JPH0118643B2 - - Google Patents

Info

Publication number
JPH0118643B2
JPH0118643B2 JP57039743A JP3974382A JPH0118643B2 JP H0118643 B2 JPH0118643 B2 JP H0118643B2 JP 57039743 A JP57039743 A JP 57039743A JP 3974382 A JP3974382 A JP 3974382A JP H0118643 B2 JPH0118643 B2 JP H0118643B2
Authority
JP
Japan
Prior art keywords
curie temperature
magnetic
ring
hysteresis loss
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57039743A
Other languages
Japanese (ja)
Other versions
JPS58157317A (en
Inventor
Masutaro Hayase
Kenichi Sato
Masao Sanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Proterial Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Special Metals Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57039743A priority Critical patent/JPS58157317A/en
Publication of JPS58157317A publication Critical patent/JPS58157317A/en
Publication of JPH0118643B2 publication Critical patent/JPH0118643B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は主として電線の着雪による断線事故や
鉄塔倒壊を防止するため、電線に取り付ける融雪
用磁性体リングの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic ring for melting snow that is attached to electric wires, mainly to prevent wire breakage accidents and collapse of steel towers due to snow accumulation on electric wires.

一般に電線への着雪現象は電線温度が3℃以下
になると生ずることより、従来から飽和磁束密度
の高い鉄(Fe)、珪素鋼(3%Si―Fe)、45パー
マロイ(45%Ni―Fe)、パーメンジユール(49%
Co―2%V―Fe)等の磁性体リングを電線に装
着し、前記リングの有する10000erg・cm-3以上の
大なる磁気履歴損失によつて、積極的に発熱させ
て融雪するが、一般に雪は電線より落下する以前
に電線の撚り方向に沿うて移動するので、電線全
長に亘つて融雪用磁性体リングで覆う必要はな
く、例えば50cm程度の間隔に前記リングを装着す
るのみで効果はあるが、高飽和磁束密度を有する
前記リングはキユーリー温度が400℃以上と高く、
降雪のない夏期には発熱して送電電力損失となる
問題がある。そのため前記リングの磁化方向すな
わち円周方向の1箇所ないし2箇所にFe―Ni、
Fe―Ni―Cr合金、Ni―Cu合金等の0〜150℃の
キユーリー温度を有する低キユーリー温度強磁性
金属合金(以下低キユーリー温度材という)を磁
気回路の温度スイツチとして挿入したものが提案
されている。この複合リングは、キユーリー温度
以下の低温度では挿入した低キユーリー温度材が
強磁性体となつて、高飽和磁束磁性体(以下高飽
和磁束材という)と低キユーリー温度材からなる
複合リングの磁気回路を閉じて、複合リングの磁
気履歴損失により発熱するが、キユーリー温度以
上の高温では挿入した低キユーリー温度材が低磁
束密度または非磁性体となつて、複合リングに磁
気的なギヤツプを形成し、磁気履歴損失は減少し
て発熱は抑制され、このようにして複合リングは
低温での発熱、高温での発熱抑制が可能となり、
融雪用に有効な性能を発揮する。この発明はかゝ
る有効な複合リングを安価に提供するための製造
法に係る。
In general, snow accretion on electric wires occurs when the wire temperature drops below 3°C. ), Permendial (49%
A magnetic ring such as Co-2%V-Fe) is attached to an electric wire, and the large magnetic hysteresis loss of 10,000erg・cm -3 or more of the ring actively generates heat to melt snow. Since snow moves along the twisting direction of the wires before it falls from the wires, it is not necessary to cover the entire length of the wires with magnetic snow-melting rings. For example, simply attaching the rings at intervals of about 50 cm will have no effect. However, the ring with high saturation magnetic flux density has a high Curie temperature of 400°C or higher,
During the summer when there is no snowfall, there is a problem with heat generation and transmission power loss. Therefore, Fe-Ni,
It has been proposed that a low Curie temperature ferromagnetic metal alloy (hereinafter referred to as a low Curie temperature material) having a Curie temperature of 0 to 150°C, such as Fe-Ni-Cr alloy or Ni-Cu alloy, is inserted as a temperature switch in a magnetic circuit. ing. In this composite ring, at low temperatures below the Curie temperature, the inserted low Curie temperature material becomes ferromagnetic, and the composite ring consisting of a high saturation magnetic flux magnetic material (hereinafter referred to as high saturation magnetic flux material) and a low Curie temperature material becomes magnetic. When the circuit is closed, heat is generated due to the magnetic history loss of the composite ring, but at high temperatures above the Curie temperature, the inserted low-Curie temperature material becomes a low magnetic flux density or non-magnetic material, forming a magnetic gap in the composite ring. , magnetic hysteresis loss is reduced and heat generation is suppressed, and in this way, the composite ring can generate heat at low temperatures and suppress heat generation at high temperatures.
Demonstrates effective performance for snow melting. The present invention relates to a method of manufacturing such an effective composite ring at a low cost.

