JPH01186731A - Manufacture of secondary electron multiplier - Google Patents

Manufacture of secondary electron multiplier

Info

Publication number
JPH01186731A
JPH01186731A JP872388A JP872388A JPH01186731A JP H01186731 A JPH01186731 A JP H01186731A JP 872388 A JP872388 A JP 872388A JP 872388 A JP872388 A JP 872388A JP H01186731 A JPH01186731 A JP H01186731A
Authority
JP
Japan
Prior art keywords
secondary electron
resistance value
electron emission
electron multiplier
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP872388A
Other languages
Japanese (ja)
Inventor
Akiyoshi Nomura
野村 昭義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP872388A priority Critical patent/JPH01186731A/en
Publication of JPH01186731A publication Critical patent/JPH01186731A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces
    • H01J43/246Microchannel plates [MCP]

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To enable obtaining a secondary electron multiplier of high efficiency by increasing the resistance value of a secondary electron emission layer on the inner surface of a through-hole continuously from an electron incident side to an electron emission side. CONSTITUTION:Printing is made with a paste comprising a secondary electron emission material of such resistance values as getting higher in turn in such a way that the resistance value of a printed secondary electron emission layer is higher in the second sheet film 15 than in the first sheet film 12, thereby obtaining an integrated sheet film. Furthermore, sheets 12 to 14 and 16 comprising only the secondary electron emission material layers formed to a pattern after separation of an organic base film 11 from the aforesaid sheet film are laminated and pressed by a plural number according to the predetermined order in a direction for continuous increase or decrease in resistance value, with the position of through-hole 15 properly aligned. Then, heat treatment for de- binding and high temperature baking for sintering are applied thereto. According to the aforesaid construction, it is possible to obtain a secondary electron emission multiplier of high efficiency with the inner wall of the through-hole 15 having continuous resistance value distribution.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は二次電子増倍器を用いて映像またはその他の平
面的信号分布を増幅するための連続ダイノード形二次電
子増倍器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a continuous dynode secondary electron multiplier for amplifying video or other planar signal distributions using a secondary electron multiplier. .

従来の技術 円筒型の二次電子増倍器は円筒の内表面に均一な厚さの
二次電子放出面を形成し、この円筒の両端に電子加速用
電極を設け、これら両電極間に電位差を与える。このと
き低電圧側の円筒の入力端より入射した電子が円筒の内
壁に衝突を繰返してその数を増倍し、その結果二次電子
放出面から出る電子数が入射電子数よりも蟲かに大きく
なる。
Conventional technology A cylindrical secondary electron multiplier has a secondary electron emitting surface of uniform thickness formed on the inner surface of the cylinder, electrodes for accelerating electrons are provided at both ends of the cylinder, and a potential difference is created between these two electrodes. give. At this time, the electrons incident from the input end of the cylinder on the low voltage side repeatedly collide with the inner wall of the cylinder and multiply their number, and as a result, the number of electrons emitted from the secondary electron emission surface is much larger than the number of incident electrons. growing.

従来の二次電子増倍器の製法として知られているものに
ついて第2図を参照しながら述べる。第2図において2
2は酸化鉛を含むガラスの円筒である。この円筒の内表
面に露出している酸化鉛は一部還元されてその抵抗値は
ガラス円筒22の入力端電極24と出力端電極25との
間で数100MΩ程度になっている。このガラス円筒2
2の両端に出力端電極25が正となるように高電圧を印
加すると内部には長さ方向に電界が発生する。このガラ
ス円筒22の入力端電極24の側から電子26が入射す
ると長さ方向の電界に加速されて出力端電極25の方向
へ移動するが、直ぐ円筒内表面に衝突して二次電子を放
出する。ガラス円筒内面の二次電子放出比が1以上であ
れば、入射した電子26の数に比例して次第に増幅され
多数の二次電子を出力端より得ることができる。このよ
うな二次電子増倍器の内表面には二次電子放出比が大き
く、かつ高抵抗の物質が塗布されていることが必要であ
る。従来は酸化鉛の含まれたガラス円筒を水素雰囲気中
で一部還元することにより、この内表面に鉛の金属−酸
化物層を形成して達成していた。この二次電子放出層の
抵抗値は入力端側から出力端側まで均一に形成されてい
る。
A known method for manufacturing a conventional secondary electron multiplier will be described with reference to FIG. In Figure 2, 2
2 is a glass cylinder containing lead oxide. Part of the lead oxide exposed on the inner surface of the cylinder is reduced, and its resistance value between the input end electrode 24 and the output end electrode 25 of the glass cylinder 22 is about several 100 MΩ. This glass cylinder 2
When a high voltage is applied to both ends of the wire so that the output end electrode 25 becomes positive, an electric field is generated inside the wire in the length direction. When electrons 26 enter the glass cylinder 22 from the input end electrode 24 side, they are accelerated by the longitudinal electric field and move toward the output end electrode 25, but they immediately collide with the inner surface of the cylinder and emit secondary electrons. do. If the secondary electron emission ratio of the inner surface of the glass cylinder is 1 or more, a large number of secondary electrons can be obtained from the output end by being gradually amplified in proportion to the number of incident electrons 26. It is necessary that the inner surface of such a secondary electron multiplier be coated with a material having a high secondary electron emission ratio and high resistance. Conventionally, this has been achieved by partially reducing a glass cylinder containing lead oxide in a hydrogen atmosphere to form a lead metal-oxide layer on its inner surface. The resistance value of this secondary electron emission layer is formed uniformly from the input end side to the output end side.

