JPH07322457A - Thawing cable - Google Patents

Thawing cable

Info

Publication number
JPH07322457A
JPH07322457A JP6165942A JP16594294A JPH07322457A JP H07322457 A JPH07322457 A JP H07322457A JP 6165942 A JP6165942 A JP 6165942A JP 16594294 A JP16594294 A JP 16594294A JP H07322457 A JPH07322457 A JP H07322457A
Authority
JP
Japan
Prior art keywords
wire
magnetic
aluminum
magnetic wire
snow melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6165942A
Other languages
Japanese (ja)
Other versions
JP2779317B2 (en
Inventor
Tokuo Uejima
徳夫 上島
Yoshio Furuto
義雄 古戸
Naoyoshi Hase
尚良 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6165942A priority Critical patent/JP2779317B2/en
Publication of JPH07322457A publication Critical patent/JPH07322457A/en
Application granted granted Critical
Publication of JP2779317B2 publication Critical patent/JP2779317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

PURPOSE:To provide a thawing cable which has thawing effect high even at low current application and in which excessive temperature rise can be suppressed and for which aerial wiring can be performed easily. CONSTITUTION:This is one where a magnetic wire 6 is wound in spiral shape around an aerial line 5, and here the slippage of the magnetic wire 6 at passage of a metallic wheel is prevented by interposing a spacer 7 of aluminum line material in the space of the magnetic wire, and thawing effect is raised, using the magnetic wire 6 high in heat generation of eddy currents in the low magnetic field for the magnetic wire 6, and excessive heat generation in the high magnetic field of the magnetic wire 6 is suppressed by fin cooling effect of the magnetic wire 6 projecting from the spacer 7, and electrolytic corrosion with the aerial line 5 is prevented by covering the magnetic wire 6 with an Al layer 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミ架空電線に磁性
線材を巻付け、前記磁性線材に生じる渦電流と履歴損失
による発熱でアルミ架空電線上の着雪・着氷を解かすよ
うにした融雪電線で、低電流通電時にも高い融雪効果を
有し、過度の温度上昇が抑えられ、且つ架線工事が容易
に行えるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is designed so that a magnetic wire is wound around an aluminum overhead wire, and the eddy current generated in the magnetic wire and heat generated by hysteresis loss are used to solve snow and ice formation on the aluminum overhead wire. The snow-melting wire has a high snow-melting effect even when a low current is applied, an excessive temperature rise is suppressed, and overhead wire construction can be easily performed.

【0002】[0002]

【従来の技術】架空電線に雪や氷が付着すると、この雪
や氷は架空電線の撚溝に沿って回転しながら発達し、遂
には巨大な筒雪や氷塊となる。その結果、架空電線に多
大の荷重がかかり、架空電線の断線や鉄塔の倒壊事故に
至る。この対策として、架空電線の外周に複数の難着雪
リングを間隔を空けて取付けて、撚溝に沿って回転する
着雪や着氷をこの難着雪リングで止め、巨大化する前に
落下させる方法が実用化された。しかし、この方法では
架空電線直下にあるビニルハウスや自動車等が、落雪や
落氷を受けて損傷する問題があった。そこで、架空電線
に磁性線材を巻付け、架空電線を流れる交流電流の交番
磁界により前記磁性線材に渦電流と履歴損失を発生さ
せ、そのときの発熱で架空電線上の着雪や着氷を解かす
方法が提案された(特開昭58-44609)。
2. Description of the Related Art When snow or ice adheres to an overhead wire, the snow or ice develops while rotating along the twist groove of the overhead wire, and finally becomes a huge snow cube or a block of ice. As a result, a large load is applied to the overhead wire, which leads to the disconnection of the overhead wire and the collapse of the tower. As a countermeasure against this, multiple snow-drinking rings are attached to the outer circumference of the overhead wire at intervals so that snow and ice that rotate along the twist groove are stopped by this snow-draining ring and fall before becoming huge. The method of making was put to practical use. However, with this method, there is a problem that a vinyl house, an automobile, or the like located directly under the overhead electric wire is damaged by falling snow or falling ice. Therefore, a magnetic wire is wound around the overhead wire, and an eddy current and hysteresis loss are generated in the magnetic wire due to the alternating magnetic field of the alternating current flowing through the overhead wire, and the heat generated at that time causes the snow and ice to form on the overhead wire. A method of removing the residue has been proposed (JP-A-58-44609).

【0003】[0003]

【発明が解決しようとする課題】前記磁性線材を巻付け
た融雪電線では、送電量が多い昼間は、磁性線材の渦電
流や履歴損失による発熱(以下渦電流発熱と略記する)
が大きく、これに架空電線自体の抵抗発熱が加わって着
雪や着氷は起き難いが、逆に、架空電線が許容温度以上
に昇温して送電量を落とさざるを得ない事態が起きた。
この事態解決の為に、磁性線材の組成を変えてキュリー
温度を下げ、所定温度以上では渦電流発熱が生じないよ
うにしたが、キュリー温度の低い磁性線材は、一般に低
磁界下での磁束密度が低く、早朝の送電量の少ない肝心
なときに十分な渦電流発熱が得られなかった。又磁性線
材によっては、架空電線との間で電食が起きて、架空電
線の断面積が実質的に減少した。又架空電線を金車を通
して架線する際に架空電線に巻付けた磁性線材がずれ、
その間隔が変動して当初の融雪効果が得られないという
問題があった。プリフォームした磁性線材を架線後装着
する方法は工事に多大の労力を要した。
In the snow melting wire wound with the magnetic wire, heat is generated due to eddy current or history loss of the magnetic wire during the daytime when the amount of power transmission is large (hereinafter abbreviated as eddy current heat generation).
However, due to the resistance heat of the overhead wire itself, it is difficult for snow and ice to occur, but conversely, there was a situation in which the overhead wire had to rise above the permissible temperature to reduce the amount of power transmission. .
In order to solve this situation, the composition of the magnetic wire was changed to lower the Curie temperature so that eddy current heat generation did not occur above a certain temperature.However, a magnetic wire with a low Curie temperature generally has a magnetic flux density in a low magnetic field. However, eddy current heat generation was not obtained when the power transmission was low and the amount of power transmission was low in the early morning. Further, depending on the magnetic wire, electrolytic corrosion occurs between the overhead wire and the overhead wire, and the cross-sectional area of the overhead wire is substantially reduced. In addition, the magnetic wire wound around the overhead wire shifts when the overhead wire is passed through the gold wheel,
There was a problem that the initial snow-melting effect could not be obtained due to the variation of the interval. The method of attaching the preformed magnetic wire after the overhead wire required a great deal of work for construction.

【0004】[0004]

【課題を解決するための手段】本発明は、このような中
で鋭意研究を行いなされたもので、その目的とするとこ
ろは、送電量が少ないときも十分に発熱して、付着する
雪や氷を速やかに解かし、送電量が多いときは過度に発
熱せず、電食を起こさず、架線工事が容易に行える融雪
電線を提供することにある。即ち、請求項1の発明は、
アルミ架空電線の最外層に、磁性線材が螺旋状に巻付け
られた融雪電線において、磁性線材が、Niを40〜60wt
%含有し残部Feからなる合金磁性線材であり、前記磁
性線材にアルミ材が10〜60μmの厚さ被覆されており、
前記螺旋状に巻付けられたアルミ材被覆磁性線材の間隙
に、アルミ線材が、前記アルミ材被覆磁性線材の間隔を
一定に保持するスペーサーとして巻付けられており、前
記アルミ材被覆磁性線材が、前記アルミ線材巻付け体か
ら突出していることを特徴とするものである。
The present invention has been earnestly studied in such a situation. The purpose of the present invention is to generate sufficient heat even when the amount of power transmission is small, and An object of the present invention is to provide a snow-melting wire that can quickly thaw ice, generate no excessive heat when a large amount of power is transmitted, do not cause electrolytic corrosion, and can easily perform overhead wire construction. That is, the invention of claim 1 is
In a snow-melting electric wire in which a magnetic wire is spirally wound on the outermost layer of an aluminum overhead wire, the magnetic wire has a Ni content of 40 to 60 wt.
%, And the balance is Fe, and the magnetic wire is coated with an aluminum material to a thickness of 10 to 60 μm.
In the gap between the spirally wound aluminum material-coated magnetic wire rods, the aluminum wire rod is wound as a spacer that keeps the gap between the aluminum material-covered magnetic wire rods constant, and the aluminum material-covered magnetic wire rod is It is characterized in that it is projected from the aluminum wire winding body.

【0005】この請求項1の発明は、架空電線に磁性線
材を螺旋状に巻付けた融雪電線で、 金車通過時の磁性線材のずれを磁性線材間にスペーサ
ーを介在させて防止し、 磁性線材に、低磁界における渦電流発熱の大きい磁性
線材を用いて融雪効果を高め、磁性線材の高磁界にお
ける過度の発熱を、前記磁性線材をスペーサーより突出
させて巻付けてそのフィン冷却効果により抑え、磁性
線材にアルミ材を被覆して架空電線との電食を防止した
ものである。
The invention of claim 1 is a snow-melting electric wire in which a magnetic wire is spirally wound around an overhead wire, and a gap between the magnetic wires is prevented by a spacer between the magnetic wires to prevent the magnetic wires from slipping when passing through a gold wheel. A magnetic wire with large eddy current heat generation in a low magnetic field is used as the wire to enhance the snow melting effect, and excessive heat generation in a high magnetic field of the magnetic wire is suppressed by the fin cooling effect by winding the magnetic wire above the spacer to wind it. The magnetic wire is coated with an aluminum material to prevent electrolytic corrosion with the overhead wire.

