JPH01181509A - Manufacture of solid electrolytic capacitor element formed body - Google Patents

Manufacture of solid electrolytic capacitor element formed body

Info

Publication number
JPH01181509A
JPH01181509A JP63004426A JP442688A JPH01181509A JP H01181509 A JPH01181509 A JP H01181509A JP 63004426 A JP63004426 A JP 63004426A JP 442688 A JP442688 A JP 442688A JP H01181509 A JPH01181509 A JP H01181509A
Authority
JP
Japan
Prior art keywords
metal powder
forming body
punch
electrolytic capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63004426A
Other languages
Japanese (ja)
Inventor
Junichiro Tamaki
玉木 淳一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP63004426A priority Critical patent/JPH01181509A/en
Publication of JPH01181509A publication Critical patent/JPH01181509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To enable the formation of element formed body wherein forming density is uniform regardless of the length of an element by providing multiple staged of metal powder and by performing multiple-stage press forming by upper and lower punches accordingly. CONSTITUTION:One third of required amount of value operation metal powder 3 such as tantalum, niobium, and titanium is supplied and an upper punch 4 and a lower punch 5 are operated to form a primary forming body 6. Then, the upper punch 4 and lower punch 5 are returned to their original positions and 1/3 of required amount of the valve operation metal powder 3 is supplied onto the primary forming body 6 to form a secondary forming body 7 which coalesced with the primary forming body 6. Then, in the similar manner as the second time, an element forming body 8 which coalesced with the secondary forming body 7 is formed. It allows forming density to be uniform, electrostatic capacity per unit weight of powder to be large, and deterioration and damage of dielectric oxide layer due to heat shock which is applied to in the later process to be reduced for improved reliability.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、プレス成形方法を改良した固体電解コンデン
サ素子成形体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a solid electrolytic capacitor element molded body by improving a press molding method.

(従来の技術) 一般にタンタル、ニオブ、チタンなどの弁作用金属粉末
をプレス成形したコンデンサ素子の製造方法としては、
第7図に示すように所望の形状からなる内筒部11を有
する金型12に弁作用金属粉末13を必要量充填し、上
パンチ14と下パンチ15により圧縮するようにしてい
る。
(Prior Art) Generally, the manufacturing method of capacitor elements by press-molding valve metal powder such as tantalum, niobium, titanium, etc. is as follows.
As shown in FIG. 7, a required amount of valve metal powder 13 is filled into a mold 12 having an inner cylindrical portion 11 having a desired shape, and compressed by an upper punch 14 and a lower punch 15.

しかして、この上パンチ14及び下パンチ15による圧
縮動作として、従来は上パンチ14、下パンチ15の時
間差やストローク長の違いはあるが、基本的に1回で行
うようにしている。
Conventionally, the compression operation by the upper punch 14 and the lower punch 15 is basically performed once, although there is a difference in time and stroke length between the upper punch 14 and the lower punch 15.

上記製造方法においτ、素子の直径又は幅が圧縮方向の
長さ(以下素子長という)より大きい場合はさほど問題
はないが、この逆の関係、すなわち素子の直径又は幅よ
り素子長が長い場合、中心部の密度が粗となり、全体と
して成形密度にバラツキや偏りが生じ、均一的な成形密
度をもつ素子成形が不可能である問題をかかえていた。
In the above manufacturing method, there is no problem if τ, the diameter or width of the element is larger than the length in the compression direction (hereinafter referred to as element length), but if the relationship is reversed, that is, the element length is longer than the diameter or width of the element , the density at the center becomes coarse, causing variations and deviations in the molding density as a whole, making it impossible to mold elements with uniform molding density.

このように、成形密度のバラツキや偏りは、単位当たり
の静電容量の低下及びLG特性の低下を招(結果となつ
τいた。
As described above, variations and deviations in molding density lead to a decrease in capacitance per unit and a decrease in LG characteristics (resulting in τ).

(発明が解決しようとする問題点) 以上のように、従来の素子成形手段では、素子の成形密
度が均一化されず、特性低下を招く問題をかかえていた
(Problems to be Solved by the Invention) As described above, in the conventional element molding means, the molding density of the element cannot be made uniform, leading to a problem of deterioration of characteristics.

本発明は、上記のような点に鑑みてなされたもので、素
子の成形密度を均一化できるプレス成形手段を改良した
固体電解コンデンサ素子成形体の製造方法を提供するこ
とを目的とするものである。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor element molded body using an improved press molding means that can uniformize the molded density of the element. be.

[発明の構成1 (問題点を解決するための手段) 本発明の固体電解コンデンサ素子成形体の製造方法は、
内筒部を有する金型に弁作用金属粉末を充填し、上パン
チ及び下パンチにより前記金属粉末を圧縮してなる固体
電解コンデン°す素子成形手段製造方法において、多段
階の粉末供給と、それに相応した上パンチ及び下パンチ
による多段階プレスにより成形することを特徴とするも
のである。
[Configuration 1 of the Invention (Means for Solving the Problems) The method for manufacturing a solid electrolytic capacitor element molded body of the present invention includes the following steps:
A method for manufacturing a solid electrolytic capacitor element forming means, in which a mold having an inner cylindrical portion is filled with valve metal powder and the metal powder is compressed by an upper punch and a lower punch, includes multi-stage powder supply and the like. It is characterized by molding by multi-stage pressing using corresponding upper and lower punches.

(作用) 以上の構成によれば、素子成形に必要な金属粉末量を一
度に入れて1回プレスによって行うものでなく、必要に
応じた数回の粉末供給−プレスによる成形となるため、
成形密度にバラツキや偏りのない均一的な素子成形が可
能となる。
(Function) According to the above configuration, the amount of metal powder required for element molding is not put in at once and pressed once, but the molding is performed by supplying powder and pressing several times as necessary.
Uniform element molding without variation or bias in molding density becomes possible.

(実施例) 以下、本発明の実施例につき説明する。ずなわち第1図
に示すように、所望の形状からなる内局部1を有する金
型2に例えばタンタル、ニオブ、チタンなどの弁作用金
属粉末3を必要量の1/3供給し、第2図に示すように
あらかじめ素子長の中心部で圧縮が終了するようセット
しておいた上パンチ4と下パンチ5を素子長の中心部方
向に動作させ1次成形体6を形成し、次に第3図に示す
ように前記上パンチ4と下パンチ5を元の位置に戻し、
前記1次成形体6上に弁作用金属粉末3を必要量の1/
3供給し、第4図に示すように再び前記上パンチ4と下
パンチ5を素子長の中心方向に動作させ前記1次成形体
6と合体した2次成形体7を形成し、さらに第5図に示
すように上パンチ4ど下パンチ5を再び元の位置に戻し
、前記2次成形体7上に残りの弁作用金属粉末3を供給
し、第6図に示すように2回目と同様前記上パンチ4と
下パンチ5を素子長の中心方向に動作させ、前記2次成
形体7と合体した素子成形体8を形、成するものである
。 図中9は陽極線貫通孔、10は陽極線である。
(Example) Examples of the present invention will be described below. That is, as shown in FIG. 1, 1/3 of the required amount of valve metal powder 3, such as tantalum, niobium, titanium, etc., is supplied to a mold 2 having an inner part 1 having a desired shape, and a second As shown in the figure, the upper punch 4 and lower punch 5, which have been set in advance so that compression ends at the center of the element length, are moved toward the center of the element length to form a primary formed body 6, and then As shown in FIG. 3, return the upper punch 4 and lower punch 5 to their original positions,
1/1/2 of the required amount of valve metal powder 3 is placed on the primary molded body 6.
3 is supplied, and as shown in FIG. 4, the upper punch 4 and the lower punch 5 are again moved in the direction of the center of the element length to form a secondary molded body 7 that is combined with the primary molded body 6. As shown in the figure, the upper punch 4 and the lower punch 5 are returned to their original positions, and the remaining valve metal powder 3 is supplied onto the secondary formed body 7, as shown in FIG. 6, in the same manner as the second time. The upper punch 4 and the lower punch 5 are moved in the direction toward the center of the element length to form and form an element molded body 8 that is combined with the secondary molded body 7. In the figure, 9 is an anode wire through hole, and 10 is an anode wire.

以上のように構成してなる固体電解コンデンサ素子成形
体の製造方法によれば、得%れる素子成形体8は数回の
小きざみの成形により構成されているため成形密度が均
一化され、粉末単位重量当たりの静電、容量が大きく、
またその優の工程で加えられる熱衝撃による誘電体酸化
皮膜の劣化、損傷も少なく、信頼性向上に大きく寄与す
る。
According to the method for manufacturing the solid electrolytic capacitor element molded body constructed as described above, the obtained element molded body 8 is formed by several rounds of compaction, so that the compacting density is made uniform, and the powder Large electrostatic capacity per unit weight,
Furthermore, there is little deterioration or damage to the dielectric oxide film due to thermal shock applied during the process, which greatly contributes to improved reliability.

次に、従来例との特性比較について述べる。Next, a comparison of characteristics with the conventional example will be described.

すなわち、タンタル粉末を用い第1図〜第6図にて説明
した3回プレス方式によって成形した本発明式と、従来
技術にて説明した1同プレス方式によって成形した従来
例Bそれぞれの35V−1μFのタンタル固体電解コン
デンサにおけるはんだデツプ前定格電圧35V、30秒
印加後と、260℃−10秒間の加熱状態となるはんだ
デツプ後におけるLC特性を調べた結果第8図に示すよ
うになった。
That is, 35V-1μF of the present invention molded using tantalum powder using the 3-time press method explained in FIGS. The LC characteristics of the tantalum solid electrolytic capacitor were investigated after applying a rated voltage of 35 V for 30 seconds before the solder dip and after the solder dip was heated at 260 DEG C. for 10 seconds, and the results were as shown in FIG.

第8図から明らかなように、従来例Bははんだデツプ後
LC特性が大幅に低下するのに対し、本発明Aはほとん
ど変動がなく、耐熱特性において優れた効果が得られた
As is clear from FIG. 8, in the conventional example B, the LC characteristics deteriorated significantly after soldering, whereas in the invention A, there was almost no change, and an excellent effect in heat resistance characteristics was obtained.

また、本発明式と従来例Bにおける静電容量特性を調べ
た結果、本発明Aは従来例Bに比し約5%向上し、さら
に周波数特性において従来例Bは0.9〜3.4ΩでY
l、1Ωであったのに対して、本発明式は0.3〜1.
2ΩテX017Ωで改善効果がみられた。
Furthermore, as a result of investigating the capacitance characteristics of the present invention formula and the conventional example B, the present invention A has an improvement of about 5% compared to the conventional example B, and the conventional example B has a frequency characteristic of 0.9 to 3.4 Ω. DeY
l, 1Ω, whereas the formula of the present invention had a resistance of 0.3 to 1Ω.
An improvement effect was seen with 2ΩteX017Ω.

各試験に用いた試料は、A、Bともそれぞれ30個であ
る。
The samples used in each test were 30 each for both A and B.

なお、上記実施例では金属粉末の供給ならびにプレスの
多段階回数として3回行うものを例示して説明したが、
これに限定されるものではなく、必要に応じ適宜回数を
設定してよいことはもちろんである。
In addition, in the above example, the metal powder supply and pressing were performed three times as an example of the multi-step number of times.
It goes without saying that the number of times is not limited to this, and may be set as necessary.

[発明の効果] 本発明によれば、素子長の長さに関係なく、成形密度の
均一化した素子成形体の形成が容易に可能となり、信頼
性に富む固体電解コンデンサの提供に寄与する固体電解
コンデンサ素子成形体の製造方法を得ることができる。
[Effects of the Invention] According to the present invention, it is possible to easily form an element molded body with a uniform molding density regardless of the element length, and a solid electrolytic capacitor that contributes to providing a highly reliable solid electrolytic capacitor. A method for manufacturing an electrolytic capacitor element molded body can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明の一実施例に係る素子成形体の
形成方法を説明するためのもので、第1図は1回目の金
属粉末供給状態を示す概略図、第2図は1回目のプレス
成形状態を示す概略図、第3図は2回目の金属粉末供給
状態を示プ概略図、第4図は2回目のプレス成形状態を
示す概略図、第5図は3回目の金属粉末供給状態を示す
概略図、第6図は3回目のプレス成形状態を示す概略図
、第7図は従来の素子成形体の形成方法を説明するだめ
の概略図、第8図はLC特性の比較図である。 1・・・内筒部      2・・・金型3・・・弁作
用金属粉末  4・・・上パンチ5・・・下パンチ  
   6・・・1次成形体7・・・2次成形体    
8・・・素子成形体特  許  出  願  人 マルコン電子株式会社 第5図    第6図 第  7  図 本発明A     従来例日 第  8  図
1 to 6 are for explaining a method of forming an element molded body according to an embodiment of the present invention. FIG. 1 is a schematic diagram showing the first metal powder supply state, and FIG. A schematic diagram showing the state of press forming for the first time, FIG. 3 is a schematic diagram showing the state of metal powder supply for the second time, FIG. 4 is a schematic diagram showing the state of press forming for the second time, and FIG. A schematic diagram showing the metal powder supply state, FIG. 6 is a schematic diagram showing the third press molding state, FIG. 7 is a schematic diagram illustrating the conventional method of forming an element molded body, and FIG. 8 is a schematic diagram showing the LC characteristics. FIG. 1...Inner cylinder part 2...Mold 3...Valve metal powder 4...Upper punch 5...Lower punch
6... Primary molded body 7... Secondary molded body
8... Element molded body patent application Hito Marukon Electronics Co., Ltd. Figure 5 Figure 6 Figure 7 Present invention A Conventional example date Figure 8

Claims (1)

【特許請求の範囲】[Claims] 内筒部を有する金型に弁作用金属粉末を充填し、上パン
チ及び下パンチにより前記金属粉末を圧縮してなる固体
電解コンデンサ素子成形体の製造方法において、前記金
属粉末を多段階供給とし、それに相応した上パンチ及び
下パンチによる多段階プレス成形とすることを特徴とす
る固体電解コンデンサ素子成形体の製造方法。
A method for manufacturing a solid electrolytic capacitor element molded body, in which a mold having an inner cylinder part is filled with valve metal powder, and the metal powder is compressed by an upper punch and a lower punch, the metal powder being supplied in multiple stages, A method for manufacturing a solid electrolytic capacitor element molded body, characterized by performing multi-step press molding using an upper punch and a lower punch corresponding to the above.
JP63004426A 1988-01-11 1988-01-11 Manufacture of solid electrolytic capacitor element formed body Pending JPH01181509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004426A JPH01181509A (en) 1988-01-11 1988-01-11 Manufacture of solid electrolytic capacitor element formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004426A JPH01181509A (en) 1988-01-11 1988-01-11 Manufacture of solid electrolytic capacitor element formed body

Publications (1)

Publication Number Publication Date
JPH01181509A true JPH01181509A (en) 1989-07-19

Family

ID=11583927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004426A Pending JPH01181509A (en) 1988-01-11 1988-01-11 Manufacture of solid electrolytic capacitor element formed body

Country Status (1)

Country Link
JP (1) JPH01181509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667536A (en) * 1992-12-08 1997-09-16 Rohm Co., Ltd. Process for making a tantalum capacitor chip
US6139593A (en) * 1997-11-06 2000-10-31 Nec Corporation Manufacturing method of anode body of solid electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667536A (en) * 1992-12-08 1997-09-16 Rohm Co., Ltd. Process for making a tantalum capacitor chip
US6139593A (en) * 1997-11-06 2000-10-31 Nec Corporation Manufacturing method of anode body of solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US4945452A (en) Tantalum capacitor and method of making same
US5075940A (en) Process for producing solid electrolytic capacitors
EP2769394B1 (en) Sintered article and method of making sintered article
US2933805A (en) Electric heaters
US4510554A (en) Chip-like solid electrolyte capacitor
JP3233084B2 (en) Method for manufacturing anode body of solid electrolytic capacitor
JPH01181509A (en) Manufacture of solid electrolytic capacitor element formed body
EP3033756B1 (en) Method for producing a multilayer component comprising an external contact
JP4761463B2 (en) Capacitor anode body manufacturing method and apparatus
DE3003089A1 (en) Metallised foil capacitor - with epoxy! resin impregnation forming protective layer
DE4233403C2 (en) Process for the production of multi-layer hybrids
DE10256713A1 (en) Metal-insulator-metal capacitor for dynamic RAM, has dielectric film interposed between lower and upper electrodes comprising oxide film of ruthenium, tungsten or iridium
US3102216A (en) Metallized capacitor
JP3199096B2 (en) Solid electrolytic capacitors
US1627493A (en) Electrical condenser
US4264683A (en) Metallic inductor cores
JPH04167512A (en) Manufacture of solid electrolytic capacitor
JP2783932B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JPH04216609A (en) Element for solid electrolytic capacitor
JPH04279020A (en) Manufacture of solid electrolytic capacitor
JPS6237526B2 (en)
JPS62102515A (en) Anode unit for electrolytic capacitor and manufacture of thesame
JPS60219722A (en) Solid electrolytic condenser
DE19634497C1 (en) Insulating layer production on electronic ceramic body
SU1101913A2 (en) Process for manufacturing bulk-porous anodes