JPH1141768A - Magnetic heating composite wire - Google Patents

Magnetic heating composite wire

Info

Publication number
JPH1141768A
JPH1141768A JP9186952A JP18695297A JPH1141768A JP H1141768 A JPH1141768 A JP H1141768A JP 9186952 A JP9186952 A JP 9186952A JP 18695297 A JP18695297 A JP 18695297A JP H1141768 A JPH1141768 A JP H1141768A
Authority
JP
Japan
Prior art keywords
magnetic
bundle
composite wire
wire
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9186952A
Other languages
Japanese (ja)
Inventor
Satoshi Iwase
聡 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP9186952A priority Critical patent/JPH1141768A/en
Publication of JPH1141768A publication Critical patent/JPH1141768A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Suspension Of Electric Lines Or Cables (AREA)
  • Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic heating composite wire which can generate a sufficient amount of heat even when a low current flows through a transmission line. SOLUTION: A plurality of magnetic strands 1 each comprising a thin wire having diameter of 0.5 mm or less coated with an insulation film 2 are bundled into a bundle magnetic body 4. The bundle magnetic body' 4 is applied tightly with a coating 3 such that no air gap is formed. Since heat loss at the air gap is eliminated in the magnetic heating composite wire 10, eddy current is increased furthermore in the coating 3 and the amount of Joule's heat can be increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は架空送配電線の着雪
又は着氷による被害を防止するために送配電線の周囲に
配置され、送配電線の周囲に発生する磁界により発熱
し、この熱により送配電線に付着した氷雪を融解する磁
性発熱複合線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is arranged around transmission and distribution lines in order to prevent damage to the overhead transmission and distribution lines due to snow or icing, and generates heat due to a magnetic field generated around the transmission and distribution lines. The present invention relates to a magnetic exothermic composite wire that melts ice and snow attached to transmission and distribution lines by heat.

【0002】[0002]

【従来の技術】冬期には、寒冷地において架空送配電線
に着雪又は着氷することがある。この着氷雪が成長する
と、風圧荷重が増大すると共に、電線の張力が過大にな
り、送配電線の断線又は鉄塔の倒壊等の重大事故が発生
する虞れがある。また、成長した着氷雪が送配電線から
落下して人間又は農作物に損傷を与える虞れもある。こ
のような被害を防止するために、送配電線の周囲に発生
する磁界を利用して氷雪を融解する磁性発熱複合線が実
用化されている。
2. Description of the Related Art In winter, snow or ice may form on overhead transmission lines in cold regions. When the icing snow grows, the wind pressure load increases and the tension of the electric wires becomes excessive, which may cause serious accidents such as disconnection of transmission and distribution lines or collapse of a steel tower. In addition, there is a possibility that the grown icing snow falls from the power transmission and distribution line and damages humans or crops. In order to prevent such damage, a magnetic heating composite wire that melts ice and snow using a magnetic field generated around transmission and distribution lines has been put to practical use.

【0003】従来、磁性発熱複合線は強磁性体金属から
なる芯線の周囲を導電性金属からなる被覆材で被覆した
構造を有する。この磁性発熱複合線は送配電線に巻き付
ける等の方法により、送配電線の周囲に配設する。そう
すると、送配電線を流れる電流によりその周囲に発生し
た磁束が磁性発熱複合線に作用し、強磁性体芯線中で鉄
損が生じ、導電性金属被覆材中で渦電流損失が発生して
発熱する。この磁性発熱複合線に発生した熱によって送
配電線に付着した氷雪が融解する。
Conventionally, a magnetic heating composite wire has a structure in which a core wire made of a ferromagnetic metal is covered with a coating material made of a conductive metal. The composite magnetic heating wire is disposed around the transmission and distribution line by a method such as winding around the transmission and distribution line. In this case, the magnetic flux generated around the power distribution line acts on the magnetic heating composite wire, causing iron loss in the ferromagnetic core wire and eddy current loss in the conductive metal coating material. I do. The ice and snow attached to the transmission and distribution lines are melted by the heat generated in the magnetic heating composite wire.