【0006】架空電線には、そこを流れる交流電流によ
り交番磁界が生じ、この交番磁界により架空電線に巻付
けられた磁性線材に渦電流損失と履歴損失が発生して前
記磁性線材が発熱する。この発熱量は前記磁性線材の飽
和磁束密度と透磁率に左右される。断面円形状の軟磁性
線材の軸方向に交番磁界が掛かっているときの磁性線材
における損失は、殆どが渦電流損失である。この渦電流
損失は、低磁界下では磁束密度の2乗に比例し、高磁界
下では磁束密度の 1.6乗に比例する。いずれにしろ飽和
磁束密度の高い磁性線材程、発熱量が大きい。例えば純
鉄は22,000Gの飽和磁束密度を有していて、高磁界での
発熱量は大きいが低磁界ではそれ程でもない。融雪電線
には、低磁界での磁束密度が高く発熱量の大きい磁性線
材が好ましく、本発明では、前記条件を満たすFe−N
i系の磁性合金に着目した。Feの飽和磁束密度は、前
述の通り 22000Gである。このFeにNiを添加してい
くと、Ni30%で飽和磁束密度は4000Gと最低になり、
Niが30%を超えると飽和磁束密度は再び高くなり、N
i45wt%で極大値を示す。透磁率はNi78%で極大を示
す。そして、Niが40〜60wt%のFe−Ni系合金は低
磁界における飽和磁束密度が14,000G以上と高く、又透
磁率も比較的高い。従って融雪電線用磁性線材として有
利である。このようなことから、本発明では、Niを40
〜60wt%含有し残部Feからなる合金磁性線材を選択し
た。Niの含有量を40〜60wt%に限定したのは、Niが
40wt%未満では透磁率と低磁界での磁束密度が低下し、
Niが60wt%を超えると低磁界での磁束密度が低下し
て、いずれも融雪に必要な発熱量が得られなくなる為で
ある。
An alternating magnetic field is generated in the overhead wire by an alternating current flowing therethrough, and the alternating magnetic field causes eddy current loss and hysteresis loss in the magnetic wire wound around the overhead wire to heat the magnetic wire. This heat generation amount depends on the saturation magnetic flux density and magnetic permeability of the magnetic wire. Most of the loss in the magnetic wire when an alternating magnetic field is applied in the axial direction of the soft magnetic wire having a circular cross section is eddy current loss. This eddy current loss is proportional to the square of the magnetic flux density under a low magnetic field, and is proportional to the 1.6th power of the magnetic flux density under a high magnetic field. In any case, the higher the saturation magnetic flux density, the larger the amount of heat generation. Pure iron, for example, has a saturation magnetic flux density of 22,000 G and generates a large amount of heat in a high magnetic field, but not so much in a low magnetic field. A magnetic wire having a high magnetic flux density in a low magnetic field and a large amount of heat generation is preferable for the snow-melting electric wire, and in the present invention, Fe-N satisfying the above condition is satisfied.
Focusing on i-based magnetic alloys. The saturation magnetic flux density of Fe is 22000 G as described above. When Ni is added to this Fe, the saturation magnetic flux density becomes the minimum at 4000 G at 30% Ni,
When Ni exceeds 30%, the saturation magnetic flux density becomes high again, and N
The maximum value is shown at i45wt%. The magnetic permeability shows a maximum at Ni 78%. The Fe-Ni alloy having Ni of 40 to 60 wt% has a high saturation magnetic flux density of 14,000 G or more in a low magnetic field and a relatively high magnetic permeability. Therefore, it is advantageous as a magnetic wire for a snow melting wire. Therefore, in the present invention, Ni is added to 40
An alloy magnetic wire containing -60% by weight and the balance Fe was selected. The reason for limiting the Ni content to 40-60 wt% is that Ni is
If it is less than 40 wt%, the magnetic permeability and the magnetic flux density in a low magnetic field decrease,
This is because if the Ni content exceeds 60 wt%, the magnetic flux density in a low magnetic field will decrease, and the heat generation amount required for snow melting cannot be obtained in any case.

【0007】請求項1の発明において、磁性線材に被覆
するアルミ材は、架空電線(アルミ導体)との電位差に
よる電食を防止する。この磁性線材にアルミ材を被覆し
た場合、磁束が飽和しない低磁界においては、アルミ被
覆層に流れる外部磁界を打ち消そうとする渦電流によっ
て磁性線材の磁束がシールドされて発熱量が低下する。
磁束が飽和する高磁界においては、磁性線材及びアルミ
被覆層に流れる渦電流により逆に発熱量が増大する。従
って飽和磁束密度が高く角型比の高い磁性材料を磁性線
材に使用すれば、アルミ材を被覆しても低磁界での発熱
量を高くできる。
In the first aspect of the invention, the aluminum material covering the magnetic wire material prevents electrolytic corrosion due to the potential difference with the overhead wire (aluminum conductor). When the magnetic wire is coated with an aluminum material, in a low magnetic field in which the magnetic flux is not saturated, the magnetic flux of the magnetic wire is shielded by the eddy current that tries to cancel the external magnetic field flowing in the aluminum coating layer, and the amount of heat generation is reduced.
In a high magnetic field in which the magnetic flux is saturated, the amount of heat generated conversely increases due to the eddy current flowing in the magnetic wire and the aluminum coating layer. Therefore, if a magnetic material having a high saturation magnetic flux density and a high squareness ratio is used for the magnetic wire, the amount of heat generated in a low magnetic field can be increased even when the aluminum material is coated.

【0008】請求項1の発明において、アルミ材には、
純アルミ又はアルミ合金が適用される。磁性線材にアル
ミ材を被覆するには、溶融浸漬法、電気めっき法、アル
ミ管を磁性線材に被せ引抜加工するアルミ管被着法等任
意の方法が用いられる。アルミ材の被覆厚さは、10μm
未満では十分な防食効果が得られず、60μmを超えると
磁性線材にFe−40〜60wt%Ni合金を用いたときに、
その渦電流発熱量が低下する。又アルミ材を溶融浸漬法
で60μmを超えて被覆するのは困難である。又電気めっ
き法はめっき厚さが60μmを超えると、めっき表面が荒
れ、前述のアルミ被覆による発熱改善効果が減少する。
従って表面研磨が必要となりコスト高になる。このよう
なことから、アルミ材の被覆厚さは10〜60μmが好まし
い。
In the invention of claim 1, the aluminum material is
Pure aluminum or aluminum alloy is applied. In order to coat the magnetic wire with the aluminum material, any method such as a melt dipping method, an electroplating method, or an aluminum tube adhering method in which the magnetic wire is covered with an aluminum tube and drawn is used. Aluminum coating thickness is 10 μm
If it is less than 60 μm, a sufficient anticorrosion effect cannot be obtained, and if it exceeds 60 μm, when Fe-40 to 60 wt% Ni alloy is used for the magnetic wire,
The amount of generated eddy current is reduced. Further, it is difficult to coat an aluminum material with a thickness of more than 60 μm by the melt dipping method. In the electroplating method, when the plating thickness exceeds 60 μm, the plating surface becomes rough, and the effect of improving heat generation by the aluminum coating is reduced.
Therefore, surface polishing becomes necessary and the cost becomes high. Therefore, the coating thickness of the aluminum material is preferably 10 to 60 μm.

【0009】請求項1の発明において、螺旋状に巻付け
られた磁性線材の間隙に巻付けられるアルミ線材は、前
記アルミ被覆磁性線材の間隔を一定に保持するスペーサ
ーとしての役目を担い、架空電線の金車通過時に磁性線
材のずれを防止するもので、その形状は断面円形、角形
等任意である。このアルミ線材は磁性線材のフィン冷却
効果を邪魔しないように、アルミ材被覆磁性線材を前記
アルミ線材巻付け体から突出させる。こうすることによ
り、許容最大通電時の磁性線材の発熱は、自らのフィン
冷却効果により除去され、磁性線材を巻付けない架空電
線の温度以上には上昇しない。このスペーサー用アルミ
線材は、磁性線材と並べて一緒に架空電線上に巻付けら
れる。
In the invention of claim 1, the aluminum wire wound around the gap between the spirally wound magnetic wires plays a role as a spacer for keeping the space between the aluminum-coated magnetic wires constant, and the aerial wire is used. The magnetic wire is prevented from being displaced when passing through the metal wheel, and its shape is arbitrary such as circular or rectangular in cross section. The aluminum wire rod projects the aluminum wire-covered magnetic wire rod from the aluminum wire rod winding body so as not to interfere with the fin cooling effect of the magnetic wire rod. By doing so, the heat generation of the magnetic wire at the time of the maximum allowable energization is removed by the fin cooling effect of itself, and does not rise above the temperature of the overhead wire on which the magnetic wire is not wound. The aluminum wire for the spacer is lined up with the magnetic wire and wound together on the overhead wire.

【0010】請求項2の発明は、アルミ架空電線の最外
層に、磁性線材が螺旋状に巻付けられた融雪電線におい
て、磁性線材が、Niを40〜60wt%含有し残部Feから
なる合金磁性線材であり、前記磁性線材に亜鉛材が10〜
60μmの厚さ被覆されており、前記螺旋状に巻付けられ
たアルミ材被覆磁性線材の間隙に、アルミ線材が、前記
アルミ材被覆磁性線材の間隔を一定に保持するスペーサ
ーとして巻付けられており、前記アルミ材被覆磁性線材
が、前記アルミ線材巻付け体から突出していることを特
徴とする融雪電線である。
According to a second aspect of the present invention, in a snow-melting electric wire in which a magnetic wire is spirally wound around the outermost layer of an overhead aluminum wire, the magnetic wire contains an alloy magnetic containing 40 to 60 wt% of Ni and the balance Fe. It is a wire rod, and the magnetic wire rod contains 10 to 10 zinc.
It is coated with a thickness of 60 μm, and the aluminum wire is wound in the gap between the spirally wound aluminum-coated magnetic wires as a spacer that keeps the gap between the aluminum-coated magnetic wires constant. The aluminum wire-covered magnetic wire rod projects from the aluminum wire rod winding body.