一方この円筒の入力端側と出力端側で抵抗値が異なると
種々の優れた性質が得られることも知られている。
On the other hand, it is also known that various excellent properties can be obtained if the resistance values are different between the input end and the output end of the cylinder.

特公昭57−24630号公報に記載されている発明は
前記円筒の電子入射側と出射する側で抵抗を異ならせる
と大きな利得が得られることを指摘している。
The invention described in Japanese Patent Publication No. 57-24630 points out that a large gain can be obtained by making the resistance different between the electron incident side and the electron exit side of the cylinder.

また特開昭59−96642号公報に記載されている発
明は酸化鉛を含むガラスの円筒の約半分をマスクして内
表面に露出した酸化鉛を一部還元し、次にこのマスクを
除去して内表面全体を同様に還元処理することによりこ
の円筒の内表面の右半分および左半分の二次電子放出層
の抵抗値を異ならせる方法を述べている。
Furthermore, the invention described in JP-A No. 59-96642 involves masking approximately half of a glass cylinder containing lead oxide to partially reduce the lead oxide exposed on the inner surface, and then removing this mask. A method is described in which the resistance values of the secondary electron emitting layers on the right and left halves of the inner surface of this cylinder are made different by subjecting the entire inner surface to a similar reduction treatment.

発明が解決しようとする課題 前記特公昭57−24630号公軸に示されている発明
では異なる抵抗率を存するチタン酸バリウム系半導体磁
器の筒を導電性接着剤で接合することにより、前記円筒
の電子入射側と出射する側で抵抗値を異ならせている。
Problems to be Solved by the Invention In the invention disclosed in the above-mentioned Japanese Patent Publication No. 57-24630, barium titanate-based semiconductor porcelain cylinders having different resistivities are bonded together with a conductive adhesive. The resistance value is different between the electron incident side and the electron exit side.

この方法は前記公報に示されているように内径1.2m
m程度の比較的径の大きい円筒に通している。しかしな
がら本願発明者が目的とする円筒の内径が数百ミクロン
以下の二次電子増倍器の製造に適用することは困難であ
る。また円筒が一つの面に多数並行に配列されたいわゆ
るマルチチャンネルプレートにおいては、異なる抵抗率
を持つマルチチャンネルプレート同志の円筒を一対一に
対応させて接続することが困難であるので前記方法は採
用されない。
This method has an inner diameter of 1.2 m as shown in the above publication.
It is passed through a cylinder with a relatively large diameter of about m. However, it is difficult to apply this method to the production of a secondary electron multiplier whose cylinder has an inner diameter of several hundred microns or less, which is the aim of the inventor of the present application. In addition, in so-called multi-channel plates in which a large number of cylinders are arranged in parallel on one surface, it is difficult to connect the cylinders of multi-channel plates with different resistivities in a one-to-one correspondence, so the above method is adopted. Not done.