以下実施例として掲げる図面により本発明を説
明する。
The present invention will be explained below with reference to drawings listed as examples.

第1図において、磁気履歴損失が10000erg・cm
-3以上、キユーリー温度が400℃以上の鉄鋼、珪
素鋼、45%Ni―Feパーマロイ、パーメンジユー
ル等の強磁性金属合金条1の端面に段部2を設
け、前記段部に0℃〜150℃のキユーリー温度を
有するFe―Ni合金、Fe―Ni―Cr合金、Ni―Cu
合金等の低キユーリー温度材3を固着(エツヂイ
ンレイクラツド加工)して横付け2条クラツド条
4となし、前記クラツド条4を横断方向に適当寸
法に切断してクラツド片5となし、前記クラツド
片5を前記低キユーリー温度材3が高磁気履歴損
失の強磁性金属合金条1の他端部に接触する如く
曲げ加工して、複合リング6または6′を製作す
る。前記複合リング6または6′は0℃における
磁気履歴損失が5000erg・cm-3以上有することを
特徴とするものである。
In Figure 1, the magnetic hysteresis loss is 10000erg・cm
A step 2 is provided on the end face of a ferromagnetic metal alloy strip 1 such as steel, silicon steel, 45% Ni-Fe permalloy, permendile, etc. with a Curie temperature of -3 or higher and a Curie temperature of 400℃ or higher. Fe-Ni alloy, Fe-Ni-Cr alloy, Ni-Cu with a Curie temperature of
A low Curie temperature material 3 such as an alloy is fixed (edge inlay cladding processing) to form two horizontal cladding strips 4, and the cladding strip 4 is cut to an appropriate size in the transverse direction to form a cladding piece 5. A composite ring 6 or 6' is manufactured by bending the clad piece 5 so that the low Curie temperature material 3 contacts the other end of the ferromagnetic metal alloy strip 1 with high magnetic hysteresis loss. The composite ring 6 or 6' is characterized in that it has a magnetic hysteresis loss of 5000 erg·cm -3 or more at 0°C.

本発明において、高磁気損失の強磁性金属合金
条と低キユーリー温度材の固着法は、ロウ付け、
半田付け、溶接、圧接、有機剤接着等いずれでも
よい。
In the present invention, the method of fixing the ferromagnetic metal alloy strip with high magnetic loss and the low Curie temperature material is brazing,
Any method such as soldering, welding, pressure welding, or organic adhesive bonding may be used.

本発明による複合リングは断面形状はほゞ円形
にて、寸法は電線の送電容量により変るが、複合
リングの容積は3cm3以上は必要であり、複合リン
グ内の低キユーリー温度材の挿入厚(第1図の
t)は0.2〜10mmが好ましい。
The composite ring according to the present invention has a substantially circular cross-sectional shape, and its dimensions vary depending on the power transmission capacity of the wire, but the volume of the composite ring must be 3 cm 3 or more, and the insertion thickness of the low Curie temperature material in the composite ring ( t) in FIG. 1 is preferably 0.2 to 10 mm.