【0004】しかしながら、この従来技術においては、
周囲磁界が弱い場合、発熱量が少なくなるという問題点
がある。電磁誘導によって誘導される起電力の方向は、
それによって流れる電流の作る磁束が、もとの磁束の増
減を妨げる方向であるというレンツの法則(Lenz’
s Low)に従って、送配電線を流れる電流の変化に
よる強磁性体中の磁束変化によって、この強磁性体中に
渦電流が生じる。そして、この渦電流によって生じる逆
方向の磁界によって強磁性体の磁化が妨げられる。この
ため、導電性金属中の鎖交磁束変化が少なくなり、導電
性金属中の渦電流損失が減少して発熱量が極めて少なく
なるという問題点がある。
However, in this prior art,
When the surrounding magnetic field is weak, there is a problem that the amount of generated heat is reduced. The direction of the electromotive force induced by electromagnetic induction is
Lenz's law (Lenz's law) states that the magnetic flux generated by the current flowing in the direction is a direction that hinders the increase or decrease of the original magnetic flux.
According to s Low), an eddy current is generated in the ferromagnetic material due to a change in magnetic flux in the ferromagnetic material due to a change in current flowing through the transmission and distribution line. Then, the magnetization of the ferromagnetic material is hindered by the reverse magnetic field generated by the eddy current. For this reason, there is a problem that the change in the interlinkage magnetic flux in the conductive metal is reduced, the eddy current loss in the conductive metal is reduced, and the calorific value is extremely reduced.

【0005】このように、逆磁界による発熱量の損失
は、送配電線に流れる電流が少なく、即ち、周囲磁界が
弱いため、発熱量が元来少ない場合には著しい問題点と
なる。而して、送配電線の着雪被害は、このような、電
線電流が少ない地域で多発するので、従来の磁性発熱複
合線では着雪による被害を有効に回避することができな
いという問題点がある。
[0005] As described above, the loss of the heat generation amount due to the reverse magnetic field is a serious problem when the heat generation amount is originally small because the current flowing through the transmission and distribution line is small, that is, the surrounding magnetic field is weak. However, since the snow damage of transmission and distribution lines occurs frequently in such areas where the electric current is small, there is a problem that the damage due to snow cannot be effectively avoided with the conventional magnetic heating composite wire. is there.

【0006】そこで、本願発明者等は磁性素線に絶縁被
覆したものを複数本束ねてバンドル磁性体とし、このバ
ンドル磁性体の周囲に導電性被覆体を被覆することによ
り、低磁界側においても高い発熱量を得ることができる
磁性発熱複合線を既に提案し、出願した(特開平2−1
32703号公報)。図2はこの従来の磁性発熱複合線
を示す断面図である。図2に示すように、この従来の磁
性発熱複合線11においては、磁性金属又は合金からな
る磁性素線1が直径が0.5mm以下の細かい線状に加
工されている。そして、この各磁性素線1の周面には絶
縁膜2が被覆されており、この磁性素線1を複数本束ね
てバンドル磁性体4が構成されている。このバンドル磁
性体4の周囲は導電性の、好ましくは良導体の金属又は
合金からなる被覆体3により被覆されている。なお、こ
の磁性発熱複合線11においては、磁性素線1間及び磁
性素線1と被覆体3との間に空隙部5が形成されてい
る。
Accordingly, the present inventors have bundled a plurality of magnetic wires insulated and coated to form a bundled magnetic material, and coated a conductive coating around the bundled magnetic material, so that even on a low magnetic field side, A magnetic heating composite wire capable of obtaining a high calorific value has already been proposed and filed (Japanese Unexamined Patent Publication No. 2-1).
No. 32703). FIG. 2 is a sectional view showing the conventional magnetic heating composite wire. As shown in FIG. 2, in the conventional magnetic heating composite wire 11, the magnetic element wire 1 made of a magnetic metal or an alloy is processed into a fine line having a diameter of 0.5 mm or less. An insulating film 2 is coated on the peripheral surface of each of the magnetic wires 1, and a bundle magnetic body 4 is formed by bundling a plurality of the magnetic wires 1. The periphery of the bundle magnetic body 4 is covered with a covering 3 made of a conductive metal, preferably a good conductor metal or alloy. In the magnetic heating composite wire 11, a gap 5 is formed between the magnetic wires 1 and between the magnetic wire 1 and the covering 3.

【0007】このように構成された磁性発熱複合線11
においては、強磁性体の部分を直径が0.5mm以下の
細い素線1を束ねたバンドルにすることにより、この強
磁性体素線1中に発生する渦電流が従来よりも減少し、
磁性素線1の磁化が速やかに且つ鋭敏に進行する。この
ため、バンドル磁性体4の周囲にトラップされる磁束密
度が増大すると共に、磁束の変化量が増大する。従っ
て、バンドル磁性体4の周囲に被覆された導電性金属又
は合金からなる被覆体3に発生する渦電流が増大するた
め、ジュール損による発熱量が増加する。
[0007] The magnetic heating composite wire 11 constructed as described above.
In the above, the eddy current generated in the ferromagnetic material wire 1 is reduced as compared with the conventional device by forming the ferromagnetic material portion into a bundle of thin wires 1 having a diameter of 0.5 mm or less.
The magnetization of the magnetic wire 1 proceeds quickly and sharply. Therefore, the magnetic flux density trapped around the bundle magnetic body 4 increases, and the amount of change in the magnetic flux increases. Therefore, an eddy current generated in the coating 3 made of a conductive metal or an alloy coated around the bundle magnetic body 4 increases, so that the amount of heat generated by Joule loss increases.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
2−132703号公報に記載された従来の磁性発熱複
合線11においては、磁性素線1と被覆体3との間に空
隙部5が形成されており、この空隙部5では渦電流によ
るジュール熱が生じない。このため、磁性素線1に発生
する渦電流を低減させてバンドル磁性体4の周囲にトラ
ップされる磁束密度が増大しても、空隙部5においてジ
ュール熱による発熱量の増加のロスが生じるので、磁性
発熱複合線における発熱量を十分に増大させることがで
きない。このため、電線電流に流れる電流が少ない場合
において、十分な発熱量を得ることができないという問
題点がある。
However, in the conventional magnetic heating composite wire 11 described in Japanese Patent Application Laid-Open No. 2-132703, a gap 5 is formed between the magnetic element wire 1 and the covering 3. As a result, Joule heat due to eddy current does not occur in the gap 5. For this reason, even if the eddy current generated in the magnetic element wire 1 is reduced to increase the magnetic flux density trapped around the bundle magnetic body 4, the loss of the heat generation due to the Joule heat occurs in the gap 5. In addition, the amount of heat generated by the magnetic heating composite wire cannot be sufficiently increased. For this reason, there is a problem that a sufficient amount of heat cannot be obtained when the current flowing through the electric wire current is small.

【0009】本発明はかかる問題点に鑑みてなされたも
のであって、送配電線に流れる電流が少ないときでも、
十分な発熱量を得ることができる磁性発熱複合線を提供
することを目的とする。
[0009] The present invention has been made in view of such a problem, and even when the current flowing through the transmission and distribution line is small,
It is an object of the present invention to provide a magnetic heating composite wire capable of obtaining a sufficient heat generation.

【0010】[0010]

【課題を解決するための手段】本発明に係る磁性発熱複
合線は、直径が0.5mm以下であると共にその各周面
が絶縁被覆された強磁性体金属又は合金からなる磁性素
線を複数本束ねて構成されたバンドル磁性体と、このバ
ンドル磁性体の外面凹凸を埋めて隙間なく被覆された導
電性金属又は合金からなる被覆体とを有することを特徴
とする。
According to the present invention, there is provided a magnetic heating composite wire comprising a plurality of magnetic wires each made of a ferromagnetic metal or alloy having a diameter of 0.5 mm or less and each of which has an insulating coating on its peripheral surface. It is characterized by having a bundle magnetic body formed by bundling and a cover made of a conductive metal or an alloy, which fills the outer surface irregularities of the bundle magnetic body and is covered without gaps.