特開昭59−96642号公報に示されている発明は、
酸化鉛を含むガラスからなる円筒の約半分だけを2回還
元処理し、他の半分を1回だけ還元処理することにより
この円筒の右半分と左半分の二次電子放出層の抵抗値を
異ならせている。しかしながらこの方法では円筒の内表
面の二次電子放出層の抵抗値を連続的に変化させること
ができないので高い二次電子増倍器果は得られない。
The invention disclosed in Japanese Patent Application Laid-Open No. 59-96642 is
By reducing approximately half of the cylinder made of glass containing lead oxide twice and reducing the other half only once, the resistance values of the secondary electron emitting layers on the right and left halves of this cylinder can be made to differ. It's set. However, with this method, it is not possible to continuously change the resistance value of the secondary electron emitting layer on the inner surface of the cylinder, so a high secondary electron multiplication effect cannot be obtained.

本発明は上記問題点に鑑み、貫通孔の内径が数百ミクロ
ンのように極めて細い貫通孔を多数並行配列した二次電
子増倍器において、前記貫通孔の二次電子放出層の抵抗
値を電子の入射側と出射する側で連続的に異ならせた二
次電子増倍器を製造する方法を提供するものである。
In view of the above-mentioned problems, the present invention provides a secondary electron multiplier in which a large number of extremely thin through holes with an inner diameter of several hundred microns are arranged in parallel, and the resistance value of the secondary electron emitting layer of the through holes is The present invention provides a method for manufacturing a secondary electron multiplier in which the electron incident side and electron output side are continuously different.

課題を解決するための手段 上記課題を解決するために本発明による二次電子増倍器
の製造方法は、有機系ベースフィルム上に二次電子放射
性物質からなるペーストを、整列配置された多数の貫通
孔が得られる所望形状のマスクパターンを通して印刷し
シート状フィルムにする工程において、この印刷した二
次電子放射性物質層の抵抗値が第1枚目のシート状フィ
ルムよりは第2枚目のシート状フィルムの方が高くなる
ように順次高い抵抗値の二次電子放射性物質からなるペ
ーストで印刷してシート状にする工程と、このシート状
フィルムから有機系ベースフィルムを剥離しパターン形
成された二次電子放射性物質層のみからなるシートを抵
抗値が連続的に増加または減少する方向に、順番通りに
複数枚、貫通孔の位置がずれないように積層し圧着する
工程と、脱バインダのための熱処理工程と積層された二
次電子放射性物質層の焼結のための高温焼成工程により
マスクパターン通り形成された貫通孔の内壁が連続的な
抵抗値分布をもった二次電子放射性物質からなる二次電
子増倍器を同時に多数個形成されることを特徴とする方
法によって解決される。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing a secondary electron multiplier according to the present invention includes a method of manufacturing a secondary electron multiplier by applying a paste made of a secondary electron emissive substance to an organic base film in a large number of arrays. In the step of printing through a mask pattern with a desired shape that provides through holes to form a sheet-like film, the resistance value of the printed secondary electron emissive material layer is lower than that of the first sheet-like film. A process of printing with a paste made of a secondary electron emitting substance with a higher resistance value in order to make the film into a sheet, and peeling off the organic base film from this sheet film to form a patterned second film. A process of laminating and pressing a plurality of sheets consisting only of secondary electron radioactive material layers in a direction in which the resistance value continuously increases or decreases so that the positions of the through holes are not shifted, and a process for removing the binder. Through the heat treatment process and the high-temperature firing process for sintering the stacked secondary electron emissive material layers, the inner walls of the through holes formed according to the mask pattern are made of a secondary electron emissive material with a continuous resistance value distribution. This problem is solved by a method characterized in that a large number of secondary electron multipliers are formed simultaneously.

作用 本発明は上記した構成により貫通孔の内表面の二次電子
放出層の抵抗値を電子入射側から出射側へ連続的に増加
させることができるので極めて高効率の二次電子増倍器
が得られる。
Function The present invention can continuously increase the resistance value of the secondary electron emitting layer on the inner surface of the through hole from the electron incidence side to the emission side with the above-described configuration, so that an extremely highly efficient secondary electron multiplier can be obtained. can get.

実施例 以下本発明の一実施例の二次電子増倍器の製造方法を工
程の順に図面を参照しながら説明する。
EXAMPLE Hereinafter, a method for manufacturing a secondary electron multiplier according to an embodiment of the present invention will be explained in order of steps with reference to the drawings.

第1図ta+は本発明による二次電子増倍器の断面図で
あり、第1図(blはその俯轍図であり、第1図(C)
FIG. 1 ta+ is a cross-sectional view of the secondary electron multiplier according to the present invention, FIG.
.

(d+、 (elはその製造工程における断面図である
。第1図(C1に示すように、200μmφの円形で前
後左右に150μm間隔で規則的に配置されたマスクパ
ターンを用い、120μm厚のポリエチレンテレフタレ
ー) (PET)ベースフィルム(50X50mm)1
)上に第1表に示したm1組成のチタン酸バリウム系有
機溶液からなるペーストをスクリーン印刷法で印刷して
第1番目のグリーンシート12を作製する。同様にして
阻1組成よりは抵抗値の大きい階2組成のペーストで第
2番目のグリーンシートを作製する。このようにして磁
3組成ペーストで第3番目のグリーンシートを、そして
最後に階5組成ペーストで第5番目のグリーンシートを
作製し順次抵抗値の大きいグリーンシート群を得る。
(d+, (el is a cross-sectional view of the manufacturing process. As shown in Figure 1 (C1), using a mask pattern of a circle of 200 μmφ and regularly arranged at intervals of 150 μm in the front, back, left, and right directions, a 120 μm thick polyethylene Telephthalate) (PET) base film (50x50mm) 1
) The first green sheet 12 is produced by printing a paste made of a barium titanate organic solution having the m1 composition shown in Table 1 above using a screen printing method. In the same way, a second green sheet is produced using a paste with a second composition having a higher resistance value than the second composition. In this way, a third green sheet is produced using the magnetic 3 composition paste, and finally a 5th green sheet is produced using the grade 5 composition paste, thereby obtaining a group of green sheets having successively higher resistance values.

次に第1図+diに示すように、第1番目のグリーンシ
ート12上に第2番目のペーストのみからなるグリーン
シート13を重ね合わせ、さらにその上に第3番目14
.第4番目、第5番目と順番通りにペーストのみからな
るグリーンシートを各貫通孔15の位置ずれのないよう
に正確に重ね合わせてから50に+r/−の圧力で圧着
する。
Next, as shown in FIG.
.. The fourth and fifth green sheets made only of paste are accurately overlapped in order so that there is no misalignment of each through hole 15, and then pressed to 50 with a pressure of +r/-.

第1番目からのベースフィルム1)を除去した後、この
試料を脱バインダ炉で大気中650℃。
After removing the base film 1) from the first one, the sample was heated in a debinding oven at 650°C in air.

1.5時間熱処理して有機系物質を除去し、さらに高温
焼成炉で大気中、1)50℃、1.5時間焼成する。焼
成後の二次電子放出層の厚さは約1龍であった。この試
料の両面に真空蒸着法でNi−Cr合金電極17.17
’を約0.7μm付着させて第1図telのように本発
明の二次電子増倍器を完成する。なお各グリーンシート
層の焼成後の抵抗値は第1表のごとくであった。このよ
うにして形成した二次電子増倍器は電子入射端電極17
゛側を低抵抗側にして、電子出力端電極17を正にして
直流電圧を2〜3KV印加時で入射電子が105〜10
6倍に増幅された。
Heat treatment is performed for 1.5 hours to remove organic substances, and the product is further fired in a high-temperature firing furnace in the atmosphere at 1) 50° C. for 1.5 hours. The thickness of the secondary electron emitting layer after firing was about 1 mm. Ni-Cr alloy electrodes 17.17 were deposited on both sides of this sample using a vacuum evaporation method.
' is deposited to a thickness of about 0.7 μm to complete the secondary electron multiplier of the present invention as shown in FIG. The resistance values of each green sheet layer after firing were as shown in Table 1. The secondary electron multiplier formed in this way has an electron incident end electrode 17
When the side is set to the low resistance side, the electron output terminal electrode 17 is set to positive, and a DC voltage of 2 to 3 KV is applied, the incident electrons are 105 to 10.
It was amplified 6 times.

発明の効果 以上のように本発明は貫通孔の内表面の二次電子放出層
の抵抗値を電子入射側から出射側へ連続的に増加させる
ことができるので極めて高効率の二次電子増倍効果が簡
単に得られ、かつ同時に多数の二次電子増倍器が得られ
るものである。なおこの貫通孔の形状は三角形、正方形
、矩形、六角形などマスクパターンの形状を変えること
により、自由にかつ容易に変えることができる。また二
次電子放出層の厚さを制御するには同一抵抗値のグリー
ンシートの枚数の増減または抵抗値の異なったペースト
の数を変えることによって可能である。
Effects of the Invention As described above, the present invention can continuously increase the resistance value of the secondary electron emission layer on the inner surface of the through hole from the electron incidence side to the electron emission side, resulting in extremely high efficiency secondary electron multiplication. The effect can be easily obtained and a large number of secondary electron multipliers can be obtained at the same time. Note that the shape of this through hole can be freely and easily changed by changing the shape of the mask pattern, such as a triangle, square, rectangle, or hexagon. Further, the thickness of the secondary electron emitting layer can be controlled by increasing or decreasing the number of green sheets having the same resistance value or by changing the number of pastes having different resistance values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図fatは本発明による二次電子増倍器の断面図、
第1図fb)はその俯撤図、第1図te1. (dl、
 (elはその製造工程における断面図、第2閏は従来
例の断面図である。 1)・・・・・・ベースフィルム、12・・・・・・第
1番目グリーンシート層、13・・・・・・第2番目グ
リーンシート層、14・・・・・・第3番目グリーンシ
ート層、15・・・・・・貫通孔、16・・・・・・第
n番目グリーンシート層、17°、24・・・・・・入
射端電極、17.25・・・・・・出力端電極、18・
・・・・・二次電子放出層、22・・・・・・ガラス円
筒、26・・・・・・電子。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 tS貫通孔 第1図 /S
FIG. 1 fat is a sectional view of a secondary electron multiplier according to the present invention,
Fig. 1 fb) is the elevation view, Fig. 1 te1. (dl,
(El is a cross-sectional view in the manufacturing process, and the second leap is a cross-sectional view of the conventional example. 1)... Base film, 12... First green sheet layer, 13... ...Second green sheet layer, 14...Third green sheet layer, 15...Through hole, 16...Nth green sheet layer, 17 °, 24...Incidence end electrode, 17.25...Output end electrode, 18.
...Secondary electron emission layer, 22...Glass cylinder, 26...Electron. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1 tS Through hole Figure 1/S

Claims (5)

【特許請求の範囲】[Claims] (1)有機系ベースフィルム上に二次電子放射性物質か
らなるペーストを印刷し、所望形状のパターンを多数個
、同時に形成させてシート状にする工程において、この
印刷した二次電子放射性物質の抵抗値が第1枚目のシー
ト状フィルムよりは第2枚目のシート状フィルムの方が
高くなるように、順次高い抵抗値の二次電子放射性物質
からなるペーストを印刷してシート状にする工程と、こ
のシート状フィルムから有機系ベースフィルムを剥離し
パターン形成された二次電子放射性物質のみからなるシ
ートをその抵抗値が連続的に増加する方向に順番に複数
枚、積層圧着する工程と、脱バインダのための熱処理工
程と焼結のための高温焼成工程により、貫通孔の内壁の
二次電子放出層が連続的な抵抗値分布をもつ二次電子増
倍管を同時に多数個形成させることを特徴とする二次電
子増倍器の製造方法。
(1) In the process of printing a paste made of a secondary electron emissive substance on an organic base film and simultaneously forming a large number of patterns of a desired shape into a sheet, the resistance of the printed secondary electron emissive substance is A process of printing pastes made of secondary electron radioactive substances having successively higher resistance values so that the second sheet-like film has a higher resistance value than the first sheet-like film and forming it into sheets. and a step of peeling off the organic base film from this sheet-like film and sequentially laminating and press-bonding a plurality of patterned sheets consisting only of secondary electron radioactive substances in a direction in which the resistance value continuously increases; Through a heat treatment process for binder removal and a high-temperature firing process for sintering, a large number of secondary electron multiplier tubes whose secondary electron emission layer on the inner wall of the through hole has a continuous resistance value distribution are simultaneously formed. A method for manufacturing a secondary electron multiplier characterized by:
(2)二次電子放射性物質としてはペロブスカイト形半
導体磁器であることを特徴とする特許請求の範囲第(1
)項記載の二次電子増倍器の製造方法。
(2) Claim No. 1, characterized in that the secondary electron emissive material is perovskite semiconductor ceramic.
) The method for manufacturing the secondary electron multiplier described in item 2.
(3)二次電子放射性物質としてはチタン酸バリウム系
磁器であることを特徴とする特許請求の範囲第(2)項
記載の二次電子増倍器の製造方法。
(3) The method for manufacturing a secondary electron multiplier according to claim (2), wherein the secondary electron emissive material is barium titanate ceramic.
(4)熱処理工程は大気中で600〜700℃、1〜2
時間であることを特徴とする特許請求の範囲第(1)項
記載の二次電子増倍器の製造方法。
(4) The heat treatment process is performed in the atmosphere at 600-700℃, 1-2
A method for manufacturing a secondary electron multiplier according to claim (1), wherein the time is a time.
(5)高温焼成工程は大気中で1000〜1200℃、
1〜2時間であることを特徴とする特許請求の範囲第(
1)項記載の二次電子増倍器の製造方法。
(5) The high temperature firing process is performed at 1000-1200℃ in the atmosphere.
Claim No. 1, characterized in that the duration is 1 to 2 hours.
1) A method for manufacturing a secondary electron multiplier according to item 1).
JP872388A 1988-01-19 1988-01-19 Manufacture of secondary electron multiplier Pending JPH01186731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP872388A JPH01186731A (en) 1988-01-19 1988-01-19 Manufacture of secondary electron multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP872388A JPH01186731A (en) 1988-01-19 1988-01-19 Manufacture of secondary electron multiplier

Publications (1)

Publication Number Publication Date
JPH01186731A true JPH01186731A (en) 1989-07-26

Family

ID=11700872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP872388A Pending JPH01186731A (en) 1988-01-19 1988-01-19 Manufacture of secondary electron multiplier

Country Status (1)

Country Link
JP (1) JPH01186731A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525294A (en) * 2008-06-20 2011-09-15 アーレディエンス, インコーポレイテッド Microchannel plate device with adjustable resistive film
RU2756843C2 (en) * 2017-06-30 2021-10-06 Хамамацу Фотоникс К.К. Electronic multiplier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525294A (en) * 2008-06-20 2011-09-15 アーレディエンス, インコーポレイテッド Microchannel plate device with adjustable resistive film
US9064676B2 (en) 2008-06-20 2015-06-23 Arradiance, Inc. Microchannel plate devices with tunable conductive films
US9368332B2 (en) 2008-06-20 2016-06-14 Arradiance, Llc Microchannel plate devices with tunable resistive films
RU2756843C2 (en) * 2017-06-30 2021-10-06 Хамамацу Фотоникс К.К. Electronic multiplier

Similar Documents

Publication Publication Date Title
US5690530A (en) Multilayer pillar structure for improved field emission devices
US4482836A (en) Electron multipliers
US6703784B2 (en) Electrode design for stable micro-scale plasma discharges
US3914634A (en) Channel plate acting as discrete secondary-emissive dynodes
EP0006267B1 (en) Method of manufacturing a channel plate structure
JPH01186731A (en) Manufacture of secondary electron multiplier
JP3352140B2 (en) Dielectric laminate component and method of manufacturing the same
EP0774765A2 (en) Manufacturing method of a multilayer ceramic electronic component
JPS6286656A (en) Manufacture of channel plate
JPH01186730A (en) Manufacture of secondary electron multiplier
US3182221A (en) Secondary emission multiplier structure
JPS6355986A (en) Manufacture of electrostriction effect element
US3873171A (en) Multiple-digit display device and method of manufacturing the same
JP3725352B2 (en) Manufacturing method of ceramic electronic components
DE2554030C2 (en) Secondary electron-emitting electrode and process for its manufacture
JPS62176023A (en) Manufacture of channel plate
JP3838970B2 (en) Electronic control electrode and manufacturing method thereof
JPS63299032A (en) Manufacture of secondary electron multiplication equipment
JPH0878274A (en) Production of ceramic electronic parts
JP2003197130A (en) Cold cathode display device, and method for manufacturing the same
JPH02107436A (en) Manufacture of porcelain molded form for electron multiplier
JPH05275238A (en) Chip inductor and its manufacture
JPH01147879A (en) Manufacture of laminated piezoelectric element
JP2004031265A (en) Thick film sheet member and its manufacturing method
JPH08330175A (en) Ceramic electronic device and its manufacture