【0011】請求項1及び請求項2の発明の融雪電線に
巻付けられる磁性線材は、Niを40〜60wt%含有するF
e−Ni系合金である。この合金は、前述の通り、低磁
界における飽和磁束密度が14,000G以上と高く、又透磁
率も比較的高い。従って融雪電線用磁性線材として有用
である。しかし、本発明者等は、FeにNiを3〜78wt
%含有させた合金は、磁歪が正となり、この磁性線材に
引張応力を残留させると磁気特性が改善され、発熱量が
向上することを見出し、更に研究を重ねて、融雪電線用
としてのFe−Ni系磁性線材の特性改善に成功した。
The magnetic wire wound around the snow-melting electric wire according to the invention of claim 1 and claim 2 contains F containing 40 to 60 wt% of Ni.
It is an e-Ni alloy. As described above, this alloy has a high saturation magnetic flux density of 14,000 G or more in a low magnetic field and a relatively high magnetic permeability. Therefore, it is useful as a magnetic wire for a snow melting wire. However, the present inventors have found that Ni is added to Fe in an amount of 3 to 78 wt.
% Alloy has a positive magnetostriction, and when tensile stress is left in this magnetic wire, magnetic properties are improved and the amount of heat generated is found to be improved. We have succeeded in improving the characteristics of the Ni-based magnetic wire.

【0012】即ち、請求項3の発明は、アルミ架空電線
の最外層に、磁性線材が螺旋状に巻付けられた融雪電線
において、磁性線材が、Niを3〜28wt%又は35〜65wt
%、Coを0〜10wt%未満、Alを0〜9wt%、Siを
0〜7.5 wt%、Vを0〜4wt%、Crを0〜9wt%含有
し残部Feからなる合金、又はNiを3〜65wt%、Co
を10wt%〜65wt%、Alを0〜9wt%、Siを0〜7.5
wt%、Vを0〜4wt%、Crを0〜9wt%含有し残部F
eからなる合金のいずれかからなり、前記磁性線材の表
面に10〜120 μm厚さのAl、Al合金、Zn、又はZ
n合金のいずれかの金属が被覆されており、前記金属被
覆磁性線材に、送電中引張応力が残留するように巻付け
られていることを特徴とする融雪電線である。
That is, according to the invention of claim 3, in a snow-melting electric wire in which a magnetic wire is spirally wound around the outermost layer of an aluminum overhead wire, the magnetic wire is 3 to 28 wt% of Ni or 35 to 65 wt%.
%, Co 0 to less than 10 wt%, Al 0 to 9 wt%, Si 0 to 7.5 wt%, V 0 to 4 wt%, Cr 0 to 9 wt% and balance Fe, or Ni 3 ~ 65wt%, Co
10 wt% to 65 wt%, Al 0 to 9 wt%, Si 0 to 7.5
wt%, 0-4 wt% V, 0-9 wt% Cr, balance F
which is made of any one of the alloys consisting of e and has a thickness of 10 to 120 μm on the surface of the magnetic wire, Al, Al alloy, Zn, or Z.
It is a snow-melting electric wire characterized in that it is coated with any one of n alloys and is wound around the metal-coated magnetic wire so that tensile stress remains during power transmission.

【0013】請求項3の発明では、Niを3〜28wt%又
は35〜65wt%、Coを10wt%未満、Alを0〜9wt%、
Siを0〜7.5 wt%、Vを0〜4wt%、Crを0〜9wt
%含有し残部Feからなる合金、又はNiを3〜60wt
%、Coを10〜65wt%、Alを0〜9wt%、Siを0〜
7.5 wt%、Vを0〜4wt%、Crを0〜9wt%含有し残
部Feからなる合金を磁性線材に用いる。
According to the third aspect of the present invention, Ni is 3 to 28 wt% or 35 to 65 wt%, Co is less than 10 wt%, Al is 0 to 9 wt%,
0 to 7.5 wt% Si, 0 to 4 wt% V, 0 to 9 wt% Cr
% Alloy with the balance Fe, or 3-60 wt% Ni
%, Co 10 to 65 wt%, Al 0 to 9 wt%, Si 0 to
An alloy containing 7.5 wt%, 0 to 4 wt% V, 0 to 9 wt% Cr and the balance Fe is used for the magnetic wire.

【0014】この合金元素の限定理由は、先ずNiとC
oはFe系材料の磁気特性を高める合金元素であり、前
者の合金では、Coが10wt%未満の為、Niが3wt%
未満では、十分な正磁歪が得られず磁性線材に引張応力
を残留させても磁気特性が改善されない。28wt%を超え
35wt%未満の範囲でも、又65wt%を超えても、磁性線の
磁束密度が低下して融雪に必要な発熱量が得られない。
又後者の合金では、Coが10〜65wt%と多量に含有さ
れる為、Niの含有量が28wt%を超え35wt%未満の範囲
でも融雪に必要な発熱量が得られる磁束密度が得られ、
Niは3〜65wt%の広い組成範囲で良好な磁気特性が達
成される。次にAlとSiは磁束密度を高める作用を有
する。その含有量がそれぞれ 9wt%、 7.5wt%を超える
と磁束密度が却って減少する。又Vは冷間加工性を改善
する。その含有量が4wt%を超えると硬くなりすぎて、
逆に加工性が悪くなる。又Crは磁性線材の耐食性を改
善する。その含有量が9wt%を超えると磁性線材の磁束
密度が低下して融雪に必要な発熱量が得られなくなる。
The reason for limiting the alloying elements is as follows.
o is an alloying element that enhances the magnetic properties of the Fe-based material. In the former alloy, Co is less than 10 wt%, so Ni is 3 wt%.
When it is less than the above value, sufficient positive magnetostriction cannot be obtained, and even if tensile stress remains in the magnetic wire, the magnetic characteristics are not improved. Over 28wt%
If the amount is less than 35 wt% or exceeds 65 wt%, the magnetic flux density of the magnetic wire is reduced and the amount of heat required for snow melting cannot be obtained.
Further, in the latter alloy, since Co is contained in a large amount of 10 to 65 wt%, a magnetic flux density capable of obtaining a calorific value necessary for snow melting can be obtained even when the Ni content exceeds 28 wt% and less than 35 wt%.
Ni has good magnetic properties in a wide composition range of 3 to 65 wt%. Next, Al and Si have the effect of increasing the magnetic flux density. When their contents exceed 9 wt% and 7.5 wt%, respectively, the magnetic flux density decreases rather. V also improves cold workability. If the content exceeds 4 wt%, it becomes too hard,
On the contrary, the workability becomes worse. Further, Cr improves the corrosion resistance of the magnetic wire. If the content exceeds 9 wt%, the magnetic flux density of the magnetic wire decreases and it becomes impossible to obtain the amount of heat required for snow melting.

【0015】請求項3の発明の融雪電線は、前記合金組
成の磁性線材にアルミ材を被覆し、このアルミ被覆磁性
線材に引張応力が残留するようにアルミ架空電線に巻付
けた融雪電線である。アルミ材を被覆するのは、アルミ
架空電線との間で電食を起こさないようにする為であ
る。又磁性線材に引張応力を残留させるのは、本発明の
磁性線材の磁歪は正であり、磁歪が正の磁性線材に引張
応力が残留していると、磁気特性が改善され発熱量が向
上する為である。送電中、磁性線材に引張応力を残留さ
せるには、磁性線材を架空電線に室温以下の温度で溶
接、又はろう付け、又は機械的固定により行うこともで
きるが、張力を掛けながら磁性線材をアルミ架空電線に
巻付け固定する方法が発熱量を大幅に改善できる。溶
接、ろう付け、又は機械的固定は磁性線材の両端でのみ
行うようにしても良い。磁性線材を架空電線に固定する
ことにより、金車通過時の磁性線材のずれを、スペーサ
ーを用いずに防止できる。
A snow melting electric wire according to a third aspect of the present invention is a snow melting electric wire in which a magnetic wire having the above alloy composition is coated with an aluminum material, and the aluminum coated magnetic wire is wound around an aluminum overhead wire so that tensile stress remains. . The aluminum material is coated in order to prevent electrolytic corrosion from occurring with the aluminum overhead wire. Further, the tensile stress is left in the magnetic wire because the magnetostriction of the magnetic wire of the present invention is positive, and when the tensile stress remains in the magnetic wire having a positive magnetostriction, the magnetic characteristics are improved and the heat generation amount is improved. Because of that. To retain tensile stress in the magnetic wire during power transmission, the magnetic wire can be welded to the overhead wire at a temperature below room temperature, brazed, or mechanically fixed. The method of winding and fixing it on the overhead wire can greatly improve the heat generation amount. Welding, brazing, or mechanical fixing may be performed only at both ends of the magnetic wire. By fixing the magnetic wire to the overhead wire, it is possible to prevent the magnetic wire from slipping when passing through the metal train without using a spacer.

【0016】請求項4の発明は、螺旋状に巻付けた磁性
線材の間隙にアルミ線条体をスペーサーとして、前記金
属被覆磁性線材の高さ未満に巻付けたことを特徴とする
請求項3記載の発明の融雪電線である。融雪電線の金車
通過時の磁性線材のずれがなく、又磁性線材がアルミ線
材から突出している為、磁性線材のフィン冷却効果によ
り大電流送電時にも過度の温度上昇が防止される。
The invention according to claim 4 is characterized in that the aluminum wire is used as a spacer in the gap between the magnetic wires wound in a spiral shape, and the aluminum wire is wound below the height of the metal-coated magnetic wire. It is a snow melting electric wire of the invention of description. Since there is no deviation of the magnetic wire when the snow-melting wire passes through the gold car and the magnetic wire projects from the aluminum wire, the fin cooling effect of the magnetic wire prevents an excessive temperature rise even when transmitting a large current.

【0017】請求項5の発明は、螺旋状に巻付けた磁性
線材の間隙にアルミ線条体をスペーサーとして、前記金
属被覆磁性線材の高さの半分以下の高さに巻付けたこと
を特徴とする請求項1乃至請求項4記載の融雪電線であ
る。アルミ材被覆磁性線材がその径の半分以上をスペー
サー(アルミ線材巻付け体)から突出しているので、フ
ィン冷却効果が大きくなり、最高使用温度での許容電流
を大きくできる。
According to a fifth aspect of the present invention, the aluminum wire is used as a spacer in the gap between the magnetic wires wound in a spiral shape, and the aluminum wire is wound at a height not more than half the height of the metal-coated magnetic wire. The snow melting electric wire according to any one of claims 1 to 4. Since more than half of the diameter of the aluminum-coated magnetic wire protrudes from the spacer (aluminum wire winding body), the fin cooling effect is increased and the allowable current at the maximum operating temperature can be increased.

【0018】請求項6の発明は、磁性線材の断面が長方
形、正方形、又は扇形であることを特徴とする請求項1
乃至請求項5記載の融雪電線である。磁性線材の断面形
状を長方形、正方形または扇形とすることにより、断面
円形の電線より、架空電線との接触面積が大きくなり、
その融雪効果を高めることができる。
The invention of claim 6 is characterized in that the cross section of the magnetic wire is rectangular, square, or fan-shaped.
To the snow melting electric wire according to claim 5. By making the cross-sectional shape of the magnetic wire rod rectangular, square, or fan-shaped, the contact area with the overhead wire becomes larger than that of an electric wire with a circular cross section,
The snow melting effect can be enhanced.

【0019】請求項7の発明は、架空電線の所要部分の
みに磁性線材、又は磁性線材とスペーサーを巻付けたこ
とを特徴とする請求項1及至請求項6記載の融雪電線で
ある。融雪対策が必要な個所だけに磁性線材を巻くの
で、エネルギー損失ばかりでなく、布設コストも低減で
きる。
The invention of claim 7 is the snow melting wire according to any one of claims 1 to 6, characterized in that the magnetic wire or the magnetic wire and the spacer are wound around only a required portion of the overhead wire. Since the magnetic wire is wound only at the places where snow melting measures are required, not only energy loss but also installation cost can be reduced.

【0020】[0020]

【作用】請求項1の発明では、アルミ架空電線の最外層
に、アルミ被覆した磁性線材が螺旋状に巻付けられ、前
記螺旋状に巻付けられた磁性線材の間隙に、アルミ線材
が、前記アルミ被覆磁性線材の間隙を一定に保持するス
ペーサーとして巻付けられているので、架線の際の金車
通過時に、前記磁性線材がずれることがなく所定の良好
な融雪効果が得られる。又前記アルミ被覆磁性線材は、
その径の半分以上を前記スペーサー用のアルミ線材巻付
体から突出させているので、自らのフィン冷却効果によ
り冷却されて、渦電流発熱による温度上昇は阻止され
る。このように磁性線材はフィン冷却効果により冷却さ
れるので、磁性線材に、キュリー温度が高いものを使用
することができ、従って磁性線材は、低磁界での磁束密
度の高い材料を選択できる。フィン冷却効果は、磁性線
材をスペーサー用アルミ線材巻付体から少しでも突出さ
せることにより得ることができる。又磁性線材にアルミ
材が被覆されているので、磁性線が架空電線との間で電
食を起こすようなことがない。請求項2の発明は、磁性
線材に亜鉛材を被覆するもので、アルミ材を被覆する場
合と同様の電食防止効果が得られる。亜鉛材には純亜鉛
の他、亜鉛合金も適用できる。
According to the invention of claim 1, the aluminum-coated magnetic wire is spirally wound around the outermost layer of the aluminum overhead wire, and the aluminum wire is inserted in the gap between the spirally wound magnetic wires. Since the aluminum-coated magnetic wire is wound as a spacer that keeps the gap constant, the magnetic wire does not shift when passing through the gold wheel during an overhead wire, and a predetermined good snow melting effect can be obtained. The aluminum coated magnetic wire is
Since more than half of the diameter is projected from the aluminum wire winding body for the spacer, it is cooled by its own fin cooling effect, and the temperature rise due to eddy current heat generation is prevented. Since the magnetic wire is cooled by the fin cooling effect in this manner, a magnetic wire having a high Curie temperature can be used, and therefore, a magnetic wire having a high magnetic flux density in a low magnetic field can be selected. The fin cooling effect can be obtained by projecting the magnetic wire rod from the aluminum wire rod wound body for the spacer as much as possible. Further, since the magnetic wire is covered with the aluminum material, the magnetic wire does not cause electrolytic corrosion between the magnetic wire and the overhead wire. According to the second aspect of the invention, the magnetic wire is coated with the zinc material, and the same electrolytic corrosion preventing effect as in the case of coating the aluminum material can be obtained. As the zinc material, not only pure zinc but also zinc alloy can be applied.

【0021】又請求項3の発明で用いる磁性線材は正磁
歪であり、この磁性線材をアルミ架空電線の最外層に、
送電中引張応力が残留するように螺旋状に巻付けるの
で、磁性線材の磁気特性が向上して融雪効果が改善され
る。磁性線材にアルミ材が被覆されているので架空電線
との電食が防止される。送電中磁性線材に引張応力を残
留させる為に磁性線材を架空電線に固定すると、金車通
過時の磁性線材のずれが防止される。金車通過時の磁性
線材のずれは磁性線材間にスペーサーを介在させること
によっても防止される。磁性線材をスペーサーより突出
させることにより、磁性線材にフィン冷却効果を持たせ
ることができる。磁性線材の高さの半分以上をスペーサ
ーから突出させることにより磁性線材のフィン冷却効果
を更に高めることができる。
The magnetic wire used in the invention of claim 3 is positive magnetostrictive, and this magnetic wire is used as the outermost layer of the aluminum overhead wire.
Since it is wound in a spiral shape so that tensile stress remains during power transmission, the magnetic characteristics of the magnetic wire are improved and the snow melting effect is improved. Since the magnetic wire is covered with the aluminum material, electrolytic corrosion with the overhead wire is prevented. If the magnetic wire is fixed to the overhead wire in order to retain tensile stress in the magnetic wire during power transmission, the magnetic wire is prevented from being displaced when passing through the railroad car. The displacement of the magnetic wire rods when passing through the gold wheel is also prevented by interposing a spacer between the magnetic wire rods. By protruding the magnetic wire from the spacer, the magnetic wire can have a fin cooling effect. The fin cooling effect of the magnetic wire can be further enhanced by projecting more than half of the height of the magnetic wire from the spacer.

【0022】請求項1乃至請求項3の融雪電線に共通す
ることとして、磁性線材の断面を長方形、正方形、又は
扇形にすることにより、磁性線材を架空電線に密着させ
ることができる。又融雪対策が必要な個所だけに磁性線
材を巻くことにより、エネルギー損失及び布設コストの
低減が計れる。
As common to the snow melting electric wires of the first to third aspects, by making the cross section of the magnetic wire rod rectangular, square, or fan-shaped, the magnetic wire rod can be closely attached to the overhead wire. Also, by winding the magnetic wire only at the places where snow melting measures are required, energy loss and installation cost can be reduced.

【0023】[0023]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)架空電線に、磁性線材を、前記磁性線材間
にアルミ線材をスペーサーとして介在させて巻付けて、
融雪電線を製造した。架空電線には、アルミを0.45mm厚
さ被覆した 4.4mmφのインバー線の7本撚線に、断面扇
形の特別耐熱アルミ合金線を3層撚合わせたXTACI
R650mm2(インバー線断面積106mm2、特別耐熱アルミ合
金線の断面積653.4mm2、外径33.150mmφ)の送電線を用
いた。この送電線は、送電線1m当たり1Kgの磁性線材
を巻付けても荷重に耐えられる。前記送電線に巻付ける
磁性線材には、表1に示す、純鉄、Fe−Ni系合金7
種、Fe−Ni−Cr−Si系合金1種を用いた。前記
9種の磁性線材に純アルミ、アルミ合金、又は亜鉛を、
溶融浸漬法、電気めっき法、アルミ管被着法のいずれか
の方法により被覆した。アルミ管被着法は10mmφの磁性
線材にアルミパイプを被覆し、これを磁性線材の径が
2.6mmφになるよう伸線して行った。このアルミ材等を
被覆した磁性線材を、前記のインバー補強送電線にスペ
ーサーを介して螺旋状に巻付けた。スペーサーには、特
別耐熱アルミ製の条又は線を用いた。融雪電線のスペー
サーを巻付けたアルミ導体部の外径は約34.3mmφであっ
た。
EXAMPLES The present invention will be described in detail below with reference to examples. (Example 1) A magnetic wire is wound around an overhead wire with an aluminum wire as a spacer interposed between the magnetic wires,
A snow melting wire was manufactured. For overhead cables, XTACI is made by twisting three layers of special heat-resistant aluminum alloy wire with a fan-shaped cross section into seven twisted wires of 4.4 mmφ Invar wire with 0.45 mm thick aluminum coating.
R650mm 2 (Invar wire cross-sectional area 106mm 2 , special heat-resistant aluminum alloy wire cross-sectional area 653.4mm 2 , outer diameter 33.150mmφ) was used. This power transmission line can withstand the load even if 1 Kg of magnetic wire is wound around 1 m of the transmission line. The magnetic wire to be wound around the power transmission line includes pure iron and Fe-Ni alloy 7 shown in Table 1.
As a seed, a Fe-Ni-Cr-Si alloy type 1 was used. Pure aluminum, aluminum alloy, or zinc to the 9 types of magnetic wire,
The coating was performed by any one of the melt dipping method, the electroplating method, and the aluminum tube coating method. In the aluminum pipe deposition method, a magnetic wire of 10 mmφ is coated with an aluminum pipe, and the diameter of the magnetic wire is
The wire was drawn so as to have a diameter of 2.6 mm. The magnetic wire coated with this aluminum material or the like was spirally wound around the above-mentioned Invar-reinforced transmission line via a spacer. As the spacer, a special heat-resistant aluminum strip or wire was used. The outer diameter of the aluminum conductor part around which the spacer of the snow melting wire was wound was about 34.3 mmφ.

【0024】得られた融雪電線の実施例を図を参照して
具体的に説明する。図1イ、ロは本発明の融雪電線の実
施例を示すそれぞれ横断面図及び側面図である。Al層
1を被覆したインバー線2のインバー撚線3の外周に、
断面扇形の特別耐熱アルミ合金線4を3層に撚合わせて
架空電線5を構成し、この架空電線5の外周に磁性線材
6とスペーサー7が、1対5の本数比で撚合わされてい
る。磁性線材6はスペーサー7より突出して巻付けられ
ておりフィン冷却効果が維持されている。磁性線材6に
は電食防止の為Al材層8が被覆されている。
An embodiment of the obtained snow melting wire will be specifically described with reference to the drawings. 1A and 1B are a lateral sectional view and a side view, respectively, showing an embodiment of the snow melting electric wire of the present invention. On the outer circumference of the Invar stranded wire 3 of the Invar wire 2 coated with the Al layer 1,
A special heat-resistant aluminum alloy wire 4 having a fan-shaped cross section is twisted into three layers to form an overhead wire 5, and a magnetic wire 6 and a spacer 7 are twisted around the outer circumference of the overhead wire 5 at a ratio of 1 to 5. The magnetic wire 6 is wound so as to project from the spacer 7 and the fin cooling effect is maintained. The magnetic wire 6 is covered with an Al material layer 8 to prevent electrolytic corrosion.