【0011】本発明においては、強磁性体の部分を直径
が0.5mm以下の磁性素線を束ねたバンドルにするこ
とにより、この磁性素線中に発生する渦電流が減少し、
磁性素線の磁化が速やかに且つ鋭敏に進行するので、バ
ンドル磁性体の周囲にトラップされる磁束密度が増大す
ると共に、磁束の変化量が増大する。そして、バンドル
磁性体の周囲には、その外面の凹凸を埋めるようにし
て、導電性金属又は合金からなる被覆体が被覆され、バ
ンドル磁性体と被覆体との間には空隙が形成されていな
い。被覆体が被覆されていない空隙は、渦電流によるジ
ュール熱の増加に寄与しないので、空隙が形成されてい
ると渦電流によるジュール熱の増加のロスとなる。しか
し、本発明では、バンドル磁性体の周囲には、空隙を形
成することなく被覆体が被覆されているので、被覆体に
おける渦電流が更に増大し、ジュール熱による発熱量を
更に増加させることができる。
In the present invention, by forming the ferromagnetic material portion into a bundle of magnetic wires having a diameter of 0.5 mm or less, eddy current generated in the magnetic wires is reduced,
Since the magnetization of the magnetic element wire proceeds promptly and sharply, the density of the magnetic flux trapped around the bundle magnetic body increases, and the amount of change in the magnetic flux increases. The periphery of the bundle magnetic body is covered with a covering made of a conductive metal or an alloy so as to fill the irregularities on the outer surface, and no gap is formed between the bundle magnetic body and the covering. . The voids that are not covered by the coating do not contribute to the increase in Joule heat due to eddy currents, and thus the formation of voids results in the loss of Joule heat increase due to eddy currents. However, in the present invention, since the coating is coated around the bundle magnetic material without forming a gap, the eddy current in the coating further increases, and the heat generation due to Joule heat may further increase. it can.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施例について、
添付の図面を参照して具体的に説明する。図1は本発明
の実施例に係る磁性発熱複合線の一例を示す断面図であ
る。なお、図1において、図2と同一物には同一符号を
付してその詳細な説明は省略する。本実施例において
は、磁性素線1が直径が0.5mm以下の細かい線状に
加工されており、この各磁性素線1の周面には酸化膜等
の絶縁膜2が被覆されており、この磁性素線1を複数本
束ねてバンドル磁性体4が構成されている。このバンド
ル磁性体4の周囲においては、被覆体3がバンドル磁性
体4の外面凹凸を埋めるようにして隙間なく被覆されて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
This will be specifically described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of a magnetic heating composite wire according to an embodiment of the present invention. In FIG. 1, the same components as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted. In the present embodiment, the magnetic element wire 1 is processed into a fine line having a diameter of 0.5 mm or less, and the peripheral surface of each magnetic element wire 1 is covered with an insulating film 2 such as an oxide film. A bundle magnetic body 4 is formed by bundling a plurality of the magnetic wires 1. Around the bundle magnetic body 4, the cover 3 is covered without gaps so as to fill the irregularities on the outer surface of the bundle magnetic body 4.

【0013】このように構成された磁性発熱複合線10
においては、図2に示す従来技術と比較して、磁性発熱
複合線10に生じるジュール熱による発熱量を更に増加
させることができる。即ち、図2のように、バンドル磁
性体4の周囲に空隙部が形成されていると、渦電流によ
るジュール熱の増加のロスとなるので、図1に示す本実
施例のように、外面凹凸を被覆体で隙間なく被覆するこ
とにより、被覆体3における渦電流が更に増大し、ジュ
ール熱による発熱量を更に増加させることができる。こ
のため、磁界強度が低いときでも、十分な発熱量を得る
ことができる。
The magnetic heating composite wire 10 constructed as described above
In this case, the amount of heat generated by Joule heat generated in the magnetic heating composite wire 10 can be further increased as compared with the conventional technique shown in FIG. That is, if a void is formed around the bundle magnetic body 4 as shown in FIG. 2, an increase in Joule heat due to an eddy current is lost, and therefore, as shown in FIG. Is covered with the cover without gaps, the eddy current in the cover 3 further increases, and the amount of heat generated by Joule heat can be further increased. Therefore, a sufficient amount of heat can be obtained even when the magnetic field strength is low.

