JPH01177817A - Snow spiral material for transmission line - Google Patents

Snow spiral material for transmission line

Info

Publication number
JPH01177817A
JPH01177817A JP62335513A JP33551387A JPH01177817A JP H01177817 A JPH01177817 A JP H01177817A JP 62335513 A JP62335513 A JP 62335513A JP 33551387 A JP33551387 A JP 33551387A JP H01177817 A JPH01177817 A JP H01177817A
Authority
JP
Japan
Prior art keywords
snow
magnetic
wire
alloy
spiral material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62335513A
Other languages
Japanese (ja)
Inventor
Masahiro Samejima
正洋 鮫島
Yoshihiro Naganuma
長沼 義裕
Takashi Saito
隆 斉藤
Kazumoto Suzuki
鈴木 和素
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62335513A priority Critical patent/JPH01177817A/en
Publication of JPH01177817A publication Critical patent/JPH01177817A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/261Handling means, e.g. transfer means, feeding means
    • B29C51/262Clamping means for the sheets, e.g. clamping frames

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

PURPOSE:To increase the quantity of heat per unit weight by replacing the center of a linear magnetic unit with nonmagnetic metal or alloy having smaller density than that of the unit. CONSTITUTION:Aluminum is employed as a core material 1, its surface is covered with a magnetic material 2 having a composition of 36wt.% of Ni, 2.0wt.% of Cr, 0.8wt.% of Si and the residue of Fe, further covered on its outermost layer 3 with aluminum to form a snow spiral material. Thus, the quantity of heat per unit weight can be increased by approx. 20%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は架空送配電線の氷結防止のために電線上に巻き
付けられる送電線用スノースパイラル材に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a snow spiral material for power transmission lines that is wrapped around electric wires to prevent freezing of overhead power transmission and distribution lines.

(従来の技術) 北日本や裏日本等の寒冷地域では冬期、架空送電線に氷
雪が付着し、これが成長して大きな塊りとなり、径間に
於ける電線重量の増大と風圧荷重の増大を招き、電線の
破断や鉄塔の倒壊などの事故を惹き起す原因となること
がしばしばある。又付着した氷雪がブロック状となって
落下した場合には、架空線下を通過する人々に対して危
険であるばかりでなく、農地にあっては作物等に被害を
与える恐れがあり、大きな社会問題となるため、この問
題の解決が要望されている。この着氷雪の防止対策とし
て、従来知られているものには次の様なものがある。
(Conventional technology) In cold regions such as northern Japan and the inner parts of Japan, ice and snow adhere to overhead power lines during the winter, and this grows into large clumps, leading to an increase in the weight of the wires in the span and an increase in wind pressure loads. This often causes accidents such as broken power lines and the collapse of steel towers. Furthermore, if the ice and snow that adheres to the ground fall in the form of blocks, it is not only dangerous for people passing under the overhead wires, but can also cause damage to crops in farmland, causing major social problems. There is a demand for a solution to this problem. Conventionally known measures to prevent the formation of ice and snow include the following.

(1)過負荷通電発熱を利用して融雪する。(1) Snow melts using overload energization heat generation.

(2)難着雪リングを装着したり、電線自体のねじれを
防止し、着雪を一方向に成長させ、重力によって脱落さ
せる。
(2) Attaching a snow-preventing ring or preventing twisting of the electric wire itself allows snow to grow in one direction and fall off due to gravity.

しかし、このうち(1)については電力系統運用上の制
限があって自由に実施出来ない問題がある。又(2)に
ついては着氷雪の種類により、効果が得られない場合が
あるなど充分な対策とは云えないものである。又一方、
特公昭42−1.3893号に於いては、電線周囲に0
〜20℃の範囲内にキュリー点を持つ磁性材料を装着し
、交番磁界により、磁性体内に発生する渦電流損失の発
熱を利用し、融雪する方法が提案されている。これは(
1)に於ける様な電力運用上の問題のない、実用的な方
法であるが、ここで用いられている磁性材料がCr9〜
14−tχ、Ni34〜38wtχ、SiO,5〜1.
15wtχ、残部Feからなる合金で、磁気特性が悪く
、有効な発熱が得られないため、実用化されるに至らな
かった。
However, regarding (1), there is a problem in that it cannot be implemented freely due to restrictions in power system operation. Regarding (2), it cannot be said to be a sufficient measure as it may not be effective depending on the type of ice and snow. On the other hand,
In Special Publication No. 42-1.3893, zero
A method has been proposed in which a magnetic material having a Curie point within the range of ~20° C. is attached, and an alternating magnetic field is used to melt snow by utilizing heat generated by eddy current loss generated within the magnetic material. this is(
This is a practical method that does not cause problems in power operation like in 1), but the magnetic material used here is Cr9~
14-tχ, Ni34-38wtχ, SiO, 5-1.
It is an alloy consisting of 15wtχ and the balance is Fe, and it has poor magnetic properties and cannot generate effective heat, so it has not been put into practical use.

そこで我々は先きに特開5B−22321)に示す様な
、Ni32〜52wtχ、Cr9wt%以下、512w
t%以下、残部Feからなる磁気特性を改善した磁性材
を芯材とし、この上に高導電性の金属を被覆することに
より実用に供し得るスノースパイラル材を開発した。
Therefore, we have previously developed Ni32~52wtχ, Cr9wt% or less, 512w as shown in Japanese Patent Application Laid-Open No. 5B-22321).
We have developed a snow spiral material that can be put to practical use by using a magnetic material with improved magnetic properties consisting of t% or less and the balance being Fe as a core material and coating it with a highly conductive metal.

(発明が解決しようとする問題点) しかし、近年スノースパイラル材に対しては、さらに高
い発熱量が要求される様になって来たため、この先きに
開発したスノースパイラル材でも実用上問題となること
のあることが分った。
(Problem to be solved by the invention) However, in recent years, snow spiral materials have come to be required to have even higher calorific value, so even snow spiral materials developed in the future will have practical problems. I found out something.

すなわち、高発熱化のため、電線の単位長当りの、スノ
ースパイラル材の装着量を多くすると、径間の電線重量
が増加し、鉄塔の設計強度を越えるため、高発熱化を図
ることが困難であると共に高価な合金のためコストがか
さむ問題のあることが分った。
In other words, if the amount of snow spiral material installed per unit length of electric wire is increased in order to generate high heat generation, the weight of the wire in the span will increase, which will exceed the design strength of the tower, making it difficult to achieve high heat generation. However, it was found that there was a problem in that the cost increased because it was an expensive alloy.

本発明はこの様な問題に鑑みてなされたもので、線材の
単位長当りの重量を増加させることなしに、より高い発
熱効果の得られる安価なスノースパイラル材を提供する
ものである。
The present invention has been made in view of these problems, and it is an object of the present invention to provide an inexpensive snow spiral material that can obtain higher heat generation effects without increasing the weight per unit length of the wire rod.

(問題点を解決するための手段) 本発明者らは上述の問題を解決するため、鋭意研究を重
ねた結果、発熱に寄与する磁束は線状磁性体の内部には
余り浸透せず、主として線材の表層部分に分布すること
に着目し、線状磁性体の中心部分を該磁性体より、密度
の小さな非磁性の金属又は合金で置換し、発熱に有効な
磁束密度の高い線状磁性体の表層部分のみを有効に活用
する様な構造とすることにより高価な磁性材の使用量を
少なくすると共に単位重量当りの発熱量を増加させ、よ
り大きな融雪効果が得られることを見出した。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present inventors have conducted intensive research and found that the magnetic flux that contributes to heat generation does not penetrate much into the inside of the linear magnetic material, and mainly Focusing on the distribution in the surface layer of the wire, the central part of the linear magnetic material is replaced with a non-magnetic metal or alloy with a lower density than the magnetic material, thereby creating a linear magnetic material with a high magnetic flux density that is effective for heat generation. It has been discovered that by creating a structure that effectively utilizes only the surface layer of the snow, it is possible to reduce the amount of expensive magnetic material used, increase the amount of heat generated per unit weight, and obtain a greater snow melting effect.

(作 用) すなわち、本発明に於けるスノースパイラル材は3層構
造からなるもので線材の中心部分に強磁性体より密度の
小さなAffi、Mgなどの金属やこれらの合金を配置
し、この外側に強磁性体の層を設け、さらに最外層に高
導電性の金属又はこれらの合金を被覆したものである。
(Function) That is, the snow spiral material according to the present invention has a three-layer structure, in which metals such as Affi, Mg, or alloys thereof, which have a lower density than ferromagnetic materials, are arranged in the center of the wire, and the outer layer A ferromagnetic layer is provided on the surface of the magnet, and the outermost layer is coated with a highly conductive metal or an alloy thereof.

ここで線材の中心部分に強磁性体より密度の小さなI/
!、Mgなどの金属やこれらの合金を使用する理由は線
材の単位長当りの重量を低減させるだけでなく、この3
層構造の線材は伸線性、各層の変形の均一さ、および構
造異種金属間の接着に於いて従来の2N構造スノースパ
イラル材と同様に優れたものとなるからである。従って
電線への装置に際しては従来と同じ施工法がそのまま採
用出来る。又Aff、Mgやこれらの合金の芯材表面に
設けられる磁性材料としては特開58−22321) 
、に示すFe−Ni −Cr−St系合金やNi 1.
5〜15wtχ、Si0.2〜2wtχ、Mn0.3〜
3wtχ、残部Feとからなる合金など磁気特性の優れ
たものが主に使用される。
Here, in the center of the wire, I/
! The reason for using metals such as , Mg, and their alloys is not only to reduce the weight per unit length of the wire rod, but also to reduce the weight per unit length of the wire rod.
This is because the layered wire rod has excellent drawability, uniformity of deformation of each layer, and adhesion between metals of different structures, similar to the conventional 2N snow spiral material. Therefore, when installing the device on electric wires, the same construction method as before can be used as is. In addition, as a magnetic material provided on the core material surface of Aff, Mg, and their alloys, Japanese Patent Application Laid-Open No. 58-22321)
, Fe-Ni-Cr-St alloys and Ni 1.
5~15wtχ, Si0.2~2wtχ, Mn0.3~
An alloy with excellent magnetic properties, such as an alloy consisting of 3wtχ and the balance Fe, is mainly used.

しかし、本発明による磁性線材は磁束密度の高い線状磁
性体の表層部分のみを有効に活用出来る様、該磁性体よ
り、密度の小さなAf、Mgなどの金属やこれらの合金
を芯材とし、この表面に強磁性体を被覆した構造とし、
単位重量当りの発熱量を増大させたものであるから磁気
特性が多少劣る磁性材料でも使用出来る。又Aj2など
の芯材表面に強磁性体を被覆して得られた線材の外表面
に被覆する高導電性の金属又は合金としては、Mn2゜
Cu、 Zn、等の金属やこれらの合金が主に使用され
る。
However, in order to effectively utilize only the surface layer of the linear magnetic material with high magnetic flux density, the magnetic wire according to the present invention uses a metal such as Af, Mg, or an alloy thereof, which has a lower density than the magnetic material, as a core material. This surface is coated with a ferromagnetic material,
Since it has an increased calorific value per unit weight, it can be used even with magnetic materials whose magnetic properties are somewhat inferior. In addition, as the highly conductive metal or alloy to be coated on the outer surface of the wire rod obtained by coating the surface of the core material such as Aj2 with a ferromagnetic material, metals such as Mn2゜Cu, Zn, etc. and alloys thereof are mainly used. used for.

これは磁性線材を電線上に巻きつけたとき、電線と磁性
線材との間に於いて電気化学的な腐食が起きない様に電
線表面と同じ金属表面となる様にするためと、これらの
金属を被覆することにより、渦電流が増大し、渦電流損
による発熱がより大きくなるためである。さらに又、こ
の様に複合化することにより、伸線加工工程で磁性材が
加工歪を受けにくくなり、より優れた発熱効果が得られ
るためである。又この様に複合化された磁性線材を目的
とする最終線径に伸線加工したのち強制ロ−ル加工等に
より歪取り処理を行えばさらに磁気特性の優れた磁性線
材となり、より優れた融雪効果を持ったスノースパイラ
ル材が得られる。
This is done to prevent electrochemical corrosion between the wire and the magnetic wire when the magnetic wire is wound around the wire, and to ensure that the metal surface is the same as the wire surface. This is because eddy current increases and heat generation due to eddy current loss increases. Furthermore, by compositing in this way, the magnetic material becomes less susceptible to processing strain during the wire drawing process, and a better heat generation effect can be obtained. In addition, if this composite magnetic wire is drawn to the desired final wire diameter and then subjected to strain relief treatment by forced rolling, etc., it will become a magnetic wire with even better magnetic properties, resulting in even better snow melting. You can obtain effective snow spiral material.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

(実施例) A2を芯材とし、この表面にNi 36wtX 、 C
r2、Owtχ、Si0.8wtχ、残部Feとからな
る組成の磁性材料を被覆し、さらに最外層にAlを被覆
した本発明によりスノースパイラル材を作製した。
(Example) A2 is used as a core material, and Ni 36wtX, C
A snow spiral material was produced according to the present invention by coating a magnetic material with a composition consisting of r2, Owtχ, Si0.8wtχ, and the balance being Fe, and further coating Al as the outermost layer.

この断面構造を第1図に示す。又一方比較例として同じ
磁性材料を芯材としこの表面にlを被覆した第2図の様
な断面構造のスノースパイラル材発熱量を測定し、単位
長及び単位重量当りの発熱量について第1表に示す結果
を得た。これらの結果から明らかな様に比重の小さなA
Iを芯材とし、その表面にNi −Cr−5i−Fe系
磁性合金を被覆し、さらに最外層にAlを被覆した本発
明によるスノースパイラル材は同じ組成のNi−Cr−
3i −Fe系磁性合金を芯材としてこの表面にAlt
を被覆した比較例のスノースパイラル材に比べ、単位重
量当りの重量が34%減少しているにもかかわらず、単
位長当りの発熱量の低下は約20%と小さく、その結果
単位重量当りの発熱量は比較例に比べ約20%増加する
ことを示している。
This cross-sectional structure is shown in FIG. On the other hand, as a comparative example, we measured the calorific value of a snow spiral material with a cross-sectional structure as shown in Figure 2, using the same magnetic material as the core and coating the surface with l, and Table 1 shows the calorific value per unit length and unit weight. The results shown are obtained. As is clear from these results, A with low specific gravity
The snow spiral material according to the present invention has I as a core material, its surface is coated with a Ni-Cr-5i-Fe magnetic alloy, and the outermost layer is coated with Al.
3i - Fe-based magnetic alloy is used as the core material and Alt is applied to the surface of this core material.
Although the weight per unit weight is reduced by 34% compared to the snow spiral material of the comparative example coated with It shows that the calorific value increases by about 20% compared to the comparative example.

第1表 (発明の効果) 以上説明した様に、本発明の融雪用スノースパイラル材
は密度の小さなAN、Mg等の金属又はこれらの合金を
芯材とし、この表面に強磁性体の被覆層を設けさらに最
外層に高導電性の金属又はこれらの合金を被覆したもの
で交番磁界に於いて発熱効果の大きい磁束密度の高い線
状磁性体の表層部分を有効に活用出来る様な構造とした
ものであるから、単位重量当りの発熱量が高(、従って
径間の重量を増加させることなく、より大きな発熱量が
得られると共に高価な磁性材の使用量を少なく出来°る
からコストを低減出来る効果が得られる。
Table 1 (Effects of the Invention) As explained above, the snow spiral material for snow melting of the present invention has a core material of a metal such as AN, Mg, etc. or an alloy thereof, which has a small density, and a ferromagnetic coating layer on the surface of the core material. Furthermore, the outermost layer is coated with a highly conductive metal or an alloy thereof, and the structure is such that the surface layer of the linear magnetic material with high magnetic flux density, which has a large heat generation effect in an alternating magnetic field, can be effectively utilized. Because it is a material, the calorific value per unit weight is high (therefore, a larger calorific value can be obtained without increasing the weight of the span, and the amount of expensive magnetic material used can be reduced, reducing costs. You can get the desired effect.

又線材の表面は電線表面と同じ、高導電性の金属又は合
金で被覆されているから電気化学的な腐食の問題もなく
、長期安定に使用出来る。
Also, since the surface of the wire is coated with the same highly conductive metal or alloy as the wire surface, there is no problem of electrochemical corrosion and it can be used stably for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例によるスノースパイラル材の断
面図、第2図は比較例のスノースパイラル材の断面図で
ある。 1・・・芯材、<、i) 、2−・・強磁性体(Ni−
Cr −5i−Fe系合金、3・・・高導電性金属(7
N)。
FIG. 1 is a sectional view of a snow spiral material according to an example of the present invention, and FIG. 2 is a sectional view of a snow spiral material of a comparative example. 1... Core material, <, i), 2-... Ferromagnetic material (Ni-
Cr-5i-Fe alloy, 3... Highly conductive metal (7
N).

Claims (1)

【特許請求の範囲】[Claims] 非磁性金属よりなる芯材(1)と、その上の強磁性体被
覆層(2)と、さらにその上の高導電性金属被覆層(3
)を有し前記芯材を構成する非磁性金属(1)として、
前記強磁性体被覆層(2)を構成する金属よりも密度の
小さな金属を用いたことを特徴とする送電線用スノース
パイラル材
A core material (1) made of a non-magnetic metal, a ferromagnetic coating layer (2) on it, and a highly conductive metal coating layer (3) on it.
) as the non-magnetic metal (1) constituting the core material,
A snow spiral material for power transmission lines, characterized in that a metal having a lower density than the metal constituting the ferromagnetic coating layer (2) is used.
JP62335513A 1987-12-29 1987-12-29 Snow spiral material for transmission line Pending JPH01177817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335513A JPH01177817A (en) 1987-12-29 1987-12-29 Snow spiral material for transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335513A JPH01177817A (en) 1987-12-29 1987-12-29 Snow spiral material for transmission line

Publications (1)

Publication Number Publication Date
JPH01177817A true JPH01177817A (en) 1989-07-14

Family

ID=18289414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335513A Pending JPH01177817A (en) 1987-12-29 1987-12-29 Snow spiral material for transmission line

Country Status (1)

Country Link
JP (1) JPH01177817A (en)

Similar Documents

Publication Publication Date Title
US4525432A (en) Magnetic material wire
KR100271953B1 (en) Cable snow-melting device
JPH01177817A (en) Snow spiral material for transmission line
KR100360762B1 (en) Iron Amorphous Alloy Strip for Winding Trans
JP2016100269A (en) Power transmission line and manufacturing method of power transmission line
JPH01174213A (en) Snow spiral member for transmission line
JP2779317B2 (en) Snow melting wire
JP3428843B2 (en) Snow melting wire
CA2168186C (en) Ice/snow accretion resistant overhead transmission line
JP3499975B2 (en) Snow melting electric wire and method of manufacturing the same
JP3166339B2 (en) Heat-generating alloy wire for hard-to-reach ice and snow wires
JP3063023B2 (en) Snow melting wire
JPH0449723B2 (en)
JPS58223211A (en) Linear magnetic material
JPH01174212A (en) Magnetic wire rod for thawing snow
JPS636963B2 (en)
JP2822104B2 (en) Magnetic material for preventing icing of overhead transmission and distribution lines
CN107394741B (en) High Voltage Electricity Transfer Circuit leading truck
JPH09256104A (en) Snow-melting electric wire and its production
JPH02193516A (en) Snow melting alloy wire rod and its manufacture
JPH02159352A (en) Snow melting alloy wire rod and production thereof
JPH03124211A (en) Snow melting alloy ring
JPH0870525A (en) Magnetic alloy member for melting snow and ice on electric wire
JPH0135574B2 (en)
JPH0974655A (en) Snow melting wire and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees