JPH01189190A - Electric laminated bodies - Google Patents

Electric laminated bodies

Info

Publication number
JPH01189190A
JPH01189190A JP1283088A JP1283088A JPH01189190A JP H01189190 A JPH01189190 A JP H01189190A JP 1283088 A JP1283088 A JP 1283088A JP 1283088 A JP1283088 A JP 1283088A JP H01189190 A JPH01189190 A JP H01189190A
Authority
JP
Japan
Prior art keywords
wiring board
board
prepreg
laminate
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1283088A
Other languages
Japanese (ja)
Inventor
Koji Sato
光司 佐藤
Toshiyuki Akamatsu
資幸 赤松
Tokio Yoshimitsu
吉光 時夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1283088A priority Critical patent/JPH01189190A/en
Publication of JPH01189190A publication Critical patent/JPH01189190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To obtain electric laminated bodies characterized by low thermal expansion and low dielectric constant, by arranging a backup board for supporting a wiring board through an adhesive material layer on the rear surface of a thin film wiring board. CONSTITUTION:Laminated bodies are constituted with a thin film wiring board 1, in which circuits are formed on both upper and rear sources, prepreg 2, which serves as an adhesive material layer, and a backup board 3. The board 1 is formed with multilayered plate comprising the following plates: the plate in which metal foils are stuck on both surfaces of an insulating material layer comprising prepreg and the like; the plate having a conductor layer, which constitutes a circuit, in an insulating material layer; and the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子機器等に用いられる電気用積層体に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrical laminate used in electronic equipment and the like.

〔従来の技術〕[Conventional technology]

近年、電子機器の小型・薄型化、軽量化、多機能化等が
顕著になっており、使用される部品の高密度化、高性能
化が急速に進んでいる。それに対応し、それらの電子機
器を構成するプリント配線板の材料等として使用される
積層板に対する諸要求も厳しさを増す一方である。
In recent years, electronic devices have become increasingly smaller, thinner, lighter, and more multifunctional, and the parts used are rapidly becoming denser and more sophisticated. Correspondingly, requirements for laminates used as materials for printed wiring boards constituting these electronic devices are becoming increasingly strict.

具体的には、プリント配線板の高密度配線化。Specifically, high-density wiring on printed wiring boards.

表面実装化あるいは信号の高速伝送等の必要性から、絶
縁特性および誘電特性に代表される電気特性や耐熱性1
寸法安定性等の向上が強く望まれている。それを受けて
、SiO□含量の高いQガラス、Dガラス、Sガラス等
の新規なガラスや芳香族ポリアミド系に代表される有機
繊維、あるいは、石英ガラス繊維等を基板材料として使
用し、低熱膨張率、低誘電率の積層板を製造することが
試みられている。たとえば、耐熱性2寸法安定性。
Due to the need for surface mounting and high-speed signal transmission, electrical properties such as insulation properties and dielectric properties and heat resistance1
Improvement in dimensional stability, etc. is strongly desired. In response, new glasses with high SiO□ content such as Q glass, D glass, and S glass, organic fibers such as aromatic polyamides, or quartz glass fibers are used as substrate materials to achieve low thermal expansion. Attempts have been made to produce laminates with low dielectric constants and low dielectric constants. For example, heat resistance and two-dimensional stability.