【0014】なお、図1は本発明の実施例に係る磁性発
熱複合線の構造の一例を示すためのものであり、本発明
の磁性発熱複合線の断面形状は、これにより限定される
ものではない。
FIG. 1 shows an example of the structure of a composite magnetic heating wire according to an embodiment of the present invention, and the sectional shape of the composite magnetic heating wire of the present invention is not limited to this. Absent.

【0015】[0015]

【実施例】次に、本発明の実施例に係る磁性発熱複合線
を製造し、その発熱量を求めた結果について比較例と比
較して説明する。
Next, a description will be given of a result of obtaining a heat generating composite wire according to an example of the present invention and calculating a calorific value thereof in comparison with a comparative example.

【0016】実施例1 磁性体として鉄(Fe)が58重量%、ニッケル(N
i)が42重量%の組成の合金を伸線して直径が0.1
mmの素線を得た。この素線に酸化皮膜処理を施して絶
縁膜を素線の周囲に形成した後、この素線を21本束ね
てバンドル磁性体とした。そして、このバンドル磁性体
をアルミニウム製波付管(以下、アルミパイプという)
内に挿入してバンドル磁性体の周囲にアルミニウム材を
被覆した。このアルミニウム材の被覆においては、アル
ミパイプ内にバンドル磁性体を挿入し、組ダイス(圧力
ダイス)を使用して、40%の加工度(挿入直後から計
算した加工度)になるまで伸線した。そうすると、アル
ミパイプの一部がバンドル磁性体内部まで圧入されて、
バンドル磁性体の周囲に空隙部が形成されず、バンドル
磁性体の外面がアルミニウム材で密に被覆された。
Example 1 As a magnetic substance, iron (Fe) was 58% by weight and nickel (N
i) is drawn by drawing an alloy having a composition of 42% by weight to a diameter of 0.1%.
mm was obtained. After performing an oxide film treatment on the wires to form an insulating film around the wires, 21 wires were bundled to form a bundle magnetic body. And this bundle magnetic material is made of aluminum corrugated pipe (hereinafter referred to as aluminum pipe).
To cover the periphery of the bundle magnetic body with an aluminum material. In this aluminum coating, the bundle magnetic material was inserted into an aluminum pipe, and drawn using a set die (pressure die) until the working ratio reached 40% (the working ratio calculated immediately after the insertion). . Then, a part of the aluminum pipe is pressed into the bundle magnetic body,
No void was formed around the bundle magnetic body, and the outer surface of the bundle magnetic body was densely covered with the aluminum material.

【0017】このようにして製造した磁性発熱複合線を
本実施例とした。また、比較のために上記組成の鉄−ニ
ッケル合金の単線にアルミニウム材を被覆して得た磁性
発熱複合線を比較例1とし、上記組成の素線の周囲に絶
縁膜を形成した後、この素線を21本束ねてバンドル磁
性体とし、このバンドル磁性体をアルミパイプ内に挿入
し、圧力ダイスを使用しないでバンドル磁性体の周囲に
アルミニウムを被覆した磁性発熱複合線(即ち、図2に
示すような磁性発熱複合線)を比較例2とした。そし
て、これらの磁性発熱複合線を下記表1に示す磁界強度
の磁界中におき、各磁性発熱複合線の単位重量当りの発
熱量を調べた。これらの結果について、各磁界強度と共
に発熱量を夫々下記表1に示す。
The magnetic heat-generating composite wire manufactured in this manner was used in this embodiment. Further, for comparison, a magnetic exothermic composite wire obtained by coating a single wire of an iron-nickel alloy having the above composition with an aluminum material was used as Comparative Example 1, and an insulating film was formed around a strand having the above composition. A magnetic heating composite wire in which 21 wires are bundled to form a bundle magnetic body, which is inserted into an aluminum pipe, and aluminum is coated around the bundle magnetic body without using a pressure die (that is, as shown in FIG. 2). Comparative Example 2). Then, these magnetic exothermic composite wires were placed in a magnetic field having a magnetic field strength shown in Table 1 below, and the heat generation per unit weight of each magnetic exothermic composite wire was examined. With respect to these results, the heat generation amount is shown in Table 1 below together with each magnetic field strength.

