of the defect recognition method according to the present invention, Figures 2 (a) and (b) are diagrams showing an example of a circuit pattern to be inspected and its human image, and Figure 3 is a data An explanatory diagram of the method of calculating feature data in the conversion process, FIG. 4 is a diagram showing the state of contour tracking in the data conversion process,
Fig. 5 is a diagram showing a shape characteristic curve when a defect occurs in a straight section of the object to be inspected, Fig. 6 is a diagram showing an example of a pattern when a defect occurs in a curved section of the object to be inspected, and Fig. 7 9 is a diagram showing a shape characteristic curve when a defect occurs in a curved portion of the object to be inspected, FIG. 8 is an explanatory diagram of the first method in comparison processing, and FIG.
The figure is an explanatory diagram of the second method in comparison processing. 1... Image manual/binarization processing, 2... Thinning processing,
3...Data conversion processing 4.--Comparison processing, 5
...Base material part, 6...Circuit pattern part, 7...Contour part, A, C-...Defect part,
l...Characteristic data.

Claims (2)

【特許請求の範囲】[Claims] (1)光電変換により得られる検査対象回路パターンの
2次元画像を2値化し、回路パターンの輪郭部とそれ以
外の部分との2値画像を得、 2値化された輪郭部の線幅を細線化し、 細線化された輪郭部の追跡を行ない、輪郭形状の特徴デ
ータを算出して形状特徴曲線を求め、形状特徴曲線の示
す値を予め決められたしきい値と比較し、前者の値が後
者の値以上となる場合を欠陥として認識することを特徴
とする欠陥認識方法。
(1) Binarize the two-dimensional image of the circuit pattern to be inspected obtained by photoelectric conversion, obtain a binary image of the outline and other parts of the circuit pattern, and calculate the line width of the binarized outline. The line is thinned, the thinned contour is tracked, the feature data of the contour shape is calculated to obtain a shape feature curve, the value indicated by the shape feature curve is compared with a predetermined threshold, and the former value is calculated. A defect recognition method characterized in that a case where the value is greater than or equal to the latter value is recognized as a defect.
(2)光電変換により得られる検査対象回路パターンの
2次元画像を2値化し、回路パターンの輪郭部とそれ以
外の部分との2値画像を得、 2値化された輪郭部の線幅を細線化し、 細線化された輪郭部の追跡を行ない、輪郭形状の特徴デ
ータを算出して形状特徴曲線を求め、算出した形状特徴
曲線と、予め求めた正常な輪郭部の形状特徴曲線とを比
較して欠陥部を検出することを特徴とする欠陥認識方法
(2) Binarize the two-dimensional image of the circuit pattern to be inspected obtained by photoelectric conversion, obtain a binary image of the outline and other parts of the circuit pattern, and calculate the line width of the binarized outline. The line is thinned, the thinned contour is traced, the characteristic data of the contour is calculated, a shape characteristic curve is obtained, and the calculated shape characteristic curve is compared with the shape characteristic curve of the normal contour determined in advance. A defect recognition method characterized by detecting a defective part.
JP60289418A 1985-12-24 1985-12-24 Defect recognizing method Pending JPS62148838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60289418A JPS62148838A (en) 1985-12-24 1985-12-24 Defect recognizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60289418A JPS62148838A (en) 1985-12-24 1985-12-24 Defect recognizing method

Publications (1)

Publication Number Publication Date
JPS62148838A true JPS62148838A (en) 1987-07-02

Family

ID=17742984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60289418A Pending JPS62148838A (en) 1985-12-24 1985-12-24 Defect recognizing method

Country Status (1)

Country Link
JP (1) JPS62148838A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169343A (en) * 1987-12-25 1989-07-04 Nippon Sheet Glass Co Ltd Cut defect detector for glass plate
JPH01273181A (en) * 1988-04-25 1989-11-01 Matsushita Electric Works Ltd Visual inspecting method
JP2002207996A (en) * 2001-01-10 2002-07-26 Kokusai Gijutsu Kaihatsu Co Ltd Method and device for detecting pattern defect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169343A (en) * 1987-12-25 1989-07-04 Nippon Sheet Glass Co Ltd Cut defect detector for glass plate
JPH01273181A (en) * 1988-04-25 1989-11-01 Matsushita Electric Works Ltd Visual inspecting method
JP2002207996A (en) * 2001-01-10 2002-07-26 Kokusai Gijutsu Kaihatsu Co Ltd Method and device for detecting pattern defect

Similar Documents

Publication Publication Date Title
JPH0736001B2 (en) Bottle defect inspection method
JPS62148838A (en) Defect recognizing method
JPH0723846B2 (en) Position detector
JPH1038542A (en) Method and device for object recognition and recording medium
JPH09198485A (en) Method and device for detecting rotary fingerprint
JP3093450B2 (en) Semiconductor chip recognition device
JP3218875B2 (en) Three-dimensional object shape inspection device
JP2003194734A (en) Inspection method and device for printing pattern
JP4474006B2 (en) Inspection device
JPH0723845B2 (en) Defect detection method
CN111183351A (en) Image sensor surface defect detection method and detection system
JPH0962839A (en) Inspection device for appearance of farm and merine products
JPH0324447A (en) Bottle-mouth inspecting method
JP2959017B2 (en) Circular image discrimination method
JP3112537B2 (en) Optical three-dimensional shape measuring method and measuring device
JPH0772909B2 (en) Welding condition judgment method by visual inspection
JPH05164700A (en) Method for inspecting work surface
JP3005428B2 (en) Optical disk center position detection method
JP2003315458A (en) Recognition apparatus and method for forward vehicle
JPS6177707A (en) Direction judging device of semiconductor integrated circuit device
JPS5942905B2 (en) Pattern inspection device using inflection point comparison
JP3216767B2 (en) Image processing device capable of level fluctuation correction
JP2001357401A (en) Picture processing method
JPH08313580A (en) Method and device for inspecting printed pattern
JPH0690144B2 (en) Image processing method