本発明において挿入する低キユーリー温度材の
キユーリー温度を0℃〜150℃に限定した理由は
0℃未満では着雪開始温度3℃で発熱しないの
で、融雪効果がなく、また150℃を超えると、夏
期でも発熱して送電電力損失となつて好ましくな
いからであり、望ましいキユーリー温度は50℃〜
100℃である。また複合リングの0℃における磁
気履歴損失を5000erg・cm-3以上とした理由は、
5000erg・cm-3未満では融雪効果が殆どないため
である。複合リングの0℃における磁気履歴損失
は特に20×103erg・cm-3以上のとき効果がある。
強磁性金属合金条の磁気履歴損失を10000erg・cm
-3以上に限定した理由は10000erg・cm-3未満では
低キユーリー温度材を挿入した複合リングでは
5000erg・cm-3未満となり、融雪効果が殆どでな
いためである。特に効果があるのは50000erg・cm
-3以上である。
The reason why the Curie temperature of the low Curie temperature material to be inserted in the present invention is limited to 0°C to 150°C is that if it is below 0°C, it will not generate heat at the snow accretion start temperature of 3°C, so there will be no snow melting effect, and if it exceeds 150°C, This is because it generates heat even in summer, which is undesirable and causes power loss during transmission.The desirable Curie temperature is 50℃~
It is 100℃. Also, the reason why the magnetic hysteresis loss at 0°C of the composite ring is set to 5000erg・cm -3 or more is as follows.
This is because there is almost no snow melting effect below 5000erg cm -3 . The magnetic hysteresis loss of the composite ring at 0° C. is particularly effective when it is 20×10 3 erg·cm −3 or more.
Magnetic hysteresis loss of ferromagnetic metal alloy strip to 10000erg・cm
The reason for limiting the temperature to -3 or higher is that below 10000erg cm -3 , a composite ring with a low Curie temperature material inserted will not work.
This is because the snow melting effect is less than 5000erg・cm -3 and has little effect. Especially effective is 50000erg・cm
-3 or higher.

以下本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

実施例 1 22℃における飽和磁束密度が14100gauss保磁
力が4.1Oe、磁気履歴損失が232×103erg・cm-3
る磁気特性を有し、寸法が巾130mm×厚み6.5mm×
長さ200mmの0.2%Cの炭素鋼帯と、キユーリー温
度が100℃で、寸法が巾8mm×厚みtmm×長さ200
mmなる30%Ni―Fe合金帯及びキユーリー温度が
70℃で、寸法が前記30%Ni―Fe合金と同一寸法
の31%Ni―8%Cr―Fe合金帯を、第1図で説明
したエツヂインレイクラツド条に製作後、切断し
曲げ加工して、前記低キユーリー温度材に接着す
るように外径43mm×巾径30mm×高さ15mmの寸法の
リング状6に成形した。
Example 1 It has magnetic properties with a saturation magnetic flux density of 14100 gauss at 22°C, a coercive force of 4.1 Oe, and a magnetic hysteresis loss of 232 × 10 3 erg cm -3 , and the dimensions are width 130 mm × thickness 6.5 mm ×
A 0.2% C carbon steel strip with a length of 200 mm, a Curie temperature of 100°C, and dimensions of width 8 mm x thickness t mm x length 200 mm.
The 30% Ni-Fe alloy band and the Curie temperature of mm are
At 70°C, a 31% Ni-8% Cr-Fe alloy strip with the same dimensions as the 30% Ni-Fe alloy was fabricated into an edge-inlay clad strip as explained in Figure 1, then cut and bent. Then, it was formed into a ring shape 6 having dimensions of 43 mm in outer diameter x 30 mm in width x 15 mm in height so as to adhere to the low Curie temperature material.

低キユーリー温度材として、30%Ni―Fe合金、
31%Ni―8%Cr―Fe合金を使用した場合の各キ
ユーリー温度材の挿入厚tによる各雰囲気温度と
複合リングの磁気履歴損失との関係を第2図a,
b,cに表す。
30% Ni-Fe alloy as a low Curie temperature material,
Figure 2a shows the relationship between each atmospheric temperature and the magnetic hysteresis loss of the composite ring depending on the insertion thickness t of each Curie temperature material when using a 31%Ni-8%Cr-Fe alloy.
Represented in b and c.

第2図aは低キユーリー温度材として、30%
Ni―Fe合金を使用した場合を表し、同図の1,
2,3,4,5各曲線は低キユーリー温度材の挿
入厚さtが夫々0mm、0.5mm、1.0mm、2.0mm、4.0
mmの場合を表す。
Figure 2 a shows 30% as a low Curie temperature material.
This shows the case where Ni-Fe alloy is used.
2, 3, 4, and 5 curves have insertion thickness t of low Curie temperature material of 0 mm, 0.5 mm, 1.0 mm, 2.0 mm, and 4.0, respectively.
Represents the case of mm.