【0025】次に、前記磁性線材の製造方法をFe−N
i−Cr−Si系合金に例をとって説明する。先ず、純
度99.9%の電解鉄、同99.9%の電解ニッケル、同99%の
電解クロム、同99.999%のシリコンを原料に用い、各々
を所定量配合して真空溶解し鋳造してインゴットとなし
た。次にこのインゴットを 950℃48時間ソーキングした
のち、熱間圧延、引抜加工、伸線加工を順次施して 2.6
mmφの線材となした。次にこれを水素中で1050℃3時間
焼鈍し炉冷した。他の材料についても同様にして 2.0、
2.6、又は 4.0mmφの線材に加工した。これらの磁性線
材の磁気特性を測定した。磁気特性のうち、飽和磁束密
度とキュリー温度は 2.6mmφ×5mmの試料について、振
動試料型磁力計を用い10 Oe の磁界強度下で測定した。
磁束密度は、0.65mmφのエナメル線を 327ターン巻付け
た励磁コイルの中心に、25ターンの磁束検出用コイルを
配置し、この検出用コイルの中に 2.6mmφ×1000mmの磁
性線材を入れ、B−Hカーブトレーサーで測定した。磁
界強度は40、20、10 Oe に変えた。結果を、0℃におけ
る比抵抗を併記して表1に示す。
Next, the manufacturing method of the magnetic wire is described in Fe-N.
The i-Cr-Si alloy will be described as an example. First, electrolytic iron having a purity of 99.9%, electrolytic nickel having a purity of 99.9%, electrolytic chromium having a purity of 99%, and silicon having a purity of 99.999% were used as raw materials, and each of them was mixed in a predetermined amount, vacuum-melted, and cast into an ingot. . Next, this ingot was soaked at 950 ° C for 48 hours, and then hot-rolled, drawn and wire-drawn to order 2.6.
Made a wire of mmφ. Next, this was annealed in hydrogen at 1050 ° C. for 3 hours and cooled in a furnace. 2.0 for other materials as well,
Processed into 2.6 or 4.0mmφ wire rod. The magnetic properties of these magnetic wires were measured. Among the magnetic characteristics, the saturation magnetic flux density and the Curie temperature were measured for a sample of 2.6 mmφ × 5 mm under a magnetic field intensity of 10 Oe using a vibrating sample magnetometer.
As for the magnetic flux density, a coil for magnetic flux detection of 25 turns is placed at the center of the excitation coil wound with 327 turns of enamel wire of 0.65 mmφ, and a 2.6 mmφ × 1000 mm magnetic wire is put in this detection coil. -Measured by H curve tracer. The magnetic field strength was changed to 40, 20 and 10 Oe. The results are shown in Table 1 together with the specific resistance at 0 ° C.

【0026】[0026]

【表1】 [Table 1]

【0027】表1から明らかなように、本発明の融雪電
線で使用した磁性線材用合金a〜eの10 Oe における磁
束密度B10は比較例品(No.f、g、h、i)と比べても
高く、また本発明の磁性線材用合金の20 Oe 、40 Oe に
おける磁束密度B20、B40と比べても差が小さく磁束密
度の飽和特性が良いことが分かる。本発明のB10は従来
融雪電線で使用されている合金hの磁束密度と比較する
と2倍近く高い。
As is apparent from Table 1, the magnetic flux densities B 10 at 10 Oe of the magnetic wire alloys a to e used in the snow melting electric wire of the present invention are the same as those of the comparative example products (No. f, g, h, i). It can be seen that the magnetic flux density is higher than that of the magnetic wire rod of the present invention, and the magnetic flux density B 20 and B 40 at 20 Oe and 40 Oe of the present invention have a small difference and good saturation characteristics of the magnetic flux density. The B 10 of the present invention is nearly twice as high as the magnetic flux density of the alloy h used in the conventional snow melting wire.

【0028】前記磁性線材を巻付けた融雪電線につい
て、塩水噴霧試験を行って耐食性を調査した。又融雪電
線に91A通電時(電線表面磁界10 Oe)の送電線1mあた
りの発熱量、及び許容最大電流の2300A通電時の電線温
度を測定した。結果を表2に示す。
The snow-melting wire wound with the magnetic wire was subjected to a salt spray test to investigate the corrosion resistance. Also, the amount of heat generated per 1 m of the power transmission line when the snow melting wire was energized with 91 A (electric wire surface magnetic field was 10 Oe) and the wire temperature when energized with the maximum allowable current of 2300 A were measured. The results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】表2より明らかなように、本発明例品(N
o.1〜13) の耐食性は、磁性線材のアルミ被覆厚さを20
μm以上にすると3000時間の塩水噴霧試験に耐えられる
ようになる。10μmでも2000時間の塩水噴霧に耐えら
れ、実用上問題ない。Al−20wt%Mn合金を電気めっ
きした磁性線材を使用したもの(No.4)も純アルミを被覆
したときと同様の高い耐食性を示した。
As is clear from Table 2, the product of the present invention (N
Corrosion resistance of o.1 to 13) is 20% of the aluminum coating thickness of the magnetic wire.
If it is more than μm, it can withstand the salt spray test for 3000 hours. Even with 10 μm, it can withstand salt water spray for 2000 hours, causing no practical problem. The one using a magnetic wire rod electroplated with an Al-20 wt% Mn alloy (No. 4) also showed the same high corrosion resistance as when coated with pure aluminum.

【0031】本発明例品 (No.1〜14) の91A通電時の発
熱量は、比較例品(No.21〜23)に較べてかなり高い。本
発明の融雪電線で使用した磁性合金a〜eの飽和磁束密
度は純鉄iより5000G以上低いにも関わらず、本発明の
融雪電線(No.1 〜14)の発熱量が、純鉄の磁性線材を用
いた融雪電線(No.24)より高いのは、B10(10 Oe にお
ける磁束密度) が高い為である。Niの含有量が50wt%
のとき、91A通電時の発熱量が最大になる。Niが40wt
%又は60wt%のもの(No.1,9)の発熱量は幾分低下した
が、部分融雪に必要な発熱量は得られた。尚、毎時5mm
の降雪量(降水量換算値)における完全融雪に必要な発
熱量は15.9w/m、部分融雪に必要な発熱量は12.5w/mで
ある。
The calorific value of the example products of the present invention (Nos. 1 to 14) when energized at 91 A is considerably higher than that of the comparative example products (Nos. 21 to 23). Although the magnetic fluxes a through e of the magnetic alloys a to e used in the snow melting wire of the present invention are lower than pure iron i by 5000 G or more, the calorific value of the snow melting wires of the present invention (No. 1 to 14) is that of pure iron. It is higher than the snow melting wire (No. 24) that uses magnetic wire because of its high B 10 (magnetic flux density at 10 Oe). Ni content is 50wt%
At this time, the amount of heat generated at the time of energizing 91A becomes maximum. Ni is 40wt
% Or 60 wt% (No. 1, 9) had a slightly lower calorific value, but the calorific value necessary for partial snow melting was obtained. 5mm / hour
The calorific value required for complete snow melting is 15.9 w / m and the calorific value required for partial snow melting is 12.5 w / m.

【0032】本発明例品の2300A通電時の電線温度は、
磁性線材を巻付けないものの温度(No.25, 230℃) を下
回った。本発明で用いた磁性線材は、いずれもNi含有
量が多くキュ−リー温度が高いものであり、2300A通電
時には、かなり発熱するのであるが、自らのフィン冷却
効果により発熱が抑えられた。このことから、キュリー
温度の低い磁性線材を使用しなくても、磁性線材にフィ
ン冷却効果を持たせることにより、最大許容電流通電下
で、電線温度の上昇を十分抑えられることが判る。本発
明例品のうち、No.7は電線温度が 220℃と比較的上昇し
た。これはスペーサーの条の厚さが1.0 mmφと厚かった
為磁性線材のフィン冷却効果がやや低下した為である。
No.12 はスペーサーに 1.0mmφの線材を用いたもので、
やはり 218℃と比較的高温になった。線材(No.12) の方
が隙間が多い分、熱が逃げ易く条材(No.7)より温度が若
干低下した。
The electric wire temperature of the example product of the present invention when energized at 2300 A is
It was below the temperature (No.25, 230 ℃) of the product without winding the magnetic wire. The magnetic wire rods used in the present invention each have a high Ni content and a high Curie temperature, and they generate a considerable amount of heat when energized at 2300 A, but the heat generation was suppressed by their own fin cooling effect. From this, it can be seen that even if the magnetic wire having a low Curie temperature is not used, the magnetic wire has a fin cooling effect, so that the temperature rise of the wire can be sufficiently suppressed under the maximum allowable current. Among the example products of the present invention, the wire temperature of No. 7 was 220 ° C, which was relatively high. This is because the thickness of the spacer strip was as thick as 1.0 mmφ, and the fin cooling effect of the magnetic wire rod was slightly reduced.
No. 12 uses a 1.0 mmφ wire rod for the spacer.
After all, it became a relatively high temperature of 218 ℃. Since the wire rod (No. 12) had more gaps, the heat was more likely to escape, and the temperature was slightly lower than that of the strip (No. 7).

【0033】比較例品の耐食性は、塩水噴霧2000時間未
満で、めっきなしのもの(No.16)と、アルミめっきが5
μmと薄いもの(No.17)に腐食が見られた。
Corrosion resistance of the comparative example is less than 2000 hours of salt spray, no plating (No. 16) and aluminum plating 5
Corrosion was observed on the thin one (μm) (No. 17).