引張特性、軽量性等に優れた芳香族ポリアミド繊維布に
表面プラズマ処理を施し、これに通常の熱硬化性樹脂を
含浸させたものを基材の一部に使用する電気用積層板お
よび多層印刷配線板が、すでに開発されている(特開昭
59−125690号公報、特開昭59−125689
号公報、特開昭59−125698号公報参照)。ここ
で、表面プラズマ処理は、樹脂含浸芳香族ポリアミド繊
維布の接着強度を向上させ、積層板のパンチング加工、
ドリル加工時に発生する眉間剥離等の問題解決を図るた
めに行われている。
Electrical laminates and multilayer printing that use aromatic polyamide fiber cloth with excellent tensile properties, light weight, etc., which has been subjected to surface plasma treatment and impregnated with ordinary thermosetting resin, as part of the base material. Wiring boards have already been developed (JP-A-59-125690, JP-A-59-125689).
(See Japanese Patent Application Laid-open No. 125698/1983). Here, surface plasma treatment improves the adhesive strength of resin-impregnated aromatic polyamide fiber cloth, punching processing of laminates,
This is done to solve problems such as glabellar peeling that occurs during drilling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、基板の熱膨張係数は、XY力方向Z方向で大
きく異なっている。その係数算出式から明らかなように
、XY力方向熱膨張は、補強用繊維の熱膨張係数に寄与
されるところが大きい。したがって、上記のような低熱
膨張性の繊維を基材に使用することにより、このXY力
方向熱膨張を低く抑えることはできる。一方、Z方向の
熱膨張は、含浸されている樹脂の熱膨張係数および樹脂
分量の寄与を大きく受けるものであるため、この厚さ方
向の熱膨張率の問題は未解決のまま残されており、これ
がスルーホール接続信頼性を低下させる要因となってい
る。すなわち、基材の厚さ方向の熱膨張係数と銅等のス
ルーホールメツキのそれとの特性差が、熱や湿度による
ストレスの繰り返しを受けてメツキ部分にクランク等を
発生させ、接続破壊を招くのである。
Incidentally, the thermal expansion coefficient of the substrate differs greatly in the XY force direction and the Z direction. As is clear from the coefficient calculation formula, the thermal expansion in the XY force direction is largely contributed to the thermal expansion coefficient of the reinforcing fiber. Therefore, by using fibers with low thermal expansion as described above for the base material, the thermal expansion in the XY force directions can be suppressed to a low level. On the other hand, the thermal expansion in the Z direction is greatly influenced by the thermal expansion coefficient of the impregnated resin and the amount of resin, so the problem of the thermal expansion coefficient in the thickness direction remains unresolved. This is a factor that reduces the reliability of through-hole connections. In other words, the characteristic difference between the coefficient of thermal expansion in the thickness direction of the base material and that of through-hole plating made of copper, etc., causes cracks in the plating area due to repeated stress due to heat and humidity, leading to connection failure. be.

さらに、上述のように、芳香族ポリアミド繊維に対する
プラズマ処理は、層間接着性を高めてスルーホール信頼
性を確保するために重要な工程であるが、その処理コス
トが高い、という問題も起こっている。
Furthermore, as mentioned above, plasma treatment of aromatic polyamide fibers is an important process for improving interlayer adhesion and ensuring through-hole reliability, but there is also the problem that the treatment cost is high. .

以上の事情に鑑み、この発明は、このような諸問題を克
服できるような、低熱膨張、低誘電率電気用積層体を提
供することを課題とする。
In view of the above circumstances, it is an object of the present invention to provide an electrical laminate with low thermal expansion and low dielectric constant, which can overcome these problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題7を解決するために、この発明は、2層以上の
導体層を備えた薄物配線基板の裏面に、接着材層を介し
て、配線基板支持用のバックアップボードを配設するよ
うにした。さらに、そのバックアップボードが、薄物配
線基板中の絶縁材層と同様の構成になるようにした。
In order to solve the above problem 7, the present invention arranges a back-up board for supporting the wiring board on the back surface of a thin wiring board having two or more conductor layers via an adhesive layer. . Furthermore, the backup board has the same structure as the insulating material layer in the thin wiring board.