第2図bは低キユーリー温度材として、31%
Ni―8%Cr―Fe合金を使用した場合で、同図の
1,2,3,4,5各曲線は前記の如く、挿入厚
さtが夫々0mm、0.5mm、1.0mm、2.0mm、4.0mmの
場合を表す。
Figure 2b shows 31% as a low Curie temperature material.
When Ni-8%Cr-Fe alloy is used, the curves 1, 2, 3, 4, and 5 in the same figure show that the insertion thickness t is 0 mm, 0.5 mm, 1.0 mm, and 2.0 mm, respectively. Represents the case of 4.0mm.

第2図cの1曲線は低キユーリー温度材とし
て、30%Ni―Fe合金の、2曲線は31%Ni―8%
Cr―Fe合金の、挿入厚さtと磁気履歴損失比と
の関係を示す。
The first curve in Figure 2c is for a 30%Ni-Fe alloy as a low Curie temperature material, and the second curve is for a 31%Ni-8% alloy.
The relationship between insertion thickness t and magnetic hysteresis loss ratio of Cr-Fe alloy is shown.

なお第3図に上記試験に使用した複合リングの
形状寸法を表す。
Note that FIG. 3 shows the shape and dimensions of the composite ring used in the above test.

第2図a,b,cより明らかな如く、複合リン
グは低キユーリー温度材のキユーリー温度が低い
程、且つその挿入厚tが厚い程、キユーリー温度
以下での磁気履歴損失、すなわち発熱量は低下
し、0℃の30℃に対する磁気履歴損失比すなわち
低温時の高温時に対する発熱量の比は大きくな
る。
As is clear from Fig. 2 a, b, and c, in the composite ring, the lower the Curie temperature of the low Curie temperature material and the thicker the insertion thickness t, the lower the magnetic hysteresis loss, that is, the amount of heat generated below the Curie temperature. However, the magnetic hysteresis loss ratio of 0° C. to 30° C., that is, the ratio of heat generation amount at low temperature to high temperature becomes large.

0℃における磁気履歴損失が26.5×103erg・cm
-3、磁気履歴損失比が2.05なる複合リング(低キ
ユーリー温度材、31%Ni―8%Cr―Fe合金、キ
ユーリー温度:70℃、挿入厚2mm)を120mm2
ACSRに装着して60Hz、200Aの電流を流したと
ころ、雰囲気温度が−7℃の場合、電線温度は着
雪する1℃であつたが、リング温度は着雪しない
10℃まで上昇していた。また雰囲気温度が25℃の
場合は電線温度、リング温度共に46℃で、リング
自体の発熱は認められなかつた。
Magnetic hysteresis loss at 0℃ is 26.5×10 3 erg・cm
-3 , a composite ring with a magnetic hysteresis loss ratio of 2.05 (low Curie temperature material, 31% Ni-8% Cr-Fe alloy, Curie temperature: 70℃, insertion thickness 2mm) of 120mm 2
When attached to ACSR and passing a current of 60Hz and 200A, when the ambient temperature was -7℃, the wire temperature was 1℃, at which snow would form, but the ring temperature would not snow.
The temperature had risen to 10 degrees Celsius. Furthermore, when the ambient temperature was 25°C, both the wire temperature and ring temperature were 46°C, and no heat generation was observed in the ring itself.

以上の如く、本発明は電線の着雪による断線事
故や鉄塔倒壊を防止するため、電線に装着される
有効な複合リングを安価、且つ生産性よく提供す
るものである。
As described above, the present invention provides an effective composite ring that can be attached to electric wires at low cost and with good productivity in order to prevent disconnection accidents and collapse of steel towers due to snow accumulation on electric wires.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す説明図。第2図
a,b,cは本発明による複合リングの低キユー
リー温度材の材質、挿入厚、雰囲気温度と磁気特
性の関係を表す図表。第3図は実施例の特性試験
に使用した複合リングの形状及び寸法を示す斜視
図である。 1:強磁性金属合金条、2:段部、3:低キユ
ーリー温度材、4:2条クラツド材、5:クラツ
ド片、6,6′:複合リング。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention. Figures 2a, b, and c are charts showing the relationship between the material, insertion thickness, ambient temperature, and magnetic properties of the low Curie temperature material of the composite ring according to the present invention. FIG. 3 is a perspective view showing the shape and dimensions of the composite ring used in the characteristic test of the example. 1: Ferromagnetic metal alloy strip, 2: Step portion, 3: Low Curie temperature material, 4: Two-strip clad material, 5: Clad piece, 6, 6': Composite ring.

Claims (1)

【特許請求の範囲】[Claims] 1 10000erg・cm-3以上の磁気履歴損失を有する
強磁性金属合金条に0℃〜150℃のキユーリー温
度を有する強磁性金属合金条をエツヂインレイク
ラツド加工し、前記クラツド条より横断方向に適
当寸法に切り出したクラツド片を前記低キユーリ
ー温度材が前記強磁性金属合金条の他端部に接触
する如く曲げ加工して、0℃における磁気履歴損
失が5000erg・cm-3以上有する複合リングを製造
することを特徴とする融雪用複合磁性体リングの
製造方法。
1 A ferromagnetic metal alloy strip with a magnetic hysteresis loss of 10,000 erg cm -3 or more is edge-inlay cladded with a ferromagnetic metal alloy strip having a Curie temperature of 0°C to 150°C. A composite ring having a magnetic hysteresis loss of 5000 erg cm -3 or more at 0°C is obtained by bending a clad piece cut to an appropriate size so that the low Curie temperature material contacts the other end of the ferromagnetic metal alloy strip. A method of manufacturing a composite magnetic ring for snow melting, the method comprising: manufacturing a composite magnetic ring for snow melting.
JP57039743A 1982-03-12 1982-03-12 Method of producing snow melting composite magnetic ring Granted JPS58157317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57039743A JPS58157317A (en) 1982-03-12 1982-03-12 Method of producing snow melting composite magnetic ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57039743A JPS58157317A (en) 1982-03-12 1982-03-12 Method of producing snow melting composite magnetic ring

Publications (2)

Publication Number Publication Date
JPS58157317A JPS58157317A (en) 1983-09-19
JPH0118643B2 true JPH0118643B2 (en) 1989-04-06

Family

ID=12561439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57039743A Granted JPS58157317A (en) 1982-03-12 1982-03-12 Method of producing snow melting composite magnetic ring

Country Status (1)

Country Link
JP (1) JPS58157317A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2684524B2 (en) * 1994-09-19 1997-12-03 正志 吉岡 Float / Sink Separator
JP3290631B2 (en) 1998-10-02 2002-06-10 キヤノン株式会社 Optical unit, method for manufacturing optical unit, optical system using optical unit, exposure apparatus using optical unit, and method for manufacturing device using this exposure apparatus
JP2002062417A (en) 2000-06-07 2002-02-28 Canon Inc Diffractive optical device, optical system and optical appliance having the diffractive optical device, method for manufacturing diffractive optical device and mold for manufacturing diffractive optical device

Also Published As

Publication number Publication date
JPS58157317A (en) 1983-09-19

Similar Documents

Publication Publication Date Title
JPS62246219A (en) Terminal with fuse
JPH0118643B2 (en)
JPS6047386A (en) Method of pressure-connecting connection terminal
JPS61110976A (en) Superconductor
JPH0210647B2 (en)
JPH0420269B2 (en)
JPH1141768A (en) Magnetic heating composite wire
JP3352735B2 (en) Superconducting flexible cable
JPS61224214A (en) Aluminum stabilization superconductor
JP2001283697A (en) Thin thermal fuse
JPS6140049Y2 (en)
JPH0337128Y2 (en)
JP4724963B2 (en) Thermal fuse
JPS5882436A (en) Solenoid relay
JPH04286815A (en) Manufacture of band material for electric contact
JPH11176645A (en) Small inductor
JP3406972B2 (en) A center yoke, a short ring, and a method of adhering them in a VCM type linear motor.
JPS6070611A (en) Lead switch
JPS58224511A (en) Snow fusing wire material and method of producing same
JPH0355011B2 (en)
JPS58191407A (en) Superconducting coil
JPS6321061Y2 (en)
JPS5873909A (en) Superconductive conductor
JPS587574Y2 (en) Multi-contact enclosed electromagnetic relay
JPS5810338A (en) Method of producing lead piece for lead switch