【0018】[0018]

【表1】 [Table 1]

【0019】 表1に示すように、本実施例において
は、比較例に比して全ての磁界強度に対する発熱量が多
かった。これに対して、比較例1については、全ての磁
界強度で発熱量が少なく、特に、磁界強度が10Oeと
弱いときは実施例1と比較すると約50%以下の発熱量
であった。また、比較例2については、比較例1と比較
すると、全ての磁界強度で多い発熱量を示したが、バン
ドル磁性体の周囲に空隙部が形成されるため、実施例1
に比較すると、全ての磁界強度で約10%程度、低い発
熱量であった。前述したように、送配電線の着雪被害は
電線電流が低い地域に多発するので、このように磁界強
度が低いときに磁性発熱複合線の発熱量が多いというこ
とは着雪被害防止上極めて有益である。
As shown in Table 1, in this example, the amount of heat generated for all magnetic field strengths was larger than that in the comparative example. On the other hand, in Comparative Example 1, the calorific value was small at all magnetic field intensities. In particular, when the magnetic field intensity was as low as 10 Oe, the calorific value was about 50% or less as compared with Example 1. Further, in Comparative Example 2, as compared with Comparative Example 1, a large amount of heat was generated at all magnetic field strengths. However, since voids were formed around the bundle magnetic body,
In comparison with the above, the calorific value was lower by about 10% at all magnetic field strengths. As mentioned above, snow damage to power transmission and distribution lines occurs frequently in areas where the electric current is low.Therefore, when the magnetic field strength is low, the large amount of heat generated by the magnetic heating composite wire is extremely important in preventing snow damage. It is informative.

【0020】実施例2 鉄(Fe)が97重量%、シリコン(Si)が3重量%
の組成の合金を磁性体として使用し、この磁性体を伸線
して直径が0.1mmの素線を得た。この素線に分解温
度が200℃以上のエポキシ樹脂を被覆して絶縁膜を素
線の周囲に形成した後、この素線を21本束ねてバンド
ル磁性体とした。そして、このバンドル磁性体の周囲に
アルミニウム被覆体をCM(コンフォーム法)により被
覆して、磁性発熱複合線を製造した。
EXAMPLE 2 97% by weight of iron (Fe) and 3% by weight of silicon (Si)
Was used as a magnetic material, and the magnetic material was drawn to obtain a wire having a diameter of 0.1 mm. The wires were coated with an epoxy resin having a decomposition temperature of 200 ° C. or higher to form an insulating film around the wires, and then 21 wires were bundled to form a bundle magnetic body. Then, an aluminum covering was coated around the bundle magnetic body by CM (conform method) to manufacture a magnetic heating composite wire.

【0021】このようにして製造した磁性発熱複合線を
本実施例とした。また、比較のために上記組成の鉄−シ
リコン合金の単線にアルミニウム材を被覆して得た磁性
発熱複合線を比較例3とし、上記組成の素線の周囲に絶
縁膜を形成した後、この素線を21本束ねてバンドル磁
性体とし、このバンドル磁性体の周囲にアルミニウム被
覆体を被覆した磁性発熱複合線(即ち、図2に示すよう
な磁性発熱複合線)を比較例4とした。この比較例4
は、造管方式によりアルミニウム被覆体を被覆した。
The magnetic heat-generating composite wire manufactured in this manner was used in this example. For comparison, a magnetic heat-generating composite wire obtained by coating an aluminum material on a single wire of the iron-silicon alloy having the above composition was used as Comparative Example 3, and an insulating film was formed around the element wire having the above composition. A magnetic heating composite wire (ie, a magnetic heating composite wire as shown in FIG. 2) in which 21 strands were bundled to form a bundle magnetic body and an aluminum coating was coated around the bundle magnetic body was used as Comparative Example 4. Comparative Example 4
Was coated with an aluminum coating by a tube forming method.

【0022】そして、これらの磁性発熱複合線を下記表
2に示す磁界強度の磁界中におき、各磁性発熱複合線の
単位重量当りの発熱量を調べた。これらの結果につい
て、各磁界強度と共に発熱量を夫々下記表2に示す。
Then, these magnetic exothermic composite wires were placed in a magnetic field having a magnetic field strength shown in Table 2 below, and the heat generation per unit weight of each magnetic exothermic composite wire was examined. With respect to these results, the heat generation amount is shown in Table 2 below together with each magnetic field strength.

【0023】[0023]

【表2】 [Table 2]

【0024】表2に示すように、本実施例においては、
比較例に比して全ての磁界強度に対する発熱量が多かっ
た。これに対して、比較例3については、全ての磁界強
度で発熱量が少なく、特に、磁界強度が10Oeと弱い
ときは実施例1と比較すると約50%以下の発熱量であ
った。また、比較例2については、比較例1と比較する
と、全ての磁界強度で多い発熱量を示したが、バンドル
磁性体の周囲に空隙部が形成されるため、実施例1に比
較すると、全ての磁界強度で約10%程度、低い発熱量
であった。
As shown in Table 2, in this embodiment,
The calorific value for all magnetic field strengths was larger than in the comparative example. On the other hand, in Comparative Example 3, the calorific value was small at all the magnetic field strengths. In particular, when the magnetic field strength was as weak as 10 Oe, the calorific value was about 50% or less as compared with Example 1. Further, Comparative Example 2 showed a large amount of heat generation at all magnetic field strengths as compared with Comparative Example 1, but all voids were formed around the bundle magnetic body. The heat generation was as low as about 10% at the magnetic field strength of.

【0025】[0025]

【発明の効果】以上説明したように、本発明に係る磁性
発熱複合線においては、直径が0.5mm以下の磁性素
線に絶縁被覆したものを複数本束ねてバンドル磁性体と
し、このバンドル磁性体の周囲には導電性被覆体が密着
して被覆されており、バンドル磁性体と被覆体との間に
は空隙が形成されていない。このため、低磁界側におい
ても十分に高い発熱量を得ることができる。これによ
り、本発明に係る磁性複合線は電線電流が低い送配電線
においても十分に高い発熱量が得られ、このような地域
における融雪が可能となるため、着雪に起因する被害を
有効に防止することができる。
As described above, in the magnetic heating composite wire according to the present invention, a plurality of magnetic wires each having a diameter of 0.5 mm or less insulated and coated are bundled to form a bundle magnetic material. The periphery of the body is covered with a conductive covering in close contact, and no gap is formed between the bundle magnetic body and the covering. Therefore, a sufficiently high heat value can be obtained even on the low magnetic field side. Thereby, the magnetic composite wire according to the present invention can obtain a sufficiently high calorific value even in a transmission and distribution line having a low electric wire current, and can melt snow in such an area, thereby effectively reducing damage caused by snow accretion. Can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る磁性発熱複合線の一例を示す断面
図である。
FIG. 1 is a sectional view showing an example of a magnetic heating composite wire according to the present invention.

【図2】従来の磁性発熱複合線を示す断面図である。FIG. 2 is a cross-sectional view showing a conventional magnetic heating composite wire.

【符号の説明】[Explanation of symbols]

1;磁性素線 2;絶縁膜 3;導電性被覆体 4;バンドル磁性体 5;空隙部 10、11;磁性発熱複合線 DESCRIPTION OF SYMBOLS 1; Magnetic element wire 2; Insulating film 3; Conductive covering 4; Bundle magnetic body 5; Void section 10, 11;

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 直径が0.5mm以下であると共にその
各周面が絶縁被覆された強磁性体金属又は合金からなる
磁性素線を複数本束ねて構成されたバンドル磁性体と、
このバンドル磁性体の外面凹凸を埋めて隙間なく被覆さ
れた導電性金属又は合金からなる被覆体とを有すること
を特徴とする磁性発熱複合線。
1. A bundle magnetic body having a diameter of 0.5 mm or less and a plurality of magnetic wires made of a ferromagnetic metal or alloy whose respective peripheral surfaces are insulated and coated, and
A magnetic heat-generating composite wire comprising: a conductive metal or alloy covering the outer surface of the bundle magnetic material so as to cover the outer surface unevenness and to be covered without gaps.
JP9186952A 1997-07-11 1997-07-11 Magnetic heating composite wire Pending JPH1141768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9186952A JPH1141768A (en) 1997-07-11 1997-07-11 Magnetic heating composite wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9186952A JPH1141768A (en) 1997-07-11 1997-07-11 Magnetic heating composite wire

Publications (1)

Publication Number Publication Date
JPH1141768A true JPH1141768A (en) 1999-02-12

Family

ID=16197604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9186952A Pending JPH1141768A (en) 1997-07-11 1997-07-11 Magnetic heating composite wire

Country Status (1)

Country Link
JP (1) JPH1141768A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087876B2 (en) 1998-06-15 2006-08-08 The Trustees Of Dartmouth College High-frequency melting of interfacial ice
US7164100B2 (en) 1998-06-15 2007-01-16 The Trustees Of Dartmouth College High-frequency de-icing of cableways
WO2007029801A1 (en) * 2005-09-08 2007-03-15 Autonetworks Technologies, Ltd. Vehicle shield conductor
CN105741941A (en) * 2016-02-03 2016-07-06 安徽长风电缆集团有限公司 Self-heating pressure-proof cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087876B2 (en) 1998-06-15 2006-08-08 The Trustees Of Dartmouth College High-frequency melting of interfacial ice
US7164100B2 (en) 1998-06-15 2007-01-16 The Trustees Of Dartmouth College High-frequency de-icing of cableways
WO2007029801A1 (en) * 2005-09-08 2007-03-15 Autonetworks Technologies, Ltd. Vehicle shield conductor
JPWO2007029801A1 (en) * 2005-09-08 2009-03-19 株式会社オートネットワーク技術研究所 Shield conductor for vehicles
US7700881B2 (en) 2005-09-08 2010-04-20 Autonetworks Technologies, Ltd. Shielded conductor for vehicle
CN105741941A (en) * 2016-02-03 2016-07-06 安徽长风电缆集团有限公司 Self-heating pressure-proof cable

Similar Documents

Publication Publication Date Title
JPH08196022A (en) Snow melting electric wire
GB2052838A (en) Superconducting cable
EP1029330A4 (en) Electrical cables and methods of making the same
JPH1141768A (en) Magnetic heating composite wire
JP3796850B2 (en) Terminal structure of superconducting cable conductor and connection method thereof
US20210249160A1 (en) Wire having a hollow micro-tubing and method therefor
JPH08296206A (en) Cable
JP4158878B2 (en) Superconducting coil terminal structure
JP4391066B2 (en) Multi-layered superconducting conductor terminal structure and manufacturing method thereof
JP3063023B2 (en) Snow melting wire
JPH02132703A (en) Magnetic heat generating composite material
JP3549295B2 (en) Superconducting cable
JPH02189812A (en) Snow melting conductor
JP2003151754A5 (en)
JP3992270B2 (en) Fixed structure of snowmelt line for transmission line
JPH0444366B2 (en)
CA1210054A (en) Magnetic material wire and method of producing same
JPH0686436A (en) Thawing electric cable
JPH07322457A (en) Thawing cable
JP2675102B2 (en) How to prevent snow from accumulating on overhead lines
JPH0686437A (en) Thawing electric cable
JPH07203625A (en) Improving method for snowmelt characteristic of transmission line and manufacture of snowmelting wire rod
JPH10106364A (en) Superconductive apparatus and its manufacture
JPH07130532A (en) Superconducting coil
JPS5866312A (en) Superconductive conductor