〔作   用〕[For production]

請求項1.2記載の両発明において、配線基板として要
求される基板全体の厚みは、バックアップボードの配設
により従来どおりに保持することができるため、その分
、配線基板の厚みを抑えることができる。すなわち、配
線基板を構成するために必要とされる基材、具体的には
プリプレグの枚数等を減らすことができる。
In both inventions described in claims 1 and 2, the thickness of the entire board required for the wiring board can be maintained as before by providing a backup board, so the thickness of the wiring board can be reduced accordingly. can. That is, it is possible to reduce the number of base materials, specifically the number of prepregs, required to constitute the wiring board.

さらに、請求項2記載の発明においては、薄物配線基板
中の絶縁材層と同様の構成からなるバックアップボード
(以下、これを「バランサー」と記す)が配設されるこ
とにより、積層体全体の構成を厚さ方向に対称とするこ
とができる。
Furthermore, in the invention as claimed in claim 2, by disposing a backup board (hereinafter referred to as a "balancer") having the same structure as the insulating material layer in the thin wiring board, the entire laminate is The configuration can be symmetrical in the thickness direction.

〔実 施 例〕〔Example〕

以下に、この発明を、その実施例をあられす図面を参照
しつつ詳しく説明する。
Hereinafter, embodiments of the present invention will be explained in detail with reference to the accompanying drawings.

第1図および第2図は、請求項1および請求項2記載の
発明にかかる電気用積層体の対応する一実施例を、それ
ぞれあられしている。
FIGS. 1 and 2 show corresponding embodiments of the electrical laminate according to the invention as claimed in claims 1 and 2, respectively.

すなわち、第1図に示された電気用積層体(模式断面図
)は、表裏両面に回路が形成された薄物配線基板1.接
着材層となるプリプレグ2およびバックアップボード3
から構成されており、第2図においては、第1図におけ
るバックアップボード3がバランサー3′である電気用
積層体が示されている。
That is, the electrical laminate (schematic cross-sectional view) shown in FIG. Prepreg 2 and backup board 3 to serve as adhesive layer
FIG. 2 shows an electrical laminate in which the backup board 3 in FIG. 1 is a balancer 3'.

薄物配線基板1は、2層以上の導体層を備えたものであ
って、たとえば、プリプレグ等からなる絶縁材層の両面
に、銅、アルミニウム、ニッケル等の金属箔が貼られた
り、めっき等により上記金属層が形成されたりしてなる
両面板、あるいは、絶縁材層内部にも回路(内層回路)
となる導体層を有するなどの多層板(図示せず)からな
る。この導体層のうち、最終的に積層体の表面にあられ
れる層については任意であるが、その他のものには必要
に応じてあらかじめ所定回路を形成し、それらをスルー
ホール接続しておくとよい。
The thin wiring board 1 is equipped with two or more conductor layers, and for example, a metal foil such as copper, aluminum, or nickel is pasted on both sides of an insulating material layer made of prepreg or the like, or is coated by plating or the like. A double-sided board formed with the above metal layer, or a circuit inside the insulating material layer (inner layer circuit)
It consists of a multilayer board (not shown) having conductor layers. Of these conductor layers, the layer that will eventually be placed on the surface of the laminate is optional, but it is recommended to form a predetermined circuit in advance as necessary for the other conductor layers and connect them through through holes. .

上記薄物配線基板1用のプリプレグを構成する基材とし
ては、低熱膨張率、低誘電率という特性を備えたものを
使用することが好ましい。そのような基材としては、た
とえば、各種芳香族ポリアミド繊維(アラミド繊維)、
Qガラス、Dガラス、Sガラス等の二酸化ケイ素含量の
高い(たとえば、60wt%以上程度に)新規ガラス繊
維、石英ガラス繊維等からなる織布、不織布、マットあ
るいはペーパー等が挙げられる。その厚さは、通常、1
鶴程度が選ばれる。使用される枚数は任意であるが、従
来の配線基板に比べて少なく抑えることができることは
言うまでもない。なお、上記アラミド繊維としては、商
品名「ケブラー29,49」および「ノーメックス」 
(ともにデュポン社製、デュポン・ファーイースト日本
支社取扱い)、「テクノーラJおよび「コーネックス」
 (ともに奇人@製)などが使用できる。これらのアラ
ミド繊維は、前記のように、層間接着性を向上させるた
めに表面プラズマ処理が施されたものを使用することが
好ましい。これは、プラズマ処理により基材表面が粗化
され、投錨効果が期待できるためであって、その処理方
法は、通常の乾式処理等、特に限定はされない。
As the base material constituting the prepreg for the thin wiring board 1, it is preferable to use a material having the characteristics of a low coefficient of thermal expansion and a low dielectric constant. Such base materials include, for example, various aromatic polyamide fibers (aramid fibers),
Examples include woven fabrics, nonwoven fabrics, mats, and papers made of new glass fibers with high silicon dioxide content (for example, about 60 wt% or more) such as Q glass, D glass, and S glass, and quartz glass fibers. Its thickness is usually 1
A crane level is selected. Although the number of boards used is arbitrary, it goes without saying that the number can be kept smaller than that of conventional wiring boards. The above aramid fibers include the product names "Kevlar 29,49" and "Nomex".
(both manufactured by DuPont, handled by DuPont Far East Japan Branch), "Technora J" and "Conex"
(both made by Kijin@) etc. can be used. As mentioned above, it is preferable to use aramid fibers whose surfaces have been subjected to plasma treatment in order to improve interlayer adhesion. This is because the surface of the base material is roughened by the plasma treatment, and an anchoring effect can be expected, and the treatment method is not particularly limited, such as ordinary dry treatment.

上記基材に含浸させる熱硬化性樹脂としては、特に限定
はされず、フェノール樹脂、クレゾール樹脂、エポキシ
樹脂、不飽和ポリエステル樹脂。
The thermosetting resin to be impregnated into the base material is not particularly limited, and may include phenol resin, cresol resin, epoxy resin, and unsaturated polyester resin.

メラミン樹脂、フン素樹脂、ケイ素樹脂、ユリャ樹脂、
BTレジン、ポリイミド樹脂、ポリブタジェン樹脂や、
これらの樹脂の変性物など、一般的なものが、単独で、
あるいは複数種を併せて使用される。これらの樹脂の上
記基材への含浸、乾燥等は、通常のプリプレグの製法に
従って行われるなお、上記薄物配線基板1における絶縁
材層を構成するものとしては、上記基材に上記樹脂を含
浸させて得られるプリプレグに限定されることはなく、
たとえば、電気絶縁性、耐熱性等を有する熱溶着性プラ
スチックフィルムなども使用できる。そのようなフィル
ム素材としては、たとえば、ポリフェニレンオキシド、
ポリフェニレンスルフィド、エポキシ樹脂、ポリイミド
樹脂等が挙げられる。
Melamine resin, fluorine resin, silicone resin, yurya resin,
BT resin, polyimide resin, polybutadiene resin,
General products such as modified products of these resins can be used alone,
Or multiple types are used together. Impregnation of the base material with these resins, drying, etc. are carried out according to a normal prepreg manufacturing method.The insulating material layer in the thin wiring board 1 is formed by impregnating the base material with the resin. It is not limited to prepreg obtained by
For example, a heat-fusible plastic film having electrical insulation properties, heat resistance, etc. can also be used. Examples of such film materials include polyphenylene oxide,
Examples include polyphenylene sulfide, epoxy resin, polyimide resin, and the like.

薄物配線基板1と下記のバックアップボード3(バラン
サー3′も含む)を接着させるための接着材層としては
、上記プリプレグおよび熱溶着性プラスチックフィルム
等が使用でき、さらに、従来一般的に使用されている天
然繊維や合成繊維、あるいはEガラス繊維等の基材から
なるプリプレグを使用してもよい。それらの積層枚数な
ど、特に限定されない。なお、アラミド繊維に対するプ
ラズマ処理は行わなくてもよい。
As the adhesive layer for adhering the thin wiring board 1 and the backup board 3 (including the balancer 3') described below, the above-mentioned prepreg and heat-fusible plastic film can be used. Prepregs made of base materials such as natural fibers, synthetic fibers, or E-glass fibers may also be used. There are no particular limitations on the number of layers stacked. Note that the aramid fibers do not need to be subjected to plasma treatment.

バックアップボード3の構成要素も、上記薄物配線基板
1の絶縁材層を構成するものと同様、低熱膨張、低誘電
率の基材からなるものであることが好ましいが、特に限
定はされない。ただしミバランサ−3′の構成は、上記
薄物配線基板1の絶縁材層と同様であることが必要で、
したがって、接着材層の構成に留意すれば、電気用積層
体全体の構成を、厚さ方向に対称とすることができる。
The constituent elements of the backup board 3 are also preferably made of a base material with low thermal expansion and low dielectric constant, similar to those constituting the insulating material layer of the thin wiring board 1, but are not particularly limited. However, the structure of the balancer 3' must be the same as the insulating material layer of the thin wiring board 1,
Therefore, by paying attention to the structure of the adhesive layer, the structure of the entire electrical laminate can be made symmetrical in the thickness direction.

なお、基材としては0.1 tm以上程度のものが使用
でき、また、アラミド繊維に対するプラズマ処理は行わ
なくてもよい。
Note that as the base material, one having a thickness of about 0.1 tm or more can be used, and the aramid fibers do not need to be subjected to plasma treatment.

つぎに、さらに具体的な実施例および比較例について説
明する。
Next, more specific examples and comparative examples will be described.

(実施例1) 厚さ0.1 +nの表面プラズマ処理芳香族ポリアミド
繊維布(デュポン社製ケブラークロスの表面をプラズマ
処理したもの)に硬化剤含有エポキシ樹脂(下記にその
組成を示す)を樹脂量50重量%になるように含浸させ
、乾燥してプリプレグを得た(以下、プリプレグAと記
す)。
(Example 1) A curing agent-containing epoxy resin (the composition of which is shown below) was applied to a surface plasma-treated aromatic polyamide fiber cloth (Kevlar cloth manufactured by DuPont, whose surface was plasma-treated) with a thickness of 0.1 +n. It was impregnated in an amount of 50% by weight and dried to obtain a prepreg (hereinafter referred to as prepreg A).

※硬化剤含有エポキシ樹脂の組成 し つぎに、基材として厚さ0.2 tmの芳香族ポリアミ
ド繊維布(同上ケブラークロス、プラズマ未処理)を使
用し、以下、上記同様にしてプリプレグを作製した(こ
れをプリプレグBと称す)。さらに、基材として厚さ0
.1 mのガラス布を使用して同様にプリプレグを作製
した(これをプリプレグCと称す)。
* Composition of epoxy resin containing curing agent Next, a 0.2 tm thick aromatic polyamide fiber cloth (Kevlar cloth as above, non-plasma treated) was used as a base material, and prepreg was produced in the same manner as above. (This is called prepreg B). Furthermore, as a base material, the thickness is 0.
.. A prepreg was similarly produced using a 1 m glass cloth (this was referred to as prepreg C).

得られたプリプレグAを2枚重ね、その両面に厚さ0.
0180の銅箔を配してなる積層体を金属プレート間に
挟み、成形圧力50kg/cflI、成形温度170℃
で100分間積層成形し、厚さ0.2 mmの金属箔張
積層板を得た。この積層板の両面に、第3図に示したス
ルーホール信頼性テストパターンを印刷後、所定位置に
スルーホールをあけ(以上、下記条件に準じる)、銅ス
ルーホールメツキを施して配線基板を得た(以下、配線
基板Aと記す)。
Two sheets of the obtained prepreg A are stacked, and both sides have a thickness of 0.
A laminate made of 0180 copper foil was sandwiched between metal plates, molding pressure was 50 kg/cflI, and molding temperature was 170°C.
Lamination molding was carried out for 100 minutes to obtain a metal foil-clad laminate having a thickness of 0.2 mm. After printing the through-hole reliability test pattern shown in Figure 3 on both sides of this laminate, through-holes are drilled at predetermined positions (according to the following conditions), and copper through-hole plating is applied to obtain a wiring board. (hereinafter referred to as wiring board A).

※スルーホール信頼性テストパターン つぎに、プリプレグBを4枚重ね、両面に離型フィルム
を配してなる積層体を金属プレート間に挟み、以下、上
記同様に積層成形した。成形後、離型フィルムを剥がし
、厚さ0.8顛の積層板を得た(以下、バックアップボ
ードと称する)。
*Through-hole reliability test pattern Next, a laminate consisting of four sheets of prepreg B stacked on top of each other with release films on both sides was sandwiched between metal plates, and laminated and molded in the same manner as above. After molding, the release film was peeled off to obtain a 0.8-thick laminate (hereinafter referred to as a backup board).

最後に、以上の配線基板Aの裏面にプリプレグCを2枚
介してバックアップボードを配した積層体(第1図参照
)を金属プレート間に挟み、これを同様に積層成形し、
厚さ1.2 mmの電気用積層体を得た(以下、積層体
Xと記す)。
Finally, a laminate (see Figure 1) in which a backup board is arranged on the back side of the wiring board A with two sheets of prepreg C interposed therebetween is sandwiched between metal plates, and this is laminated and molded in the same manner.
An electrical laminate having a thickness of 1.2 mm was obtained (hereinafter referred to as laminate X).

(実施例2) 厚さ0.1 鰭の芳香族ポリアミド繊維布(同上ケブラ
ークロス、プラズマ未処理)を基材とし、以下、実施例
1と同様にしてプリプレグを作製した(これをプリプレ
グDと称す)。得られたプリプレグDを2枚重ね、その
両面に離型フィルムを配して金属プレート間に挟み、以
下同様の条件で積層成形し、厚さ0.2酊の積層体を得
た(これをバランサーと称す)。
(Example 2) A prepreg was produced in the same manner as in Example 1 using a 0.1-thick fin aromatic polyamide fiber cloth (Kevlar cloth as above, non-plasma treated) as a base material (this was referred to as prepreg D). ). Two sheets of the obtained prepreg D were stacked, a release film was placed on both sides, and the sheets were sandwiched between metal plates. Laminate molding was then carried out under the same conditions to obtain a laminate with a thickness of 0.2 mm. (referred to as a balancer).

つぎに、前記配線基板A、前記プリプレグB4枚、バラ
ンサーをこの順に積層しく第2図参照)、これを同様に
積層成形して厚さ1.2鶴の電気用積層体を得た(以下
、積層体Yと記す)。
Next, the wiring board A, the four prepregs B, and the balancer were laminated in this order (see Fig. 2), and these were similarly laminated and molded to obtain an electrical laminate with a thickness of 1.2 mm (hereinafter referred to as (denoted as laminate Y).

(比較例1) 上記実施例におけるプリプレグAを12枚重ね、その両
面に厚さ0.018mmの銅箔を配してなる積層体を金
属プレート間に挟み、実施例と同様の積層成形を行って
厚さ1.2flの両面銅張積層板を得た。これに実施例
と同様のテストパターンを印刷してスルーホールを開孔
し、配線板を得た。
(Comparative Example 1) A laminate made by stacking 12 sheets of prepreg A in the above example and placing copper foil with a thickness of 0.018 mm on both sides was sandwiched between metal plates, and laminated molding was performed in the same manner as in the example. A double-sided copper-clad laminate having a thickness of 1.2 fl was obtained. A test pattern similar to that of the example was printed on this and through holes were formed to obtain a wiring board.