【0034】比較例品の91A通電時の発熱量は、No.15,
18,20 〜24,25 が低かった。これは表1より明らかなよ
うに、用いた磁性合金の低磁界下の磁束密度B10が低い
為である。No.15 はNi含有量が36%と少ない磁性合金
aを用いたもので、この合金aはB40、B20に比べてB
10が急激に低下し、91A通電時の発熱量は本発明の融雪
電線(No.1 〜13)の半分程度である。Ni含有量が60%
を越える磁性合金bを用いたNo.20 の発熱量は、部分的
に融雪効果が得られる発熱量12.5w/m 未満で融雪電線用
には不適当である。
The heat generation amount of the comparative example product when energized at 91 A is
18,20 to 24,25 was low. This is because, as is clear from Table 1, the magnetic flux density B 10 of the magnetic alloy used under a low magnetic field is low. No. 15 uses a magnetic alloy a having a small Ni content of 36%. This alloy a has a B content higher than that of B 40 and B 20.
The value of 10 drastically decreases, and the amount of heat generated when electricity is applied to 91 A is about half of that of the snow melting electric wire (No. 1 to 13) of the present invention. Ni content is 60%
The heat generation amount of No. 20 using the magnetic alloy b exceeding 10 is less than 12.5w / m, which is a heat generation amount to partially obtain the snow melting effect, and is not suitable for a snow melting electric wire.

【0035】比較例品の2300A通電時の電線温度は、 N
o.19,24 が、磁性線材を巻付けないNo.25 の電線温度を
上回った。No.19 はスペーサーの厚さが磁性線材の直径
の半分以上で、磁性線材のフィン冷却効果が十分に得ら
れず 232℃に上昇した。No.2,4はキュリー温度の高い純
鉄を使用したもので、許容電流での温度は磁性線材を巻
付けない電線(No.25) の温度上昇より高くなる。No.8
は、Niの含有量が60%を超えてキュリー温度が 600℃
以上になったものであるが、温度上昇はあまり見られな
い。これは許容電流での磁性線材発熱量より磁性線材の
フィン冷却効果による放熱の方が大きくなる為である。
The electric wire temperature of the comparative example product at the time of energizing 2300 A is N
o.19,24 exceeded the wire temperature of No.25, which does not wind the magnetic wire. In No. 19, the spacer thickness was more than half the diameter of the magnetic wire, and the fin cooling effect of the magnetic wire was not sufficiently obtained, and the temperature increased to 232 ° C. Nos. 2 and 4 use pure iron with a high Curie temperature, and the temperature at the permissible current is higher than the temperature rise of the wire (No. 25) without winding the magnetic wire. No.8
Has a Curie temperature of 600 ° C when the Ni content exceeds 60%.
As mentioned above, the temperature does not rise so much. This is because the amount of heat released by the fin cooling effect of the magnetic wire is greater than the amount of heat generated by the magnetic wire at the allowable current.

【0036】次に磁性線材に被覆するアルミ材の被覆厚
さについて説明する。No.21 〜23は、従来の融雪電線に
使用されている比抵抗が 120μΩcmと高い磁性合金hの
線材にアルミを種々の厚さ被覆した融雪電線で、91A通
電時の発熱量はアルミ被覆厚さが 150μmで最大にな
る。他方、比抵抗が32μΩcmと低い Fe-50wt%Ni合金c
の磁性線材にアルミを 5,10,20,60 及び80μm電気めっ
きした磁性線材を巻付けた融雪電線(No.17,5,6,13,18)
の発熱量は20μm(No.6)で最大となり、めっき厚さが80
μmに厚くなると融雪可能な発熱量が得られなくなる。
めっき厚さが厚いと、めっき後研磨を必要とし、コスト
高になる。従って最適めっき厚さは20μm前後である。
Next, the coating thickness of the aluminum material coating the magnetic wire will be described. Nos. 21 to 23 are snow-melting wires in which a wire material of magnetic alloy h with a high specific resistance of 120 μΩcm used in conventional snow-melting wires is coated with aluminum in various thicknesses. Maximum at 150 μm. On the other hand, Fe-50wt% Ni alloy with low specific resistance of 32μΩcm c
Snow wire made by winding magnetic wire of 5,10,20,60 and 80μm electroplated on the magnetic wire of No.17 (No.17,5,6,13,18)
The maximum amount of heat generated is 20 μm (No. 6), and the plating thickness is 80
When the thickness becomes thicker, the calorific value capable of melting snow cannot be obtained.
If the plating thickness is large, polishing is required after plating, resulting in high cost. Therefore, the optimum plating thickness is around 20 μm.

【0037】91A通電時の発熱量に及ぼす磁性線材のア
ルミ被覆方法の影響をNo.3(溶融めっき) とNo.6(電気
めっき) について見てみると前者の方が発熱量が小さ
い。アルミの溶融めっきは磁性線材の磁気特性を低下さ
せるものと考えられる。同じく91A通電時の発熱量に及
ぼす磁性線材の線径の影響を No.10(2.0mmφ), No.6
(2.6mmφ), No.11(4.0mmφ) について見てみると、線径
は大きい程発熱量が増加する傾向が見られる。
Looking at the effects of the aluminum coating method of the magnetic wire on the heat generation amount when the current is applied to 91A, the heat generation amount of the former is smaller than that of No. 3 (hot dipping) and No. 6 (electroplating). It is thought that hot-dip aluminum plating deteriorates the magnetic properties of the magnetic wire. Similarly, the influence of the wire diameter of the magnetic wire on the amount of heat generated when energizing 91A is No. 10 (2.0 mmφ), No. 6
Looking at (2.6 mmφ) and No. 11 (4.0 mmφ), it can be seen that the larger the wire diameter, the greater the amount of heat generation.

【0038】(実施例2)表3に示した合金組成の磁性
線材を下記方法により製造した。純度99.9%の電解鉄、
同99.9%の電解ニッケル、同99.5%のコバルト、同99.9
9 %のアルミ、同99%の電解クロム、同99.999%のシリ
コン、同99.7%のバナジウムを原料に用い、各々を所定
量配合して真空溶解し鋳造してインゴットとなした。次
にこのインゴットを 950℃48時間ソーキングした後、熱
間圧延、引抜加工、伸線加工を順次施して 2.6mmφの線
材となした。次にこれを水素中で1050℃3時間焼鈍し炉
冷した。得られた磁性線材の磁気特性を測定した。磁気
特性のうち、飽和磁束密度とキュリー温度は 2.6mmφ×
5mmの試料について、振動試料型磁力計を用い10kOe の
磁界強度下で測定した。磁束密度は、0.65mmφのエナメ
ル線を 327ターン巻付けた励磁コイルの中心に、25ター
ンの磁束検出用コイルを配置し、この検出用コイルの中
に 2.6mmφ×1000mmの磁性線材を入れ、B−Hカーブト
レーサーで測定した。磁界強度は40、10 Oe に変えた。
結果を、0℃における比抵抗を併記して表3に示す。
Example 2 A magnetic wire having an alloy composition shown in Table 3 was manufactured by the following method. 99.9% pure electrolytic iron,
99.9% electrolytic nickel, 99.5% cobalt, 99.9%
9% aluminum, 99% electrolytic chromium, 99.999% silicon, and 99.7% vanadium were used as raw materials, and each of them was mixed in a predetermined amount, vacuum melted, and cast into an ingot. Next, this ingot was soaked at 950 ° C. for 48 hours, and then hot-rolled, drawn, and wire-drawn were sequentially performed to form a 2.6 mmφ wire rod. Next, this was annealed in hydrogen at 1050 ° C. for 3 hours and cooled in a furnace. The magnetic characteristics of the obtained magnetic wire were measured. Among the magnetic characteristics, the saturation magnetic flux density and the Curie temperature are 2.6 mmφ ×
A 5 mm sample was measured with a vibrating sample magnetometer under a magnetic field strength of 10 kOe. As for the magnetic flux density, a coil for magnetic flux detection of 25 turns is placed at the center of the excitation coil wound with 327 turns of enamel wire of 0.65 mmφ, and a 2.6 mmφ × 1000 mm magnetic wire is put in this detection coil. -Measured by H curve tracer. The magnetic field strength was changed to 40 and 10 Oe.
The results are shown in Table 3 together with the specific resistance at 0 ° C.

【0039】[0039]

【表3】 [Table 3]

【0040】表3から明らかなように、本発明磁性合金
のB10(10 Oe における磁束密度)は高いものも低いも
のもある。合金 No.k、l、m、o、p、tは従来用い
られている合金 No.hよりB10が低い。
As is clear from Table 3, there are high and low B 10 (magnetic flux density at 10 Oe) of the magnetic alloy of the present invention. Alloy Nos. K, l, m, o, p and t have lower B 10 than the conventionally used alloy No. h.

【0041】表3に示した磁性線材を、架空電線に張力
をかけて巻付け固定することにより、磁性線材に引張応
力を残留させて融雪電線を製造した。架空電線には、ア
ルミを被覆した4.4 mmφのインバー線の7本撚線に、断
面扇形の特別耐熱アルミ合金線を3層撚合わせたXTA
CIR650mm2(インバー線断面積106mm2、特別耐熱アル
ミ合金線の断面積653.4mm2、外径33.150mmφ)の送電線
の 4.4mmφインバー線を 5.3mmφと太くし、送電線1m
当たり1Kgの磁性線材を巻付けても荷重に耐えられるよ
うにした。磁性線材間にアルミ線材をスペーサーとして
介在させたものも製造した。磁性線材には、純Alを、
溶融浸漬法、電気めっき法、アルミ管被着法のいずれか
の方法により被覆した。アルミ管被着法は10mmφの磁性
線材にAlパイプを被覆し、これを磁性線材の径が 2.6
mmφになるよう伸線して行った。スペーサーには、特別
耐熱アルミ製の条又は線を用いた。融雪電線のスペーサ
ーを巻付けたアルミ導体部の外径は約34.3mmφであっ
た。
The magnetic wire shown in Table 3 was wound and fixed on an overhead wire by applying tension to the tensile strength of the magnetic wire to produce a snow melting wire. For the overhead wire, XTA is made by twisting 3 layers of special heat-resistant aluminum alloy wire with a fan-shaped cross section on 7 strands of 4.4 mmφ Invar wire coated with aluminum.
4.4mmφ Invar wire of CIR 650mm 2 (Invar wire cross-sectional area 106mm 2 , special heat-resistant aluminum alloy wire cross-sectional area 653.4mm 2 , outer diameter 33.150mmφ) is thickened to 5.3mmφ, and the transmission line 1m
Even if a magnetic wire of 1 kg is wound, it is designed to withstand the load. A product in which an aluminum wire was interposed as a spacer between magnetic wires was also manufactured. Pure Al is used for the magnetic wire.
The coating was performed by any one of the melt dipping method, the electroplating method, and the aluminum tube coating method. In the aluminum tube deposition method, a 10 mmφ magnetic wire is coated with an Al pipe, and the diameter of the magnetic wire is 2.6 mm.
The wire was drawn to have a diameter of mmφ. As the spacer, a special heat-resistant aluminum strip or wire was used. The outer diameter of the aluminum conductor part around which the spacer of the snow melting wire was wound was about 34.3 mmφ.