得られた実施例の電気用積層体および比較例の配線板に
ついて、以下の性能試験を行った。
The following performance tests were conducted on the obtained electrical laminates of Examples and wiring boards of Comparative Examples.

(a)  スルーホール信頼性テスト 実施例および比較例の3試験体について、260℃オイ
ル中に10秒浸漬/20℃水中に10秒浸漬/20℃ト
リクロロエチレン中に10秒浸漬、という一連の操作を
1サイクルとする熱衝撃を与え、スルーホール部が断線
に至るまでのサイクル数を測定し、スルーホール信頼性
とした。
(a) Through-hole reliability test The three test specimens of Examples and Comparative Examples were immersed in 260°C oil for 10 seconds, 20°C water for 10 seconds, and 20°C trichlorethylene for 10 seconds. One cycle of thermal shock was applied, and the number of cycles until the through-hole part was disconnected was measured, and the through-hole reliability was determined.

(bl  熱膨張率 実施例および比較例の3試験体について、デュラトメー
ターを用い、X、Y方向の熱膨張率(室温〜150℃)
を測定した。
(bl Coefficient of Thermal Expansion Thermal expansion coefficient in the X and Y directions (room temperature to 150°C) was measured using a duratometer for the three test specimens of Examples and Comparative Examples.
was measured.

(C)  ソリ、ネジレ 実施例の積層体XおよびYについて、積層成形後、およ
び、170℃/30分間加熱後のソリおよびネジレを測
定した。ただし、サンプルサイズは縦横250鶴とする
(C) Warp and twist The warp and twist of the laminates X and Y of Examples were measured after lamination molding and after heating at 170° C. for 30 minutes. However, the sample size shall be 250 cranes in height and width.

以上の結果を、第1表に示す。The above results are shown in Table 1.

第1表にみるように、バックアップボードあるいはバラ
ンサーを有する実施例の電気用積層体では、熱膨張率を
保持したままスルーホール信頼性が大幅に向上している
ことが判明した。また、バックアップボードがバランサ
ーである積層体Yでは、ソリやネジリがほとんど発生し
ていない。
As shown in Table 1, it was found that in the electrical laminates of the Examples having a backup board or balancer, the through-hole reliability was significantly improved while maintaining the coefficient of thermal expansion. Further, in the laminate Y in which the backup board is a balancer, almost no warping or twisting occurs.

〔発 明 の 効 果〕〔Effect of the invention〕

請求項1.2記載の両発明にかかる電気用積層体におい
ては、下記の共通効果が得られる。
In the electrical laminate according to both inventions described in claim 1.2, the following common effects can be obtained.

■ 配線基板の厚みが薄くなるため、その部分のZ方向
の熱膨張量は相対的に小さくなり、スルーホール信頼性
が保てる。
- Since the thickness of the wiring board becomes thinner, the amount of thermal expansion in the Z direction of that part becomes relatively small, and through-hole reliability can be maintained.

■ 配線基板を構成するプリプレグ等の枚数を減らし、
そのプリプレグに望まれる高価なプラズマ処理量を抑え
ることができる。
■ Reduce the number of prepregs that make up the wiring board,
The amount of expensive plasma treatment required for the prepreg can be suppressed.

さらに、請求項2記載の発明にかかる電気用積層体は、
以下の効果も備えている。
Furthermore, the electrical laminate according to the invention according to claim 2,
It also has the following effects:

■ 電気用積層体全体の構成を厚さ方向に対称にするこ
とで、全体のバランスが確保でき、積層体のソリやネジ
レが発生しない。
■ By making the overall structure of the electrical laminate symmetrical in the thickness direction, the overall balance can be ensured and the laminate will not warp or twist.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、この発明にかかる電気用積層体
の一実施例をあられした模式断面図であり、第3図はス
ルーホール信頼性を評価するためのテストパターンをあ
られしている。 l・・・薄物配線基板 2・・・プリプレグ(接着材層
)  3・・・バックアップボード 代理人 弁理士  松 本 武 彦 第7図 第2図 13図 ]穐ヴ酵甫正1)(印船 昭和63年 3月 手口
1 and 2 are schematic cross-sectional views of an embodiment of the electrical laminate according to the present invention, and FIG. 3 shows a test pattern for evaluating through-hole reliability. . l...Thin wiring board 2...Prepreg (adhesive layer) 3...Backup board agent Patent attorney Takehiko Matsumoto March 1988 Modus operandi

Claims (2)

【特許請求の範囲】[Claims] (1)2層以上の導体層を備えた薄物配線基板の裏面に
、接着材層を介して、前記配線基板支持用のバックアッ
プボードが配設されていることを特徴とする電気用積層
体。
(1) An electrical laminate, characterized in that a backup board for supporting the wiring board is disposed on the back surface of a thin wiring board having two or more conductor layers via an adhesive layer.
(2)2層以上の導体層を備えた薄物配線基板の裏面に
、接着材層を介して、前記配線基板支持用のバックアッ
プボードが配設されており、同バックアップボードが、
前記配線基板中の絶縁材層と同様の構成となっている電
気用積層体。
(2) A backup board for supporting the wiring board is disposed on the back surface of the thin wiring board having two or more conductor layers via an adhesive layer, and the backup board is
An electrical laminate having the same structure as the insulating material layer in the wiring board.
JP1283088A 1988-01-23 1988-01-23 Electric laminated bodies Pending JPH01189190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1283088A JPH01189190A (en) 1988-01-23 1988-01-23 Electric laminated bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283088A JPH01189190A (en) 1988-01-23 1988-01-23 Electric laminated bodies

Publications (1)

Publication Number Publication Date
JPH01189190A true JPH01189190A (en) 1989-07-28

Family

ID=11816295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283088A Pending JPH01189190A (en) 1988-01-23 1988-01-23 Electric laminated bodies

Country Status (1)

Country Link
JP (1) JPH01189190A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189688A (en) * 1985-02-19 1986-08-23 松下電器産業株式会社 Printed circuit board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189688A (en) * 1985-02-19 1986-08-23 松下電器産業株式会社 Printed circuit board

Similar Documents

Publication Publication Date Title
EP0587634B1 (en) Method of manufacturing a multilayer printed wire board
JP4924871B2 (en) Composite board and wiring board
KR20100030769A (en) Multi layer circuit board and manufacturing method of the same
US20030045164A1 (en) Non-woven fabric material and prepreg, and circuit board using the same
JPH01189190A (en) Electric laminated bodies
JPH01189985A (en) Electrical laminate
JP2006315391A (en) Laminated plate and printed circuit board using the same
JPH05327209A (en) Manufacture of bonding sheet for multiple layer and of multilayer substrate
JPH04208597A (en) Multilayer printed circuit board
JP2650072B2 (en) Manufacturing method of multilayer printed wiring board
JPS6147844A (en) Glass cloth for multilayered printed wiring board and multilayered printed wiring board using the same
JPH01189987A (en) Electrical laminate
JP2000013024A (en) Manufacture of multilayer board and plate for multilayer board manufacture
JP2005217029A (en) Wiring board
JPS62160234A (en) Metal composite laminated board
JPH01189986A (en) Electrical laminate
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
JP3227874B2 (en) Manufacturing method of laminated board
JPH05129779A (en) Metal-clad laminate for multilayer printed wiring board
JPH0563324A (en) Multilayer printed wiring board
JPH03127894A (en) Laminated board for printed circuit
JPS59125698A (en) Method of producing multilayer printed circuit board
JPH06260765A (en) Multilayer wiring board and manufacture thereof
JPS63224936A (en) Laminated board
JPH0239486A (en) Manufacture of metal core printer substrate for bending