【0042】得られた融雪電線の形状は、磁性線材を架
空電線に固定してスペーサーを用いないものの、横断面
図及び側面図を図2イ、ロにそれぞれ示す。Al層1を
被覆したインバー線2のインバー撚線3の外周に、断面
扇形の特別耐熱アルミ合金線4を3層に撚合わせて架空
電線5を構成し、この架空電線5の外周に磁性線材6が
巻付けられている。磁性線材6には電食防止の為Al材
層8が被覆されている。架空電線5と磁性線材6とはシ
ーム溶接されている。スペーサーを用いたものの形状は
図1と同じである。
The shape of the obtained snow melting electric wire is shown in FIG. 2A and FIG. 2B, respectively, though the magnetic wire is fixed to the overhead wire and no spacer is used. On the outer circumference of the Invar stranded wire 3 of the Invar wire 2 coated with the Al layer 1, a special heat-resistant aluminum alloy wire 4 having a fan-shaped cross section is twisted into three layers to form an overhead wire 5, and a magnetic wire is provided on the outer circumference of the overhead wire 5. 6 is wrapped around. The magnetic wire 6 is covered with an Al material layer 8 to prevent electrolytic corrosion. The overhead wire 5 and the magnetic wire 6 are seam welded. The shape using the spacer is the same as that in FIG.

【0043】前記磁性線材を巻付けた融雪電線につい
て、塩水噴霧試験を行って耐食性を調査した。又融雪電
線に91A通電時(電線表面磁界10 Oe)の送電線1mあた
りの発熱量、及び許容最大電流の2300A通電時の電線温
度を測定した。結果を表4〜表5に示す。
The snow-melting wire wound with the magnetic wire was subjected to a salt spray test to investigate the corrosion resistance. Also, the amount of heat generated per 1 m of the power transmission line when the snow melting wire was energized with 91 A (electric wire surface magnetic field was 10 Oe) and the wire temperature when energized with the maximum allowable current of 2300 A were measured. The results are shown in Tables 4-5.

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【表5】 [Table 5]

【0046】表4より明らかなように、本発明例品(No.
26〜45) は、磁性線材のアルミ被覆厚さが20μm以上な
ので3000時間の塩水噴霧試験に耐えられた。本発明例品
(No.26〜45) はいずれも、91A通電時の発熱量が、比較
例品(No.43〜61) に較べて高い。電線No.34 〜36から判
るように、残留させる引張応力が大きい程発熱量が増大
する。特にB10が低い合金k,l,mの磁性線材を用
い、引張応力を残留させない比較例品47,48,49の発熱量
は低いが、引張応力を残留させた本発明の融雪電線(No.
27,28,29) の発熱量は著しく改善されている。その他の
本発明の磁性合金でも張力をかけることにより発熱量が
改善されている。尚、毎時5mmの降雪量(降水量換算
値)における完全融雪に必要な発熱量は15.9w/m、部分
融雪に必要な発熱量は12.5w/mである。
As is clear from Table 4, the product of the present invention (No.
26 to 45), the aluminum coating thickness of the magnetic wire was 20 μm or more, so that they could withstand a salt spray test for 3000 hours. Example product of the present invention
(No. 26 to 45), the heat generation amount when energizing 91 A is higher than that of the comparative example product (No. 43 to 61). As can be seen from the electric wire Nos. 34 to 36, the larger the residual tensile stress, the larger the amount of heat generation. In particular, the magnetic wire rods of alloys k, l, and m having a low B 10 are used, and the comparative examples 47, 48 and 49 which do not retain tensile stress have low calorific value, but the tensile melting stress of the present invention (No. .
27,28,29) has significantly improved the calorific value. In other magnetic alloys of the present invention, the amount of heat generated is improved by applying tension. The amount of heat required for complete snow melting is 15.9 w / m and the amount of heat required for partial snow melting is 12.5 w / m when the amount of snowfall (precipitation conversion value) is 5 mm per hour.

【0047】本発明例品の2300A通電時の電線温度は、
磁性線材を巻付けないものの温度(No.61, 230℃) を下
回った。本発明で用いた磁性線材は、hを除いていずれ
もキュリー温度が 230℃より高いものであり、2300A通
電時には、かなり発熱するのであるが、自らのフィン冷
却効果により発熱が抑えられた。このことから、キュリ
ー温度の低い磁性線材を使用しなくても、磁性線材にフ
ィン冷却効果を持たせることにより、最大許容電流通電
下で、電線温度の上昇を十分抑えられることが判る。23
00A 通電時の電線温度はスペーサーのないNo.30 が、N
o.33,34に較べて213℃と比較的低くなっている。スペー
サーを用いた中では、厚さの厚いNo.33の温度上昇が大
きい。
The electric wire temperature of the example product of the present invention when energized at 2300 A is
It was below the temperature (No.61, 230 ℃) of the product without winding the magnetic wire. All of the magnetic wire rods used in the present invention have Curie temperatures higher than 230 ° C. except h, and they generate a considerable amount of heat when energized at 2300 A, but the heat generation was suppressed by their own fin cooling effect. From this, it can be seen that even if the magnetic wire having a low Curie temperature is not used, the magnetic wire has a fin cooling effect, so that the temperature rise of the wire can be sufficiently suppressed under the maximum allowable current. twenty three
The wire temperature at the time of energizing 00A is N
Compared with o.33,34, it is 213 ℃, which is relatively low. Among the spacers used, the temperature rise of No. 33, which has a large thickness, is large.

【0048】Fe-50%Ni合金の鉄を3%Crと1%Siで置換した
合金nを用い、引張応力を残留させたNo.31,32は完全融
雪効果が得られる。引張応力を残留させない場合は表5
のNo.56,57から判る通り部分融雪効果も得られない。合
金nの電線温度上昇は比較的低いが、これはキュリー温
度が低い為である。
No. 31 and 32, in which the tensile stress remains, using the alloy n in which the iron of the Fe-50% Ni alloy is replaced by 3% Cr and 1% Si can obtain the perfect snow melting effect. When no tensile stress is retained, Table 5
No. 56,57, no partial snow melting effect can be obtained. The wire temperature rise of alloy n is relatively low, because the Curie temperature is low.

【0049】比較例で張力をかけた融雪電線(電線No.5
8,59) は、Niの含有量が請求項2の発明のNi含有量
を外れた為、十分な融雪効果が得られる発熱量が得られ
なかった。又純鉄の磁性線材に張力をかけた融雪電線
(電線No.60)の発熱量は低下した、これは純鉄の磁歪が
負の為である。
In the comparative example, a snow-melting electric wire (electric wire No.
In No. 8,59), since the Ni content deviated from the Ni content of the invention of claim 2, the calorific value capable of obtaining a sufficient snow melting effect was not obtained. Also, the amount of heat generated by the snow-melting wire (wire No. 60) in which tension was applied to the magnetic wire made of pure iron decreased, because the magnetostriction of pure iron was negative.

【0050】[0050]

【効果】以上述べたように、本発明の融雪電線は、架空
電線に磁性線材を螺旋状に巻付けたもので、磁性線材
に、低磁界における渦電流発熱の大きい磁性線材を用い
ているので低電流通電時にも高い融雪効果を有し、又金
車通過時の磁性線材のずれを磁性線材間にスペーサーを
介在させて防止し、又磁性線材の高磁界における過度の
発熱を前記磁性線材をスペーサーより突出させそのフィ
ン冷却効果により抑え、又磁性線材にアルミ材を被覆し
て架空電線との電食を防止したものである。又架空電線
に磁性線材を引張応力を残留させて巻付けることによ
り、低磁界における渦電流発熱を向上させ、更に引張応
力の残留を、磁性線材を架空電線に固定して行うことに
より金車通過時の磁性線材のズレを防止したものであ
る。依って、工業上顕著な効果を奏する。
[Effect] As described above, the snow melting wire of the present invention is obtained by spirally winding a magnetic wire around an overhead wire. Since the magnetic wire uses a magnetic wire with a large eddy current heat generation in a low magnetic field. It has a high snow-melting effect even when a low current is applied, and prevents deviation of the magnetic wire when passing through a gold wheel by interposing a spacer between the magnetic wires, and also prevents excessive heat generation of the magnetic wire in a high magnetic field. The fins are projected from the spacer to suppress the fins, and the magnetic wire is covered with an aluminum material to prevent electrolytic corrosion with the overhead wire. Also, by winding the magnetic wire around the overhead wire with residual tensile stress, the eddy current heat generation in the low magnetic field is improved, and the residual tensile stress is fixed to the overhead wire to pass the railcar. It prevents the magnetic wire from slipping. Therefore, it has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の融雪電線の実施例を示す横断面図及び
側面図である。
FIG. 1 is a cross-sectional view and a side view showing an embodiment of a snow melting electric wire of the present invention.

【図2】本発明の融雪電線の他の実施例を示す横断面図
及び側面図である。
FIG. 2 is a cross-sectional view and a side view showing another embodiment of the snow melting electric wire of the present invention.

【符号の説明】[Explanation of symbols]

1 Al被覆層 2 インバー線 3 アルミ被覆インバー線の撚線 4 断面扇形の特別耐熱アルミ合金線 5 架空電線 6 磁性線材 7 スペーサー 8 Al材層 1 Al coating layer 2 Invar wire 3 Stranded aluminum-coated Invar wire 4 Special heat-resistant aluminum alloy wire with a fan-shaped cross section 5 Overhead electric wire 6 Magnetic wire rod 7 Spacer 8 Al material layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アルミ架空電線の最外層に、磁性線材が
螺旋状に巻付けられた融雪電線において、磁性線材が、
Niを40〜60wt%含有し残部Feからなる合金磁性線材
であり、前記磁性線材にアルミ材が10〜60μmの厚さ被
覆されており、前記螺旋状に巻付けられたアルミ材被覆
磁性線材の間隙に、アルミ線材が、前記アルミ材被覆磁
性線材の間隔を一定に保持するスペーサーとして巻付け
られており、前記アルミ材被覆磁性線材が、前記アルミ
線材巻付け体から突出していることを特徴とする融雪電
線。
1. A snow melting wire in which a magnetic wire is spirally wound around the outermost layer of an aluminum overhead wire, wherein the magnetic wire is
An alloy magnetic wire rod containing Ni in an amount of 40 to 60 wt% and the balance being Fe, wherein the magnetic wire rod is coated with an aluminum material in a thickness of 10 to 60 μm, and the aluminum wire coated magnetic wire rod is wound in a spiral shape. An aluminum wire is wound around the gap as a spacer that holds the interval of the aluminum-coated magnetic wire constant, and the aluminum-coated magnetic wire projects from the aluminum wire wound body. A snow melting wire.
【請求項2】 アルミ架空電線の最外層に、磁性線材が
螺旋状に巻付けられた融雪電線において、磁性線材が、
Niを40〜60wt%含有し残部Feからなる合金磁性線材
であり、前記磁性線材に亜鉛材が10〜60μmの厚さ被覆
されており、前記螺旋状に巻付けられたアルミ材被覆磁
性線材の間隙に、アルミ線材が、前記アルミ材被覆磁性
線材の間隔を一定に保持するスペーサーとして巻付けら
れており、前記アルミ材被覆磁性線材が、前記アルミ線
材巻付け体から突出していることを特徴とする融雪電
線。
2. A snow melting electric wire in which a magnetic wire is spirally wound around the outermost layer of an aluminum overhead wire, wherein the magnetic wire is
An alloy magnetic wire rod containing Ni in an amount of 40 to 60 wt% and the balance being Fe, wherein the magnetic wire rod is coated with a zinc material in a thickness of 10 to 60 μm, and the spirally wound aluminum-coated magnetic wire rod is An aluminum wire is wound around the gap as a spacer that holds the interval of the aluminum-coated magnetic wire constant, and the aluminum-coated magnetic wire projects from the aluminum wire wound body. A snow melting wire.
【請求項3】 アルミ架空電線の最外層に、磁性線材が
螺旋状に巻付けられた融雪電線において、磁性線材が、
Niを3〜28wt%又は35〜65wt%、Coを0〜10wt%未
満、Alを0〜9wt%、Siを0〜7.5 wt%、Vを0〜
4wt%、Crを0〜9wt%含有し残部Feからなる合
金、又はNiを3〜60wt%、Coを10wt%〜65wt%、A
lを0〜9wt%、Siを0〜7.5 wt%、Vを0〜4wt
%、Crを0〜9wt%含有し残部Feからなる合金のい
ずれかからなり、前記磁性線材の表面に10〜120 μm厚
さのAl、Al合金、Zn、又はZn合金のいずれかの
金属が被覆されており、前記金属被覆磁性線材に、送電
中引張応力が残留するように巻付けられていることを特
徴とする融雪電線。
3. A snow melting wire in which a magnetic wire is spirally wound around the outermost layer of an aluminum overhead wire, wherein the magnetic wire is
3 to 28 wt% or 35 to 65 wt% Ni, 0 to less than 10 wt% Co, 0 to 9 wt% Al, 0 to 7.5 wt% Si, 0 to V
4 wt%, an alloy containing 0-9 wt% Cr and the balance Fe, or 3-60 wt% Ni, 10 wt-65 wt% Co, A
1 to 0 to 9 wt%, Si to 0 to 7.5 wt%, V to 0 to 4 wt%
%, Cr in an amount of 0 to 9 wt% and the balance being Fe, and a metal of any one of Al, Al alloy, Zn, or Zn alloy having a thickness of 10 to 120 μm is formed on the surface of the magnetic wire. A snow-melting electric wire which is covered and wound around the metal-coated magnetic wire so that tensile stress remains during power transmission.
【請求項4】 螺旋状に巻付けた磁性線材の間隙にアル
ミ線条体をスペーサーとして、前記金属被覆磁性線材の
高さ未満に巻付けたことを特徴とする請求項3記載の融
雪電線。
4. The snow melting electric wire according to claim 3, wherein the aluminum wire is used as a spacer in the gap between the spirally wound magnetic wires and wound below the height of the metal-coated magnetic wires.
【請求項5】 螺旋状に巻付けた磁性線材の間隙にアル
ミ線条体をスペーサーとして、前記金属被覆磁性線材の
高さの半分以下の高さに巻付けたことを特徴とする請求
項1乃至請求項4記載の融雪電線。
5. The aluminum wire is used as a spacer in the gap between the spirally wound magnetic wire rods, and the aluminum wire rods are wound at a height not more than half the height of the metal-coated magnetic wire rods. To the snow melting electric wire according to claim 4.
【請求項6】 磁性線材の断面が長方形、正方形、又は
扇形であることを特徴とする請求項1乃至請求項5記載
の融雪電線。
6. The snow melting electric wire according to claim 1, wherein the magnetic wire has a rectangular, square, or fan-shaped cross section.
【請求項7】 架空電線の所要部分のみに磁性線材、又
は磁性線材とスペーサーを巻付けたことを特徴とする請
求項1及至請求項6記載の融雪電線。
7. The snow melting electric wire according to claim 1, wherein a magnetic wire or a magnetic wire and a spacer are wound around only a required portion of the overhead wire.
JP6165942A 1994-04-01 1994-06-24 Snow melting wire Expired - Fee Related JP2779317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6165942A JP2779317B2 (en) 1994-04-01 1994-06-24 Snow melting wire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-87929 1994-04-01
JP8792994 1994-04-01
JP6165942A JP2779317B2 (en) 1994-04-01 1994-06-24 Snow melting wire

Publications (2)

Publication Number Publication Date
JPH07322457A true JPH07322457A (en) 1995-12-08
JP2779317B2 JP2779317B2 (en) 1998-07-23

Family

ID=26429160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6165942A Expired - Fee Related JP2779317B2 (en) 1994-04-01 1994-06-24 Snow melting wire

Country Status (1)

Country Link
JP (1) JP2779317B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564252A (en) * 2020-05-14 2020-08-21 朱永松 Durable transmission special cable suitable for alpine regions
CN113064223A (en) * 2021-04-29 2021-07-02 重庆电力设计院有限责任公司 Ice collector capable of automatically removing ice

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244833A (en) * 2015-11-22 2016-01-13 无锡同春新能源科技有限公司 De-icing unmanned aerial vehicle with photothermal device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119167U (en) * 1974-07-31 1976-02-12
JPS58223211A (en) * 1982-06-21 1983-12-24 株式会社フジクラ Linear magnetic material
JPS6412338U (en) * 1987-07-13 1989-01-23
JPS6435574A (en) * 1987-07-31 1989-02-06 Ricoh Kk Developing device
JPH02193516A (en) * 1989-01-20 1990-07-31 Hitachi Metals Ltd Snow melting alloy wire rod and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119167U (en) * 1974-07-31 1976-02-12
JPS58223211A (en) * 1982-06-21 1983-12-24 株式会社フジクラ Linear magnetic material
JPS6412338U (en) * 1987-07-13 1989-01-23
JPS6435574A (en) * 1987-07-31 1989-02-06 Ricoh Kk Developing device
JPH02193516A (en) * 1989-01-20 1990-07-31 Hitachi Metals Ltd Snow melting alloy wire rod and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564252A (en) * 2020-05-14 2020-08-21 朱永松 Durable transmission special cable suitable for alpine regions
CN111564252B (en) * 2020-05-14 2021-06-29 江苏浩斯电器科技有限公司 Durable transmission special cable suitable for alpine regions
CN113064223A (en) * 2021-04-29 2021-07-02 重庆电力设计院有限责任公司 Ice collector capable of automatically removing ice
CN113064223B (en) * 2021-04-29 2023-06-02 重庆电力设计院有限责任公司 Ice accumulating device capable of self-deicing

Also Published As

Publication number Publication date
JP2779317B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US4525432A (en) Magnetic material wire
KR100271953B1 (en) Cable snow-melting device
JPH07322457A (en) Thawing cable
EP0113255B1 (en) Heat-resistant galvanized iron alloy wire
JP3428843B2 (en) Snow melting wire
JP3063023B2 (en) Snow melting wire
JPH07211143A (en) Low thermal expansion and high strength conductor for transmission line, and low loosening cable using same
JP3499975B2 (en) Snow melting electric wire and method of manufacturing the same
JPS58223211A (en) Linear magnetic material
CA1210054A (en) Magnetic material wire and method of producing same
JP3166339B2 (en) Heat-generating alloy wire for hard-to-reach ice and snow wires
JPH09256104A (en) Snow-melting electric wire and its production
CA2168186C (en) Ice/snow accretion resistant overhead transmission line
JPH01174213A (en) Snow spiral member for transmission line
JPH1141768A (en) Magnetic heating composite wire
JPH02193516A (en) Snow melting alloy wire rod and its manufacture
JPH0974655A (en) Snow melting wire and its manufacture
JPH01177817A (en) Snow spiral material for transmission line
JP2675093B2 (en) Manufacturing method of welded structure
JPH03124211A (en) Snow melting alloy ring
JPH0135574B2 (en)
JPH0362410A (en) Wire for thunder resisting cable
JPH0372365B2 (en)
JPH0134502Y2 (en)
JPH0870525A (en) Magnetic alloy member for melting snow and ice on electric wire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees