WO2020138018A1 - Mold, manufacturing device, and manufacturing method for manufacturing molded body - Google Patents

Mold, manufacturing device, and manufacturing method for manufacturing molded body Download PDF

Info

Publication number
WO2020138018A1
WO2020138018A1 PCT/JP2019/050459 JP2019050459W WO2020138018A1 WO 2020138018 A1 WO2020138018 A1 WO 2020138018A1 JP 2019050459 W JP2019050459 W JP 2019050459W WO 2020138018 A1 WO2020138018 A1 WO 2020138018A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
mold part
space
lower mold
upper mold
Prior art date
Application number
PCT/JP2019/050459
Other languages
French (fr)
Japanese (ja)
Inventor
田中 亨
佐藤 隆
隼人 加藤
和仁 小田根
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980085724.1A priority Critical patent/CN113260472B/en
Priority to JP2020563276A priority patent/JP7382605B2/en
Publication of WO2020138018A1 publication Critical patent/WO2020138018A1/en
Priority to US17/335,116 priority patent/US20210283684A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part

Definitions

  • the present invention relates to a mold for manufacturing a molded body, a manufacturing apparatus, and a manufacturing method.
  • an electrolytic capacitor having a small equivalent series resistance (ESR) and excellent frequency characteristics is under development.
  • ESR equivalent series resistance
  • anode body of the electrolytic capacitor for example, a porous sintered body obtained by sintering valve action metal particles such as tantalum, niobium, and titanium is used.
  • the porous sintered body is usually manufactured by charging valve-acting metal particles into a space partially defined by a mold, press-molding the particles, and then sintering the particles.
  • the valve action metal particles are usually introduced through an opening provided above the space. After the valve action metal particles are charged, the opening is closed by a mold holding the anode wire and pressure molding is performed. Thereby, a molded body in which the anode wire is erected from the upper surface is obtained.
  • the density of the valve action metal particles on the surface where the anode wire is planted tends to be sparse, and the anode wire may not be sufficiently fixed in the molded body after pressure molding. Therefore, Patent Document 1 proposes a method of increasing the density of the valve action metal particles on the surface side on which the anode wire is planted.
  • the density of the valve action metal particles on the surface side of the molded body may become excessively high. If the density of the valve action metal particles is too high, the particles are likely to be bonded to each other and the surface area of the molded product is reduced. In this case, the capacity of the electrolytic capacitor is reduced. In addition, the density difference of the molded body may become large between the surface side and the surface side opposite to the surface side. Then, cracks are likely to occur near the interface between the sparse region and the dense region of the molded body (or the sintered body), and the leakage current may increase when used as an electrolytic capacitor.
  • 1st aspect of this invention is a metal mold
  • the said rectangular parallelepiped has the 1st surface with which an anode wire can be planted, and the 2nd surface facing the said 1st surface.
  • a third surface and a fourth surface which intersect the first surface and the second surface and are opposed to each other, and intersect the first surface, the second surface, the third surface and the fourth surface, And a fifth surface and a sixth surface facing each other, and the mold has a pair of first mold parts defining the first surface and the second surface, respectively, and the third surface and the third surface.
  • At least one of the third mold parts has a pair of second mold parts that respectively define a fourth surface, and a pair of third mold parts that respectively define the fifth surface and the sixth surface.
  • a step part can be formed by a mold part, and the upper mold part can be relatively advanced with respect to the lower mold part so as to reduce the step part, and the upper mold part and the
  • the lower die part is a die that can be integrally advanced in a state where the step portion is maintained and a state where the step portion is not provided.
  • a second aspect of the present invention is an apparatus for manufacturing a molded body, which includes a mold and a hopper for charging metal particles into a space partially defined by the mold.
  • a third aspect of the present invention is a method for producing a molded body using the mold according to claim 1, wherein the first mold part on one side, the pair of second mold parts on the other side, The third mold part defines a first step of partially defining an initial space larger than the molding space, and a second step of introducing metal particles into the partially defined initial space. And a third step of advancing the third mold part in the initial space to press the metal particles.
  • the step part is formed by the lower mold part.
  • the step of integrally advancing the upper mold part and the lower mold part while maintaining the step portion, and the step of advancing the third mold part A step of advancing the upper mold part relative to the lower mold part so as to reduce the step, and the step of forming the upper mold part and the lower mold part without the step. And a step of integrally advancing in a state.
  • a fourth aspect of the present invention is a method for producing a porous sintered body, which includes a step of firing the molded body obtained by the above production method.
  • a porous sintered body having a fifth surface and a sixth surface which intersect the first surface, the second surface, the third surface and the fourth surface, and face each other, and the porous material.
  • a cathode layer formed on the solid electrolyte layer, wherein at least one of the fifth surface and the sixth surface extends in a direction intersecting the longitudinal direction of the anode wire.
  • the boundary line defines an upper mold part that defines a region of the fifth surface or the sixth surface on the first surface side, and a boundary of the upper surface of the fifth surface or the sixth surface on the second surface side.
  • the shortest length La in the longitudinal direction from the boundary line to the first surface and the shortest length Lb in the longitudinal direction from the boundary line to the second surface satisfy the relationship of La ⁇ Lb, Regarding electrolytic capacitors.
  • a sixth aspect of the present invention is directed to a first surface, a second surface facing the first surface, a third surface and a fourth surface intersecting the first surface and the second surface and facing each other.
  • a porous sintered body having a fifth surface and a sixth surface which intersect the first surface, the second surface, the third surface and the fourth surface, and face each other, and the porous material.
  • An anode wire a part of which is embedded in the sintered body, the rest of which extends from the first surface, a dielectric layer formed on the porous sintered body, and a solid electrolyte layer formed on the dielectric layer.
  • the boundary line defines an upper mold part that defines a region of the fifth surface or the sixth surface on the first surface side, and a boundary of the upper surface of the fifth surface or the sixth surface on the second surface side. Originating from the boundary between the upper mold part and the lower mold part that is slidable independently of the upper mold part, and when viewed from the direction normal to the fifth surface or the sixth surface, An end portion of the anode wire embedded in the porous sintered body is related to the electrolytic capacitor, which is located in a portion from the boundary line of the porous sintered body to the second surface.
  • a molded body having a small difference in density of metal particles can be obtained.
  • FIG. 6 is a flowchart showing a manufacturing method according to an embodiment of the present invention. It is sectional drawing which shows typically arrangement
  • FIG. 9 is a cross-sectional view schematically showing how the upper mold component and the lower mold component have integrally advanced while maintaining a step in the third step of the manufacturing method according to the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing how the upper die part relatively advances in the third step of the manufacturing method according to the embodiment of the present invention.
  • the mode that the surface of the upper mold part of the upper space side and the surface of the lower mold part of the lower space side became flush is shown typically.
  • FIG. 9 is a cross-sectional view schematically showing a state in which an upper mold component and a lower mold component are arranged at predetermined positions defining a molding space in the third step of the manufacturing method according to the embodiment of the present invention.
  • It is sectional drawing which shows typically the initial state of the operation part of the 3rd metal mold
  • It is sectional drawing which shows typically the state at the time of the completion
  • It is a sectional view showing typically an electrolytic capacitor using a porous calcination object concerning one embodiment of the present invention.
  • It is a perspective view which shows typically the molded object with which the anode wire which concerns on one Embodiment of this invention was embedded.
  • It is a perspective view which shows typically the porous sintered compact for demonstrating the evaluation method in an Example.
  • the density difference of the metal particles is reduced by providing a sufficient space in which the metal particles can move at the start of pressure molding.
  • the third mold part defining the fifth surface or the sixth surface intersecting the first surface on which the anode wire is erected can be slid independently.
  • a step portion is formed in the molding space by the lower mold component.
  • the width of the upper space in the sliding direction A is larger than the width of the lower space in the sliding direction A. In this state, by advancing the entire third mold component, the charged metal particles can easily move from the lower space to the upper space. Therefore, the density of the metal particles in the lower space is suppressed from becoming excessively high, and the density of the metal particles in the upper space is increased. That is, the difference in density of metal particles between the upper space and the lower space becomes small.
  • the mold according to this embodiment is used to mold a molded body on which the anode wire is erected.
  • the molded body has a substantially rectangular parallelepiped shape, and the anode wire is erected from one surface thereof.
  • the molded body has a first surface on which the anode wire can be erected, a second surface facing the first surface, and a third surface and a fourth surface intersecting the first surface and the second surface and facing each other. , A first surface, a second surface, a third surface, and a fourth surface, and a fifth surface and a sixth surface which face each other.
  • the third surface and the fourth surface may be narrower than the fifth surface and the sixth surface.
  • the metal mold defines a rectangular parallelepiped mold space corresponding to the above-mentioned molded body.
  • the molding space also has a first surface corresponding to the molded body, a second surface facing the first surface, a third surface and a fourth surface intersecting the first surface and the second surface, and facing each other, A fifth surface and a sixth surface which intersect the first surface, the second surface, the third surface and the fourth surface, and which face each other.
  • the mold includes a pair of first mold parts, a pair of second mold parts, and a pair of third mold parts.
  • the pair of first mold parts define a first surface and a second surface of the molding space.
  • One first mold part may carry the anode wire.
  • the pair of first mold parts are arranged so as to face each other and are slidable in the longitudinal direction of the anode wire.
  • the pair of second mold parts define the third surface and the fourth surface of the molding space.
  • the pair of second mold parts are arranged so as to face each other, and are slidable in a direction toward and away from each other.
  • the pair of third mold parts define the fifth surface and the sixth surface of the molding space.
  • the pair of third mold components are arranged so as to face each other, and are slidable in a direction toward each other and a direction away from each other (hereinafter, may be collectively referred to as a sliding direction A).
  • the sliding of the third mold component in the direction of reducing the space defined by itself is referred to as advancing.
  • the sliding of the third mold component in the direction of enlarging the space defined by itself is referred to as retreating.
  • At least one of the third mold parts defines an upper mold part that defines a first surface side of the fifth surface or the sixth surface and a second surface side area of the fifth surface or the sixth surface. And a lower mold part.
  • the upper mold part and the lower mold part can slide independently.
  • the lower mold component projects toward the molding space side from the upper mold component. Therefore, at the start of pressure molding, the third mold component has a stepped portion formed by the lower mold component, and the initial space has a lower space partially defined by the lower mold component, A part thereof is defined by the upper mold part, and an upper space having a large width in the sliding direction A is formed.
  • At the start of pressure molding at least a part of the lower space is filled with metal particles.
  • Part of the head space may also be occupied by metal particles.
  • the metal particles filled in the lower space move from the narrowed lower space to the upper space having a wide space not filled with metal particles. Since the width of the upper space in the sliding direction A is wider than the width of the lower space in the sliding direction A, the metal particles can be easily moved to the upper space.
  • the length (width Wa) of the step in the sliding direction A is not particularly limited, but is, for example, 2% or more of the length (width W40) of the molding space in the sliding direction A.
  • the ratio of the width Wa to the width W40 may be 3% or more.
  • the width Wa of the step is preferably not excessively large in that the difference in density of the metal particles between the upper space and the lower space becomes small.
  • the width Wa of the stepped portion is, for example, 15% or less of the width W40 of the molding space.
  • the ratio of the width Wa to the width W40 is in this range, excessive movement of the metal particles to the upper space is suppressed, and the density of the obtained molded body on the first surface side and the density on the second surface side are uniform. It is easy to become.
  • the ratio of the width Wa to the width W40 may be 10% or less, and may be 8% or less.
  • the width W40 of the molding space is synonymous with the distance W between the fifth surface and the sixth surface of the molded body.
  • Ratio (Ha:Hb) of the length (height Ha) of the upper die part in the direction perpendicular to the sliding direction A and the length (height Hb) of the lower die part in the direction perpendicular to the sliding direction A May be, for example, 4:1 to 1:4 and may be 2:3 to 1:3.
  • the height Hb is preferably equal to or higher than the height Ha in that the difference in the density of the metal particles between the upper space and the lower space tends to be small.
  • Ha:Hb may be, for example, 1:1 to 1:4 and may be 1:1 to 1:3.
  • the initial minimum distance W0 between the pair of third mold parts in the sliding direction A is not particularly limited as long as it is larger than the width W40 of the molding space.
  • the initial distance W0 may be, for example, larger than 100% of the width W40 of the molding space, 300% or more, or 500% or more.
  • the initial interval W0 may be 1000% or less of the width W40 of the molding space, and may be 800% or less.
  • the initial interval W0 can be referred to as an initial interval W0 between the lower mold parts.
  • the upper mold part and the lower mold part integrally move forward while maintaining the step.
  • the upper mold part then advances relative to the lower mold part, the step becomes smaller and eventually the step disappears.
  • the upper mold part and the lower mold part are integrally advanced to a predetermined position without any step.
  • FIG. 1A is a development schematic view of the mold according to the present embodiment as seen from above.
  • the first mold part is omitted for convenience.
  • FIG. 1B is a development schematic view of the mold according to the present embodiment as viewed from the side.
  • the second mold part is omitted for convenience.
  • the pair of third mold parts are divided into the upper mold part and the lower mold part, respectively, but the invention is not limited to this. It is sufficient that one of the pair of third mold components includes the upper mold component and the lower mold component.
  • the third mold component may further include a mold component on the side opposite to the lower mold component of the upper mold component.
  • the mold 30 defines a pair of first mold parts (31A and 31B) that define a first surface 40a and a second surface 40b of the molding space 40, and a third surface 40c and a fourth surface 40d of the molding space 40.
  • the pair of first mold parts 31A and 31B are arranged so as to face each other and are slidable in the longitudinal direction of the anode wire 2.
  • the pair of second mold parts 32A and 32B are arranged so as to face each other, and are slidable in a direction toward and away from each other.
  • the pair of third mold parts 33A and 33B are also arranged so as to face each other and are slidable in a direction toward and away from each other.
  • the third mold components 33A and 33B each include an upper mold component 331 and a lower mold component 332.
  • the upper mold part 331 and the lower mold part 332 can slide independently.
  • the third mold parts 33A and 33B have a step 332a formed by the lower mold part 332.
  • the upper die part 331 and the lower die part 332 can be integrally advanced while maintaining the step 332a.
  • Upper mold part 33 1 can be moved forward relative to the lower mold part 332 so as to make the step 332a smaller.
  • the upper die part 331 and the lower die part 332 can be integrally advanced even without the step 332a.
  • the apparatus for manufacturing a molded body according to the present embodiment includes the above-mentioned mold and a hopper (not shown) for charging metal particles into the space partially defined by the mold.
  • the hopper is defined by, for example, one first mold part that does not hold the anode wire, a pair of second mold parts, and a pair of third mold parts, and is defined in a predetermined space larger than the molding space. Charge metal particles in mass.
  • the molded body according to the present embodiment partially defines an initial space larger than the molding space by the one first mold component, the pair of second mold components, and the pair of third mold components.
  • One step (S1), a second step (S2) of injecting metal particles into the partially defined initial space, and a third mold part are advanced in the defined initial space to remove the metal particles. It is manufactured by a method including a third step (S3) of pressing.
  • FIG. 2 is a flowchart showing the manufacturing method according to the present embodiment.
  • First step A first mold part that does not hold an anode wire, a pair of second mold parts, and a pair of third mold parts partially define an initial space that is larger than the molding space. ..
  • the placement of the pair of third mold parts is tentative.
  • the third mold part is further slid.
  • the arrangement of the first mold part and the second mold part may be provisional.
  • the first mold part and the second mold part may also be slid further.
  • FIG. 3 is a sectional view schematically showing the arrangement of the molds in the first step.
  • one second mold component is omitted for convenience.
  • the pair of third mold parts are divided into the upper mold part and the lower mold part, but the invention is not limited to this.
  • the lower mold part 332 projects to the initial space S0 side from the upper mold part 331, and a step part 332a is formed by the lower mold part 332.
  • the width Wa of the step 332a is 3% or more and 8% or less of the width W40 (see FIG. 1B) of the molding space.
  • the ratio (Ha:Hb) between the height Ha of the upper die part and the height Hb of the lower die part is 1:2.
  • the initial minimum distance W0 in the sliding direction A between the third mold component 33A and the third mold component 33B is, for example, 500% or more and 800% or less of the width W40 of the molding space.
  • An initial space S0 larger than the molding space 40 is partially defined by the first mold part 31B that does not hold the anode wire 2, the pair of second mold parts 32A, and the pair of third mold parts 33A and 33B. ing.
  • the initial space S0 is an upper space Sa formed by an upper mold part 331, a first mold part 31A defining the first surface 40a, and a pair of second mold parts 32A, a lower mold part 332, and a lower mold part 332. It has a lower space Sb formed by a first mold part 31B defining a second surface 40b and a pair of second mold parts 32A.
  • the width of the upper space Sa in the sliding direction A is larger than the width of the lower space Sb in the sliding direction A by about twice the width Wa of the step portion 332a.
  • Second step Metal particles having a predetermined mass are put into the partially defined initial space.
  • the initial space is wide enough for the metal particles to be charged. Therefore, even after the metal particles are charged, at least a part of the upper space is not filled with the metal particles and is maintained.
  • FIG. 4 is a sectional view schematically showing the arrangement of molds in the second step.
  • one of the second mold parts is omitted for convenience.
  • the metal particles 1P put in the initial space S0 spread in a pyramid shape as shown in the illustrated example. Therefore, the upper space and a part of the lower space are maintained without being filled with the metal particles 1P.
  • the first mold part is slid to a predetermined position to define the initial space.
  • the third mold part is advanced within the defined initial space. As a result, the metal particles are pressed and the molded body is molded.
  • the second mold part Before sliding the third mold part, the second mold part may be further slid to a predetermined position.
  • the pair of third mold parts may be slid at the same time, or one of the third mold parts may be fixed and only the other third mold part may be slid.
  • the third step is a step (S31) of integrally advancing the upper die part and the lower die part in a state where the step part is maintained, and the upper die part is moved downward so as to make the step part smaller.
  • the method includes a step (S32) of advancing relative to the die part, and a step (S33) of advancing the upper die part and the lower die part integrally without a step.
  • the upper space is wider in the sliding direction A than the lower space.
  • the upper mold part advances relative to the lower mold part, and the step becomes smaller.
  • the step portion disappears and the surface of the upper mold part on the upper space side and the surface of the lower mold part on the lower space side become flush with each other, the relative advance of the upper mold part stops, and the upper mold part stops.
  • the lower die part and the lower die part are integrally advanced without a step.
  • FIGS. 5A to 5E are schematic cross-sectional views showing the operation of the third mold part in the third step.
  • the second mold part is omitted for convenience.
  • FIG. 5A is a sectional view schematically showing an initial arrangement of the third mold component.
  • the first mold parts 31A and 31B are slid to predetermined positions to define the entire initial space S0.
  • the second mold parts 32A and 32B are slid to predetermined positions that define a part of the molding space 40. Thereby, a part of the molding space 40 is also defined.
  • the first mold part and the second mold part do not have to slide.
  • the minimum initial distance in the sliding direction A between the third mold part 33A and the third mold part 33B is W0.
  • FIG. 5B is a cross-sectional view schematically showing a state where the upper mold component and the lower mold component have integrally advanced while maintaining a step.
  • the minimum first distance W1 in the sliding direction A between the third mold parts is smaller than the initial distance W0.
  • the upper mold part and the lower mold part are integrally advanced, and the upper space and the lower space are both narrow.
  • the metal particles 1P can escape to the wider upper space in the sliding direction A, the density of the metal particles in the lower space does not rise excessively.
  • the density of metal particles in the upper space increases.
  • FIG. 5C is a cross-sectional view schematically showing how the upper mold part relatively advances.
  • the second distance W2 in the sliding direction A between the lower mold components 332 becomes smaller than the first distance W1
  • both the upper space and the lower space are filled with metal particles.
  • the density of the metal particles 1P in the lower space which is a narrower space, becomes higher than that in the upper space, and the lower mold component 332 is pushed in the backward direction. Therefore, the width Wa1 of the step portion 332a is smaller than the initial width Wa.
  • the entire third mold component slides in the forward direction.
  • FIG. 5D is a cross-sectional view schematically showing a state in which the upper space side surface of the upper mold component and the lower space side surface of the lower mold component are flush with each other.
  • the third interval W3 between the third mold parts when the relative advance of the upper mold part 331 is stopped is smaller than the second interval W2.
  • FIG. 5E is a cross-sectional view schematically showing a state where the upper mold component and the lower mold component are arranged at predetermined positions that define the molding space.
  • the upper mold part 331 and the lower mold part 332 are integrally advanced to a predetermined position.
  • the predetermined position is a position where the distance between the third mold components is the width W40 of the molding space.
  • the upper die part 331 and the lower die part 332 integrally move forward and compress the metal particles until the distance between the third die parts changes from W3 to W40.
  • the upper mold part and the lower mold part move forward integrally and compress the metal particles, eliminating the pressure difference between the upper space and the lower space. To be done. Furthermore, since the metal particles in the upper space and the lower space that have not been compressed are compressed at the same timing, it is difficult for the boundary between the upper space and the lower space to occur. Therefore, when the molded body of the present embodiment is used for an electrolytic capacitor, leakage current is easily suppressed.
  • the operation of the upper mold part and the lower mold part in the third step can be realized by the operation unit having the following mechanism.
  • the operating portion of the third mold component includes a rod-shaped member (hereinafter referred to as a pin) extending in the sliding direction A of the third mold component, a ring-shaped spacer, a biasing member, and a base body.
  • a pin rod-shaped member
  • One end (first end) of the pin is in contact with a part of the lower mold part from the opposite side of the molding space.
  • the other end (second end) of the pin extends toward the base.
  • a collar is provided in the middle of the pin.
  • the spacer is inserted on the side of the second end of the collar provided on the pin.
  • the thickness of the spacer determines the width Wa of the step.
  • the biasing member is arranged between the base body and the spacer and is in contact with each of them.
  • the biasing member is, for example, an elastic body such as a spring.
  • the biasing member When the biasing member is in an unloaded state, the second end of the pin is not in contact with the base, and a gap having the same width as the spacer is formed between the second end of the pin and the base. There is.
  • the gap between the pin and the base becomes smaller and eventually the second end abuts the base.
  • the retreat of the lower die part (the relative advance of the upper die part) is stopped.
  • the surface of the upper mold part on the upper space side is flush with the surface of the lower mold part on the lower space side.
  • the lower mold part slides as the pin slides.
  • the upper mold part is in contact with the base body and is independent of the pins.
  • the biasing member is not loaded and a gap is formed between the second end of the pin and the base body. Therefore, the lower mold component projects toward the lower space side by the amount of the spacer than the upper mold component. As a result, a step is formed by the lower die part.
  • the step portion has the same width as the thickness of the spacer.
  • the lower mold part When the distance between the pair of third mold parts becomes narrower to some extent and the density of metal particles in the lower space increases, the lower mold part is pushed in the backward direction and the upper mold part relatively moves forward. Therefore, the pin is also pushed toward the base body, and the flange of the pin pushes the biasing member against the base body through the spacer. On the other hand, the biasing member tries to push the pin back to the lower space side. By adjusting the urging force of the urging member, the pressure applied to the metal particles can be controlled. The relative advancement of the upper mold part ends when the second end of the pin reaches the base body.
  • the sliding control part of the third mold part including the above-mentioned operating part advances the third mold part.
  • the slide control unit advances the entire third mold component by moving the base body to the molding space side. That is, while the upper die part is relatively advanced with respect to the lower die part, the entire third die part is also advanced, and the space becomes narrower over time. Even after the second end of the pin reaches the base body, the upper die part and the lower die part are integrally advanced.
  • FIG. 6A is a cross-sectional view schematically showing the initial state of the operation part of the third mold component.
  • FIG. 6A shows the case where the operation unit 50 regulates the operation of the third mold component 33A, the present invention is not limited to this.
  • the operating unit 50 includes a pin 51 extending in the sliding direction A of the third mold component 33A, a biasing member 52, a ring-shaped first spacer 53A, and a base 54.
  • a collar 51 a is provided in the middle of the pin 51.
  • the first spacer 53A is inserted on the second end side of the flange 51a.
  • the second spacer 53B may be inserted on the first end side of the flange 51a.
  • the biasing member 52 is, for example, a coil spring, is arranged between the base 54 and the first spacer 53A, and is in contact with each of them.
  • the first end of the pin 51 is in contact with a part of the lower mold part 332 from the opposite side of the molding space.
  • the second end of the pin 51 is not in contact with the base 54 when the biasing member 52 is in an unloaded state, and a gap G having the same width as the thickness of the first spacer 53A is formed between the second end of the pin 51 and the base 54.
  • the width of the gap G (the length in the sliding direction A) is the same as the width Wa of the step portion 332a formed in the third mold component 33A.
  • FIG. 6B is a sectional view schematically showing a state at the end of the operation of the operation unit of the third mold component.
  • the firing is performed in vacuum, for example.
  • the firing temperature and time are not particularly limited and may be appropriately set depending on the material of the metal particles and the like.
  • the molded body (and the porous sintered body that is a fired product thereof) includes an anode wire, a first surface on which the anode wire is erected, a second surface facing the first surface, a first surface and a second surface.
  • a third surface and a fourth surface which intersect the two surfaces and face each other, and a fifth surface and a sixth surface which intersect the first surface, the second surface, the third surface and the fourth surface, and face each other.
  • a boundary line extending in a direction intersecting the longitudinal direction of the anode wire is formed on at least one surface of the sixth surface. This boundary line originates from the boundary between the upper mold part and the lower mold part.
  • the portion on the first surface side from the boundary line of the molded body is formed by pressure-molding the metal particles with which the upper space is filled.
  • the portion on the second surface side from the boundary line of the molded body is formed by pressure-molding the metal particles with which the lower space is filled.
  • the shortest length La in the longitudinal direction of the anode wire from the boundary line to the first surface and the longitudinal direction of the anode wire from the boundary line to the second surface is not particularly limited, and depends on the ratio of the height Ha of the upper die part to the height Hb of the lower die part.
  • the ratio of the length La to the length Lb (La:Lb) may be, for example, 4:1 to 1:4 or 2:3 to 1:3.
  • the length Lb is preferably equal to or greater than the length La in that the anode wire is more easily fixed.
  • La:Lb may be, for example, 1:1 to 1:4 and may be 1:1 to 1:3.
  • the end portion of the anode wire that is embedded in the molded body may be on the second surface side from the boundary line.
  • the shortest distance H2a from the end of the anode wire to the second surface is shorter than the length La (H2a ⁇ Lb). This makes it easier for the anode wire to be more firmly fixed.
  • the shortest distance H2a may be 1/3 or less of the sum of the length La and the length Lb, and may be 1/4 or less. From the viewpoint of the fixability of the anode wire, it is preferable that the length Lb is equal to or greater than the length La and that the end portion of the anode wire is located on the second surface side from the boundary line.
  • FIG. 8 is a perspective view schematically showing a molded body in which a part of the anode wire according to the embodiment is embedded.
  • the molded body 1 (and the porous sintered body 1X which is a fired product thereof) has a first surface 1a and a second surface 1b, a third surface 1c and a fourth surface 1d, a fifth surface 1e and a sixth surface. 1f and.
  • the third surface 1c and the fourth surface 1d are smaller than the fifth surface 1e and the sixth surface 1f.
  • the molded body 1 is flat and has, for example, a flat plate shape.
  • a part of the anode wire 2 is embedded in the molded body 1, and the remaining part extends from the first surface 1 a of the molded body 1 to the outside.
  • a boundary line B extending in a direction intersecting the longitudinal direction of the anode wire 2 is formed on the fifth surface 1e and the sixth surface 1f of the molded body 1.
  • the length Lb from the boundary line B to the second surface 1b is longer than the length La from the boundary line B to the first surface 1a (Lb> La).
  • the end 2a of the anode wire 2 which is embedded in the molded body 1 is located on the second surface 1b side from the boundary line B.
  • the shortest distance H2a from the end 2a to the second surface 1b is shorter than the length La (H2a ⁇ Lb).
  • FIG. 7 is a sectional view schematically showing an electrolytic capacitor using the porous sintered body according to this embodiment.
  • the electrolytic capacitor 20 has a substantially hexahedral outer shape including three sets of opposed flat surfaces, and has a capacitor element 10, a resin outer package 11 that seals the capacitor element 10, and an anode exposed to the outside of the resin outer package 11.
  • a terminal 7 and a cathode terminal 9 are provided.
  • the capacitor element 10 includes a porous sintered body 1X as an anode body in which a part of an anode wire 2 electrically connected to an anode terminal 7 is embedded, a dielectric layer 3 formed on the surface thereof, It has a solid electrolyte layer 4 formed on the surface of the dielectric layer 3 and a cathode layer 5 formed on the surface of the solid electrolyte layer 4.
  • the porous sintered body 1X is obtained by press-molding valve-acting metal particles such as tantalum, niobium, titanium, or alloys thereof and firing them, but the present invention is limited to these metal particles. is not.
  • a part of the anode wire 2 protruding from the porous sintered body 1X is electrically connected to the anode terminal 7 by resistance welding or the like.
  • the cathode layer 5 is electrically connected to the cathode terminal 9 in the resin outer package 11 via the conductive adhesive 8 (for example, a mixture of thermosetting resin and metal particles).
  • the anode terminal 7 and the cathode terminal 9 shown in FIG. 8 are bent so that they protrude from the resin outer package 11 and the lower surface thereof is disposed on the same plane as the bottom surface of the resin outer package 11.
  • the lower surfaces of the anode terminal 7 and the cathode terminal 9 are used for solder connection with a substrate (not shown) on which the electrolytic capacitor 20 is to be mounted.
  • the dielectric layer can be formed as an oxide film by oxidizing the surface of the conductive material forming the porous sintered body. Specifically, the porous sintered body is immersed in a chemical conversion tank filled with an electrolytic aqueous solution (for example, phosphoric acid aqueous solution), and the protruding anode wire is connected to the porous sintered body to perform anodization. As a result, a dielectric layer made of an oxide film of a valve metal can be formed on the surface of the porous sintered body.
  • the electrolytic aqueous solution is not limited to the phosphoric acid aqueous solution, and nitric acid, acetic acid, sulfuric acid, or the like can be used.
  • the solid electrolyte layer is formed so as to cover the dielectric layer.
  • the solid electrolyte layer is made of, for example, manganese dioxide, a conductive polymer, or the like.
  • the solid electrolyte layer containing a conductive polymer is obtained by, for example, impregnating a porous sintered body on which a dielectric layer is formed with a monomer or oligomer, and then polymerizing the monomer or oligomer by chemical polymerization or electrolytic polymerization.
  • the porous sintered body on which the dielectric layer is formed is impregnated with a solution or dispersion liquid of a conductive polymer and dried to form on the dielectric layer.
  • the dielectric layer and the solid electrolyte layer for example, a part of the anode wire protruding from the porous sintered body is grasped and the porous sintered body is suspended, and then the porous sintered body is suspended.
  • a dielectric layer is formed on top of the dielectric layer, and a solid electrolyte layer is further formed thereon. Therefore, a large load is applied near the base of the anode wire. If the fixing of the anode wire is not sufficient, cracks are likely to occur in the porous sintered body from the vicinity of the root of the anode wire, and the leakage current tends to increase. According to this embodiment, since the anode wire is firmly fixed, the occurrence of cracks is also suppressed.
  • the cathode layer has, for example, a carbon layer formed so as to cover the solid electrolyte layer, and a metal paste layer formed on the surface of the carbon layer.
  • the carbon layer contains a conductive carbon material such as graphite and a resin.
  • the metal paste layer contains, for example, metal particles (for example, silver) and a resin. Note that the structure of the cathode layer is not limited to this structure.
  • the cathode layer may have any structure as long as it has a current collecting function.
  • Example 1 Using the mold shown in FIGS. 1A and 1B, tantalum particles are pressure-molded to obtain a molded body x shown in FIG. 8 having a width W of 0.83 mm and a length in the direction perpendicular to the width W of 5.17 mm. It was made.
  • the operation of the pair of third mold parts was controlled by the operation unit shown in FIG. 6A.
  • the initial minimum distance W0 between the third mold parts was 5 mm.
  • the width Wa of the step is 0.05 mm.
  • the ratio Ha/Hb of the height Ha of the upper die part to the height Hb of the lower die part was about 1/2.
  • the obtained molded body x was fired to produce five porous sintered bodies A1.
  • Fracture strength Three straight lines are drawn on the fourth surface of the porous sintered body in the longitudinal direction of the anode wire, a point P1 on the straight line Lc at the center thereof, which is 0.5 mm away from the first surface, and The breaking strength was measured at the point P2 on the central straight line Lc and 0.5 mm away from the second surface (see FIG. 9).
  • the straight line Lc at the center divides the width of the fourth surface perpendicular to the longitudinal direction into two equal parts.
  • Two straight lines L1 and L2 were drawn so as to sandwich the central straight line Lc at a position apart from the central straight line Lc by about 0.25 mm.
  • Rupture strength was measured by pressing the compression terminal against the porous sintered body using a tensile compression tester while applying a load. When the porous sintered body is broken, the load applied to the compression terminal is the breaking strength. The breaking strength (%) at the point P1 when the breaking strength at the point P2 was 100% was calculated. The breaking strength (%) was the average value of the five porous sintered bodies. The results are shown in Table 1.
  • the breaking strength on the first surface side (point P1) where the anode wire extends is slightly larger than the breaking strength on the opposite second surface side (point P2). Therefore, the anode wire is firmly fixed.
  • the breaking strength at the point P1 is not excessively large as compared with the point P2, and it can be said that the density is substantially uniform between the first surface side and the second surface side.
  • the breaking strength on the first surface side (point P1) from which the anode wire extends is smaller than the breaking strength on the opposite second surface side (point P2). Further, there is a relatively large difference between the breaking strength at the point P1 and the breaking strength at the point P2.
  • the straight lines Lc, L1 and L2 were drawn on the fourth surface of the porous sintered body, and 12 straight lines M1 to M12 were drawn in a direction perpendicular to the longitudinal direction of the anode wire.
  • the straight line M1 closest to the first surface was drawn 0.25 mm away from the end of the fourth surface on the first surface side.
  • the straight line M12 closest to the second surface was also drawn at a position 0.25 mm away from the end of the fourth surface on the second surface side.
  • the remaining 10 straight lines were drawn so as to divide the straight lines M1 and M2 into 11 equal parts.
  • Vickers hardness was measured at 36 intersections of the straight lines Lc, L1 and L2 and the straight lines M1 to M12 (see FIG. 9). The Vickers hardness was measured according to JIS Z 2244.
  • the same tendency as breaking strength was observed. That is, in the porous sintered body A1, the Vickers hardness on the first surface side from which the anode wire extends is slightly larger than the Vickers hardness on the opposite second surface side, but is not excessively large.
  • the area from the end of the fourth surface on the first surface side to the straight line M3 corresponds to the portion pressed by the upper die part.
  • the area from the end on the second surface side of the fourth surface to the straight line M6 corresponds to the portion pressed by the lower die part. Since no large difference was found between the Vickers hardness HVa and the Vickers hardness HVb, it can be seen that the effect of dividing the third mold part is not so great.
  • Example 2 to 4 Porous sintered bodies A2 to A4 were produced in the same manner as in Example 1 except that the width Wa of the step portion was set to 0.14 mm, 0.3 mm, and 0.5 mm.
  • the fracture strengths of the obtained porous sintered bodies A2 to A4 were measured in the same manner as above, the fracture strength at the point P1 increased as the width Wa increased, and the fracture strength at the width Wa and the point P1 It can be seen that there is a correlation between the two.
  • the present invention can be used for an electrolytic capacitor having a porous sintered body as an anode body.
  • Capacitor element 1 Molded body 1X: Porous sintered body 1P: Metal particle 1a: First surface 1b: Second surface 1c: Third surface 1d: Fourth surface 1e: Fifth surface 1f: Sixth surface 2 : Anode wire 2a: End part 3: Dielectric layer 4: Solid electrolyte layer 5: Cathode layer 7: Anode terminal 8: Conductive adhesive 9: Cathode terminal 11: Resin exterior body 20: Electrolytic capacitor 30: Mold 31A, 31B: First mold part 32A, 32B: Second mold part 33A, 33B: Third mold part 331: Upper mold part 332: Lower mold part 332a: Step part 40: Molding space 40a: First surface 40b: 2nd surface 40c: 3rd surface 40d: 4th surface 40e: 5th surface 40f: 6th surface 50: Operating part 51: Pin 51a: Tsuba 52: Energizing member 53A: 1st spacer 53B: 2nd spacer 54: substrate

Abstract

This mold comprises: a pair of first mold parts which respectively define a first surface and a second surface; a pair of second mold parts which respectively define a third surface and a fourth surface; and a pair of third mold parts which respectively define a fifth surface and a sixth surface. At least one of the third mold parts is provided with an upper mold part which defines a first-surface-side region of the fifth surface or the sixth surface and a lower mold part which defines a second-surface-side region of the fifth surface or the sixth surface and is slidable independently of the upper mold part. A step portion using the lower mold part can be formed by causing the lower mold part to protrude more toward a mold space than the upper mold part. The upper mold part can be moved forward relative to the lower mold part to make the step portion small. The upper mold part and the lower mold part can be integrally moved forward in the state where the step portion remains and the state where the step portion is absent.

Description

成型体を製造するための金型、製造装置ならびに製造方法Mold for manufacturing molded body, manufacturing apparatus and manufacturing method
 本発明は、成型体を製造するための金型、製造装置ならびに製造方法に関する。 The present invention relates to a mold for manufacturing a molded body, a manufacturing apparatus, and a manufacturing method.
 近年、電子機器の小型化および軽量化に伴って、小型かつ大容量の高周波用コンデンサが求められている。このようなコンデンサとして、等価直列抵抗(ESR)が小さく、周波数特性に優れている電解コンデンサの開発が進められている。電解コンデンサの陽極体としては、例えば、タンタル、ニオブ、チタンなどの弁作用金属粒子を焼結した多孔質焼結体が用いられる。 In recent years, as electronic devices have become smaller and lighter, small-sized and large-capacity high-frequency capacitors have been required. As such a capacitor, an electrolytic capacitor having a small equivalent series resistance (ESR) and excellent frequency characteristics is under development. As the anode body of the electrolytic capacitor, for example, a porous sintered body obtained by sintering valve action metal particles such as tantalum, niobium, and titanium is used.
 多孔質焼結体は、通常、金型により一部が画定された空間内に弁作用金属粒子を投入し、加圧成型した後、焼結することにより製造される。弁作用金属粒子は、通常、上記空間の上方に設けられた開口から投入される。弁作用金属粒子の投入後、当該開口は、陽極ワイヤを保持する金型により塞がれて、加圧成型される。これにより、上方の面から陽極ワイヤが植立する成型体が得られる。しかし、陽極ワイヤが植立する面側の弁作用金属粒子の密度は疎になり易く、加圧成型後の成型体における陽極ワイヤの固定が十分でない場合がある。
 そこで、特許文献1では、陽極ワイヤが植立する面側の弁作用金属粒子の密度を高める方法を提案している。
The porous sintered body is usually manufactured by charging valve-acting metal particles into a space partially defined by a mold, press-molding the particles, and then sintering the particles. The valve action metal particles are usually introduced through an opening provided above the space. After the valve action metal particles are charged, the opening is closed by a mold holding the anode wire and pressure molding is performed. Thereby, a molded body in which the anode wire is erected from the upper surface is obtained. However, the density of the valve action metal particles on the surface where the anode wire is planted tends to be sparse, and the anode wire may not be sufficiently fixed in the molded body after pressure molding.
Therefore, Patent Document 1 proposes a method of increasing the density of the valve action metal particles on the surface side on which the anode wire is planted.
特開平10-163074号公報JP, 10-163074, A
 特許文献1に記載された方法では、成型体の上記面側の弁作用金属粒子の密度が、過度に高くなる場合がある。弁作用金属粒子の密度が高くなりすぎると、粒子同士が接合し易くなって、成型体の表面積が減少する。この場合、電解コンデンサの容量が低減する。また、上記面側とその反対の面側とで、成型体の密度差が大きくなる場合もある。すると、成型体(あるいは焼結体)の疎な領域と密な領域との界面付近で亀裂が生じ易くなって、電解コンデンサとして使用したときに漏れ電流が増大する場合がある。 In the method described in Patent Document 1, the density of the valve action metal particles on the surface side of the molded body may become excessively high. If the density of the valve action metal particles is too high, the particles are likely to be bonded to each other and the surface area of the molded product is reduced. In this case, the capacity of the electrolytic capacitor is reduced. In addition, the density difference of the molded body may become large between the surface side and the surface side opposite to the surface side. Then, cracks are likely to occur near the interface between the sparse region and the dense region of the molded body (or the sintered body), and the leakage current may increase when used as an electrolytic capacitor.
 本発明の第1の局面は、直方体型の成型空間を画定する金型であって、前記直方体は、陽極ワイヤが植立され得る第1面と、前記第1面に対向する第2面と、前記第1面および前記第2面と交差し、かつ互いに対向する第3面および第4面と、前記第1面、前記第2面、前記第3面および前記第4面と交差し、かつ互いに対向する第5面および第6面と、を有し、前記金型は、前記第1面および前記第2面をそれぞれ画定する一対の第1金型部品と、前記第3面および前記第4面をそれぞれ画定する一対の第2金型部品と、前記第5面および前記第6面をそれぞれ画定する一対の第3金型部品と、を有し、前記第3金型部品の少なくとも一方は、前記第5面または前記第6面の前記第1面側の領域を画定する上部金型部品と、前記第5面または前記第6面の前記第2面側の領域を画定し、かつ、前記上部金型部品とは独立して滑動可能な下部金型部品と、を備え、前記下部金型部品を、前記上部金型部品より前記成型空間側に突出させることにより、前記下部金型部品による段部が形成可能であり、前記上部金型部品は、前記段部を小さくするように、前記下部金型部品に対して相対的に前進可能であり、前記上部金型部品と前記下部金型部品とは、前記
段部を維持した状態および前記段部のない状態で、一体的に前進可能である、金型である。
1st aspect of this invention is a metal mold|die which defines the molding space of a rectangular parallelepiped type|mold, The said rectangular parallelepiped has the 1st surface with which an anode wire can be planted, and the 2nd surface facing the said 1st surface. A third surface and a fourth surface which intersect the first surface and the second surface and are opposed to each other, and intersect the first surface, the second surface, the third surface and the fourth surface, And a fifth surface and a sixth surface facing each other, and the mold has a pair of first mold parts defining the first surface and the second surface, respectively, and the third surface and the third surface. At least one of the third mold parts has a pair of second mold parts that respectively define a fourth surface, and a pair of third mold parts that respectively define the fifth surface and the sixth surface. One defines an upper mold part that defines a region of the fifth surface or the sixth surface on the first surface side, and a region of the fifth surface or the sixth surface on the second surface side, And a lower mold part that is slidable independently of the upper mold part, and the lower mold part is projected toward the molding space side from the upper mold part to form the lower mold part. A step part can be formed by a mold part, and the upper mold part can be relatively advanced with respect to the lower mold part so as to reduce the step part, and the upper mold part and the The lower die part is a die that can be integrally advanced in a state where the step portion is maintained and a state where the step portion is not provided.
 本発明の第2の局面は、金型と、前記金型により部分的に画定された空間内に金属粒子を投入するホッパーと、を備える、成型体の製造装置である。 A second aspect of the present invention is an apparatus for manufacturing a molded body, which includes a mold and a hopper for charging metal particles into a space partially defined by the mold.
 本発明の第3の局面は、請求項1に記載の金型により成型体を製造する方法であって、一方の前記第1金型部品と、一対の前記第2金型部品と、一対の前記第3金型部品とにより、前記成型空間より大きい初期空間を部分的に画定する第1工程と、部分的に画定された前記初期空間内に金属粒子を投入する第2工程と、画定された前記初期空間内で前記第3金型部品を前進させて、前記金属粒子を押圧する第3工程と、を備え、前記第1工程では、前記下部金型部品による前記段部が形成されており、前記第3工程は、前記上部金型部品と前記下部金型部品とを、前記段部を維持した状態で一体的に前進させる工程と、前記第3金型部品を前進させながら、前記上部金型部品を、前記段部を小さくするように、前記下部金型部品に対して相対的に前進させる工程と、前記上部金型部品と前記下部金型部品とを、前記段部のない状態で一体的に前進させる工程と、を備える、成型体の製造方法である。 A third aspect of the present invention is a method for producing a molded body using the mold according to claim 1, wherein the first mold part on one side, the pair of second mold parts on the other side, The third mold part defines a first step of partially defining an initial space larger than the molding space, and a second step of introducing metal particles into the partially defined initial space. And a third step of advancing the third mold part in the initial space to press the metal particles. In the first step, the step part is formed by the lower mold part. In the third step, the step of integrally advancing the upper mold part and the lower mold part while maintaining the step portion, and the step of advancing the third mold part, A step of advancing the upper mold part relative to the lower mold part so as to reduce the step, and the step of forming the upper mold part and the lower mold part without the step. And a step of integrally advancing in a state.
 本発明の第4の局面は、上記製造方法により得られた成型体を焼成する工程を備える、多孔質焼結体の製造方法である。 A fourth aspect of the present invention is a method for producing a porous sintered body, which includes a step of firing the molded body obtained by the above production method.
 本発明の第5の局面は、第1面と、前記第1面に対向する第2面と、前記第1面および前記第2面と交差し、かつ互いに対向する第3面および第4面と、前記第1面、前記第2面、前記第3面および前記第4面と交差し、かつ互いに対向する第5面および第6面と、を有する多孔質焼結体と、前記多孔質焼結体に一部が埋設され、残部が前記第1面から延びる陽極ワイヤと、前記多孔質焼結体上に形成された誘電体層と、前記誘電体層上に形成された固体電解質層と、前記固体電解質層上に形成された陰極層と、を備えるコンデンサ素子を具備し、前記第5面および前記第6面の少なくとも一面は、前記陽極ワイヤの長手方向に交わる方向に延びる境界線を備え、前記境界線は、前記第5面または前記第6面の前記第1面側の領域を画定する上部金型部品と、前記第5面または前記第6面の前記第2面側の領域を画定し、かつ、前記上部金型部品とは独立して滑動可能な下部金型部品と、の境界に由来し、前記第5面または前記第6面の法線方向からみたとき、前記境界線から前記第1面までの前記長手方向における最短の長さLaと、前記境界線から前記第2面までの前記長手方向における最短の長さLbとは、La≦Lbの関係を満たす、電解コンデンサに関する。 In a fifth aspect of the present invention, a first surface, a second surface facing the first surface, a third surface and a fourth surface intersecting the first surface and the second surface and facing each other. And a porous sintered body having a fifth surface and a sixth surface which intersect the first surface, the second surface, the third surface and the fourth surface, and face each other, and the porous material. An anode wire, a part of which is embedded in the sintered body, the rest of which extends from the first surface, a dielectric layer formed on the porous sintered body, and a solid electrolyte layer formed on the dielectric layer. And a cathode layer formed on the solid electrolyte layer, wherein at least one of the fifth surface and the sixth surface extends in a direction intersecting the longitudinal direction of the anode wire. And the boundary line defines an upper mold part that defines a region of the fifth surface or the sixth surface on the first surface side, and a boundary of the upper surface of the fifth surface or the sixth surface on the second surface side. Originating from the boundary between the upper mold part and the lower mold part that is slidable independently of the upper mold part, and when viewed from the direction normal to the fifth surface or the sixth surface, The shortest length La in the longitudinal direction from the boundary line to the first surface and the shortest length Lb in the longitudinal direction from the boundary line to the second surface satisfy the relationship of La≦Lb, Regarding electrolytic capacitors.
 本発明の第6の局面は、第1面と、前記第1面に対向する第2面と、前記第1面および前記第2面と交差し、かつ互いに対向する第3面および第4面と、前記第1面、前記第2面、前記第3面および前記第4面と交差し、かつ互いに対向する第5面および第6面と、を有する多孔質焼結体と、前記多孔質焼結体に一部が埋設され、残部が前記第1面から延びる陽極ワイヤと、前記多孔質焼結体上に形成された誘電体層と、前記誘電体層上に形成された固体電解質層と、前記固体電解質層上に形成された陰極層と、を備えるコンデンサ素子を具備し、前記第5面および前記第6面の少なくとも一面は、前記陽極ワイヤの長手方向に交わる方向に延びる境界線を備え、前記境界線は、前記第5面または前記第6面の前記第1面側の領域を画定する上部金型部品と、前記第5面または前記第6面の前記第2面側の領域を画定し、かつ、前記上部金型部品とは独立して滑動可能な下部金型部品と、の境界に由来し、前記第5面または前記第6面の法線方向からみたとき、前記陽極ワイヤの前記多孔質焼結体に埋設されている端部は、前記多孔質焼結体の前記境界線から前記第2面までの部分にある、電解コンデンサに関する。 A sixth aspect of the present invention is directed to a first surface, a second surface facing the first surface, a third surface and a fourth surface intersecting the first surface and the second surface and facing each other. And a porous sintered body having a fifth surface and a sixth surface which intersect the first surface, the second surface, the third surface and the fourth surface, and face each other, and the porous material. An anode wire, a part of which is embedded in the sintered body, the rest of which extends from the first surface, a dielectric layer formed on the porous sintered body, and a solid electrolyte layer formed on the dielectric layer. And a cathode layer formed on the solid electrolyte layer, wherein at least one of the fifth surface and the sixth surface extends in a direction intersecting the longitudinal direction of the anode wire. And the boundary line defines an upper mold part that defines a region of the fifth surface or the sixth surface on the first surface side, and a boundary of the upper surface of the fifth surface or the sixth surface on the second surface side. Originating from the boundary between the upper mold part and the lower mold part that is slidable independently of the upper mold part, and when viewed from the direction normal to the fifth surface or the sixth surface, An end portion of the anode wire embedded in the porous sintered body is related to the electrolytic capacitor, which is located in a portion from the boundary line of the porous sintered body to the second surface.
 本発明によれば、金属粒子の密度差の少ない成型体が得られる。 According to the present invention, a molded body having a small difference in density of metal particles can be obtained.
本発明の一実施形態に係る金型を上方から見た展開模式図である。It is a development schematic diagram which looked at the metallic mold concerning one embodiment of the present invention from the upper part. 本発明の一実施形態に係る金型を側方から見た展開模式図である。It is a development schematic diagram which looked at the metallic mold concerning one embodiment of the present invention from the side. 本発明の一実施形態に係る製造方法を示すフローチャートである。6 is a flowchart showing a manufacturing method according to an embodiment of the present invention. 本発明の一実施形態に係る製造方法の第1工程における金型の配置を模式的に示す断面図である。It is sectional drawing which shows typically arrangement|positioning of the metal mold|die in the 1st process of the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造方法の第2工程における金型の配置を模式的に示す断面図である。It is sectional drawing which shows typically arrangement|positioning of the metal mold|die in the 2nd process of the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造方法の第3工程における第3金型部品の初期の配置を模式的に示す断面図である。It is sectional drawing which shows typically the initial arrangement|positioning of the 3rd metal mold components in the 3rd process of the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造方法の第3工程において、上部金型部品および下部金型部品が段差を維持しながら一体的に前進した様子を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing how the upper mold component and the lower mold component have integrally advanced while maintaining a step in the third step of the manufacturing method according to the embodiment of the present invention. 本発明の一実施形態に係る製造方法の第3工程において、上部金型部品が相対的に前進する様子を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing how the upper die part relatively advances in the third step of the manufacturing method according to the embodiment of the present invention. 本発明の一実施形態に係る製造方法の第3工程において、上部金型部品の上部空間側の面と下部金型部品の下部空間側の面とが面一になった様子を模式的に示す断面図である。In the 3rd process of the manufacturing method which concerns on one Embodiment of this invention, the mode that the surface of the upper mold part of the upper space side and the surface of the lower mold part of the lower space side became flush is shown typically. FIG. 本発明の一実施形態に係る製造方法の第3工程において、上部金型部品と下部金型部品とが、成型空間を画定する所定位置に配置された様子を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a state in which an upper mold component and a lower mold component are arranged at predetermined positions defining a molding space in the third step of the manufacturing method according to the embodiment of the present invention. 本発明の一実施形態に係る第3金型部品の動作部の初期状態を模式的に示す断面図である。It is sectional drawing which shows typically the initial state of the operation part of the 3rd metal mold|die part which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第3金型部品の動作部の動作終了時の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state at the time of the completion|finish of operation|movement of the operation part of the 3rd metal mold|die part which concerns on one Embodiment of this invention. 本発明の一実施形態に係る多孔質焼成体を用いた電解コンデンサを模式的に示す断面図である。It is a sectional view showing typically an electrolytic capacitor using a porous calcination object concerning one embodiment of the present invention. 本発明の一実施形態に係る陽極ワイヤの一部が埋設された成型体を模式的に示す斜視図である。It is a perspective view which shows typically the molded object with which the anode wire which concerns on one Embodiment of this invention was embedded. 実施例における評価方法を説明するための多孔質焼結体を模式的に示す斜視図である。It is a perspective view which shows typically the porous sintered compact for demonstrating the evaluation method in an Example.
 本実施形態では、加圧成型の開始時に金属粒子が移動できる十分な空間を設けることにより、金属粒子の密度差を小さくする。具体的には、本実施形態に係る金型のうち、陽極ワイヤが植立される第1面に交差する第5面あるいは第6面を画定する第3金型部品を、独立して滑動可能な上部金型部品および下部金型部品に分割する。そして、下部金型部品を成型空間側に突出させることにより、成型空間内に下部金型部品による段部を形成する。この段部により、加圧成型が開始される初期空間には、上部金型部品と第1面を画定する第1金型部品と一対の第2金型部品とにより形成される上部空間と、下部金型部品と第2面を画定する第1金型部品と一対の第2金型部品とにより形成される下部空間とが形成される。 In this embodiment, the density difference of the metal particles is reduced by providing a sufficient space in which the metal particles can move at the start of pressure molding. Specifically, in the mold according to the present embodiment, the third mold part defining the fifth surface or the sixth surface intersecting the first surface on which the anode wire is erected can be slid independently. Into upper mold part and lower mold part. Then, by projecting the lower mold component toward the molding space, a step portion is formed in the molding space by the lower mold component. With this step, in the initial space where pressure molding is started, the upper space formed by the upper mold part, the first mold part defining the first surface, and the pair of second mold parts, A lower space formed by the lower mold part, the first mold part defining the second surface, and the pair of second mold parts is formed.
 上部空間の滑動方向Aの幅は、下部空間の滑動方向Aの幅より大きい。この状態で、第3金型部品全体を前進させると、投入された金属粒子は、下部空間から上部空間へと容易に移動することができる。よって、下部空間における金属粒子の密度が過度に高くなることが抑制されるとともに、上部空間における金属粒子の密度が高まる。つまり、上部空間と下部空間との金属粒子の密度差が小さくなる。 The width of the upper space in the sliding direction A is larger than the width of the lower space in the sliding direction A. In this state, by advancing the entire third mold component, the charged metal particles can easily move from the lower space to the upper space. Therefore, the density of the metal particles in the lower space is suppressed from becoming excessively high, and the density of the metal particles in the upper space is increased. That is, the difference in density of metal particles between the upper space and the lower space becomes small.
<金型>
 本実施形態に係る金型は、陽極ワイヤが植立する成型体を成型するのに用いられる。成型体は、概ね直方体型であって、その一面から陽極ワイヤが植立している。
<Mold>
The mold according to this embodiment is used to mold a molded body on which the anode wire is erected. The molded body has a substantially rectangular parallelepiped shape, and the anode wire is erected from one surface thereof.
 成型体は、陽極ワイヤが植立され得る第1面と、第1面に対向する第2面と、第1面および第2面と交差し、かつ互いに対向する第3面および第4面と、第1面、第2面、第3面および第4面と交差し、かつ互いに対向する第5面および第6面と、を有する。第3面および第4面は、第5面および第6面より狭小であってよい。 The molded body has a first surface on which the anode wire can be erected, a second surface facing the first surface, and a third surface and a fourth surface intersecting the first surface and the second surface and facing each other. , A first surface, a second surface, a third surface, and a fourth surface, and a fifth surface and a sixth surface which face each other. The third surface and the fourth surface may be narrower than the fifth surface and the sixth surface.
 金型は、上記成型体に対応する直方体型の成型空間を画定する。成型空間もまた、成型体に対応する第1面と、第1面に対向する第2面と、第1面および第2面と交差し、かつ互いに対向する第3面および第4面と、第1面、第2面、第3面および第4面と交差し、かつ互いに対向する第5面および第6面と、を有する。 The metal mold defines a rectangular parallelepiped mold space corresponding to the above-mentioned molded body. The molding space also has a first surface corresponding to the molded body, a second surface facing the first surface, a third surface and a fourth surface intersecting the first surface and the second surface, and facing each other, A fifth surface and a sixth surface which intersect the first surface, the second surface, the third surface and the fourth surface, and which face each other.
 金型は、一対の第1金型部品と、一対の第2金型部品と、一対の第3金型部品と、を備える。
 一対の第1金型部品は、成型空間の第1面および第2面を画定する。一方の第1金型部品は、陽極ワイヤを保持していてよい。一対の第1金型部品は、互いに対向するように配置され、陽極ワイヤの長手方向に滑動可能である。
The mold includes a pair of first mold parts, a pair of second mold parts, and a pair of third mold parts.
The pair of first mold parts define a first surface and a second surface of the molding space. One first mold part may carry the anode wire. The pair of first mold parts are arranged so as to face each other and are slidable in the longitudinal direction of the anode wire.
 一対の第2金型部品は、成型空間の第3面および第4面を画定する。一対の第2金型部品は、互いに対向するように配置され、互いに向かって接近する方向および離間する方向に滑動可能である。 The pair of second mold parts define the third surface and the fourth surface of the molding space. The pair of second mold parts are arranged so as to face each other, and are slidable in a direction toward and away from each other.
 一対の第3金型部品は、成型空間の第5面および第6面を画定する。一対の第3金型部品は、互いに対向するように配置され、互いに向かって接近する方向および離間する方向(以下、滑動方向Aと総称する場合がある。)に滑動可能である。第3金型部品が、自身が画定している空間を小さくする方向に滑動することを、前進すると称する。第3金型部品が、自身が画定している空間を大きくする方向に滑動することを、後退すると称する。 The pair of third mold parts define the fifth surface and the sixth surface of the molding space. The pair of third mold components are arranged so as to face each other, and are slidable in a direction toward each other and a direction away from each other (hereinafter, may be collectively referred to as a sliding direction A). The sliding of the third mold component in the direction of reducing the space defined by itself is referred to as advancing. The sliding of the third mold component in the direction of enlarging the space defined by itself is referred to as retreating.
 第3金型部品の少なくとも一方は、第5面または第6面の第1面側の領域を画定する上部金型部品と、第5面または第6面の第2面側の領域を画定する下部金型部品と、を備える。上部金型部品と下部金型部品とは、独立して滑動可能である。加圧成型が開始される初期位置において、下部金型部品は、上部金型部品より成型空間側に突出している。そのため、加圧成型開始時、第3金型部品には、下部金型部品による段部が形成されており、初期空間には、下部金型部品によりその一部が画定される下部空間と、上部金型部品によりその一部が画定され、滑動方向Aの幅の大きい上部空間とが形成される。 At least one of the third mold parts defines an upper mold part that defines a first surface side of the fifth surface or the sixth surface and a second surface side area of the fifth surface or the sixth surface. And a lower mold part. The upper mold part and the lower mold part can slide independently. At the initial position where the pressure molding is started, the lower mold component projects toward the molding space side from the upper mold component. Therefore, at the start of pressure molding, the third mold component has a stepped portion formed by the lower mold component, and the initial space has a lower space partially defined by the lower mold component, A part thereof is defined by the upper mold part, and an upper space having a large width in the sliding direction A is formed.
 加圧成型開始時、下部空間の少なくとも一部には金属粒子が充填されている。上部空間の一部も金属粒子により占められていてもよい。一対の第3金型部品が互いに接近すると、下部空間に充填されていた金属粒子は、狭くなった下部空間から、金属粒子の充填されていない広い空間を有する上部空間へと移動する。上部空間の滑動方向Aの幅が、下部空間の滑動方向Aの幅より広いことにより、金属粒子の上部空間への移動は容易になる。 At the start of pressure molding, at least a part of the lower space is filled with metal particles. Part of the head space may also be occupied by metal particles. When the pair of third mold parts approach each other, the metal particles filled in the lower space move from the narrowed lower space to the upper space having a wide space not filled with metal particles. Since the width of the upper space in the sliding direction A is wider than the width of the lower space in the sliding direction A, the metal particles can be easily moved to the upper space.
 段部の滑動方向Aにおける長さ(幅Wa)は特に限定されないが、例えば、成型空間の滑動方向Aにおける長さ(幅W40)の2%以上である。幅Waの幅W40に対する割合がこの範囲であると、成型体の第1面側の密度が高くなり易い。幅Waの幅W40に対する割合は、3%以上であってよい。上部空間と下部空間との金属粒子の密度差が小さくなる点で、段部の幅Waは、過度に大きくないことが望ましい。段部の幅Waは、例えば、成型空間の幅W40の15%以下である。幅Waの幅W40に対する割合がこの範囲であると、金属粒子の上部空間への過剰な移動が抑制されて、得られる成型体の第1面側の密度と第2面側の密度とが均一になり易い。幅Waの幅W40に対する割合は、10%以下であってよく、8%以下であってよい。成型空間の幅W40は、成型体の第5面と第6面との間の距離Wと同義である。 The length (width Wa) of the step in the sliding direction A is not particularly limited, but is, for example, 2% or more of the length (width W40) of the molding space in the sliding direction A. When the ratio of the width Wa to the width W40 is in this range, the density on the first surface side of the molded body tends to be high. The ratio of the width Wa to the width W40 may be 3% or more. The width Wa of the step is preferably not excessively large in that the difference in density of the metal particles between the upper space and the lower space becomes small. The width Wa of the stepped portion is, for example, 15% or less of the width W40 of the molding space. When the ratio of the width Wa to the width W40 is in this range, excessive movement of the metal particles to the upper space is suppressed, and the density of the obtained molded body on the first surface side and the density on the second surface side are uniform. It is easy to become. The ratio of the width Wa to the width W40 may be 10% or less, and may be 8% or less. The width W40 of the molding space is synonymous with the distance W between the fifth surface and the sixth surface of the molded body.
 上部金型部品および下部金型部品の滑動方向Aに垂直な方向の長さの割合は、特に限定されない。上部金型部品の滑動方向Aに垂直な方向の長さ(高さHa)と、下部金型部品の滑動方向Aに垂直な方向の長さ(高さHb)との比(Ha:Hb)は、例えば、4:1~1:4であってよく、2:3~1:3であってよい。上部空間と下部空間との金属粒子の密度差が小さくなり易い点で、高さHbは、高さHa以上であることが好ましい。Ha:Hbは、例えば、1:1~1:4であってよく、1:1~1:3であってよい。 The ratio of the length of the upper mold part and the lower mold part in the direction perpendicular to the sliding direction A is not particularly limited. Ratio (Ha:Hb) of the length (height Ha) of the upper die part in the direction perpendicular to the sliding direction A and the length (height Hb) of the lower die part in the direction perpendicular to the sliding direction A May be, for example, 4:1 to 1:4 and may be 2:3 to 1:3. The height Hb is preferably equal to or higher than the height Ha in that the difference in the density of the metal particles between the upper space and the lower space tends to be small. Ha:Hb may be, for example, 1:1 to 1:4 and may be 1:1 to 1:3.
 一対の第3金型部品同士の滑動方向Aにおける初期の最少の間隔W0は、成型空間の幅W40より大きい限り特に限定されない。初期の間隔W0は、例えば、成型空間の幅W40の100%より大きく、300%以上であってよく、500%以上であってよい。初期の間隔W0は、成型空間の幅W40の1000%以下であってよく、800%以下であってよい。一対の第3金型部品が、いずれも上部金型部品および下部金型部品を備える場合、初期の間隔W0は、下部金型部品同士の初期の間隔W0ということができる。 The initial minimum distance W0 between the pair of third mold parts in the sliding direction A is not particularly limited as long as it is larger than the width W40 of the molding space. The initial distance W0 may be, for example, larger than 100% of the width W40 of the molding space, 300% or more, or 500% or more. The initial interval W0 may be 1000% or less of the width W40 of the molding space, and may be 800% or less. When both the pair of third mold parts include the upper mold part and the lower mold part, the initial interval W0 can be referred to as an initial interval W0 between the lower mold parts.
 加圧成型開始されると、上部金型部品と下部金型部品とは、段部を維持した状態で一体的に前進する。次いで、上部金型部品が下部金型部品に対して相対的に前進して、段部は小さくなり、やがて段部はなくなる。その後、所定位置まで、上部金型部品と下部金型部品とは、段部のない状態で一体的に前進する。 When the pressure molding is started, the upper mold part and the lower mold part integrally move forward while maintaining the step. The upper mold part then advances relative to the lower mold part, the step becomes smaller and eventually the step disappears. After that, the upper mold part and the lower mold part are integrally advanced to a predetermined position without any step.
 図1Aは、本実施形態に係る金型を上方から見た展開模式図である。図1Aでは、便宜上、第1金型部品は省略されている。図1Bは、本実施形態に係る金型を側方から見た展開模式図である。図1Bでは、便宜上、第2金型部品は省略されている。また、図1Bでは、一対の第3金型部品がそれぞれ上部金型部品および下部金型部品に分割されているが、これに限定されるものではない。一対の第3金型部品のうちの一方が、上部金型部品および下部金型部品を備えていればよい。また、第3金型部品は、上部金型部品の下部金型部品とは反対側に、さらに金型部品を備えてもよい。 FIG. 1A is a development schematic view of the mold according to the present embodiment as seen from above. In FIG. 1A, the first mold part is omitted for convenience. FIG. 1B is a development schematic view of the mold according to the present embodiment as viewed from the side. In FIG. 1B, the second mold part is omitted for convenience. Further, in FIG. 1B, the pair of third mold parts are divided into the upper mold part and the lower mold part, respectively, but the invention is not limited to this. It is sufficient that one of the pair of third mold components includes the upper mold component and the lower mold component. The third mold component may further include a mold component on the side opposite to the lower mold component of the upper mold component.
 金型30は、成型空間40の第1面40aおよび第2面40bを画定する一対の第1金型部品(31Aおよび31B)と、成型空間40の第3面40cおよび第4面40dを画定する一対の第2金型部品(32Aおよび32B)と、成型空間40の第5面40eおよび第6面40fを画定する一対の第3金型部品(33Aおよび33B)と、を備える。 The mold 30 defines a pair of first mold parts (31A and 31B) that define a first surface 40a and a second surface 40b of the molding space 40, and a third surface 40c and a fourth surface 40d of the molding space 40. A pair of second mold parts (32A and 32B) and a pair of third mold parts (33A and 33B) defining the fifth surface 40e and the sixth surface 40f of the molding space 40.
 一対の第1金型部品31Aおよび31Bは、互いに対向するように配置され、陽極ワイヤ2の長手方向に滑動可能である。一対の第2金型部品32Aおよび32Bは、互いに対向するように配置され、互いに向かって接近する方向および離間する方向に滑動可能である。一対の第3金型部品33Aおよび33Bもまた、互いに対向するように配置され、互いに向かって接近する方向および離間する方向に滑動可能である。 The pair of first mold parts 31A and 31B are arranged so as to face each other and are slidable in the longitudinal direction of the anode wire 2. The pair of second mold parts 32A and 32B are arranged so as to face each other, and are slidable in a direction toward and away from each other. The pair of third mold parts 33A and 33B are also arranged so as to face each other and are slidable in a direction toward and away from each other.
 第3金型部品33Aおよび33Bはそれぞれ、上部金型部品331と、下部金型部品332と、を備える。上部金型部品331と下部金型部品332とは、独立して滑動可能である。加圧成型が開始される初期位置において、第3金型部品33Aおよび33Bは、下部金型部品332による段部332aを有している。上部金型部品331と下部金型部品332とは、段部332aを維持した状態で一体的に前進可能である。上部金型部品33
1は、段部332aを小さくするように、下部金型部品332に対して相対的に前進可能である。上部金型部品331と下部金型部品332とは、段部332aのない状態でも一体的に前進可能である。
The third mold components 33A and 33B each include an upper mold component 331 and a lower mold component 332. The upper mold part 331 and the lower mold part 332 can slide independently. In the initial position where pressure molding is started, the third mold parts 33A and 33B have a step 332a formed by the lower mold part 332. The upper die part 331 and the lower die part 332 can be integrally advanced while maintaining the step 332a. Upper mold part 33
1 can be moved forward relative to the lower mold part 332 so as to make the step 332a smaller. The upper die part 331 and the lower die part 332 can be integrally advanced even without the step 332a.
<成型体の製造装置>
 本実施形態に係る成型体の製造装置は、上記の金型と、当該金型により部分的に画定された空間内に金属粒子を投入するホッパー(図示せず)と、を備える。ホッパーは、例えば、陽極ワイヤを保持しない一方の第1金型部品と、一対の第2金型部品と、一対の第3金型部品により画定され、成型空間より大きい初期空間内に、所定の質量の金属粒子を投入する。
<Molded body manufacturing equipment>
The apparatus for manufacturing a molded body according to the present embodiment includes the above-mentioned mold and a hopper (not shown) for charging metal particles into the space partially defined by the mold. The hopper is defined by, for example, one first mold part that does not hold the anode wire, a pair of second mold parts, and a pair of third mold parts, and is defined in a predetermined space larger than the molding space. Charge metal particles in mass.
<成型体の製造方法>
 本実施形態に係る成型体は、一方の第1金型部品と、一対の第2金型部品と、一対の第3金型部品とにより、成型空間より大きい初期空間を部分的に画定する第1工程(S1)と、部分的に画定された初期空間内に金属粒子を投入する第2工程(S2)と、画定された初期空間内で第3金型部品を前進させて、金属粒子を押圧する第3工程(S3)と、を備える方法により製造される。
 図2は、本実施形態に係る製造方法を示すフローチャートである。
<Molded body manufacturing method>
The molded body according to the present embodiment partially defines an initial space larger than the molding space by the one first mold component, the pair of second mold components, and the pair of third mold components. One step (S1), a second step (S2) of injecting metal particles into the partially defined initial space, and a third mold part are advanced in the defined initial space to remove the metal particles. It is manufactured by a method including a third step (S3) of pressing.
FIG. 2 is a flowchart showing the manufacturing method according to the present embodiment.
(1)第1工程
 陽極ワイヤを保持しない一方の第1金型部品と、一対の第2金型部品と、一対の第3金型部品により、成型空間より大きい初期空間を部分的に画定する。
(1) First step A first mold part that does not hold an anode wire, a pair of second mold parts, and a pair of third mold parts partially define an initial space that is larger than the molding space. ..
 一対の第3金型部品の配置は暫定的である。第2工程より後の工程において、第3金型部品はさらに滑動される。第1金型部品および第2金型部品の配置も暫定的であってよい。例えば、第2工程より後の工程において、第1金型部品および第2金型部品もまた、さらに滑動されてよい。 The placement of the pair of third mold parts is tentative. In the steps after the second step, the third mold part is further slid. The arrangement of the first mold part and the second mold part may be provisional. For example, in a step after the second step, the first mold part and the second mold part may also be slid further.
 図3は、第1工程における金型の配置を模式的に示す断面図である。図3では、便宜上、一方の第2金型部品は省略されている。また、図3では、一対の第3金型部品がそれぞれ上部金型部品および下部金型部品に分割されているが、これに限定されるものではない。 FIG. 3 is a sectional view schematically showing the arrangement of the molds in the first step. In FIG. 3, one second mold component is omitted for convenience. Further, in FIG. 3, the pair of third mold parts are divided into the upper mold part and the lower mold part, but the invention is not limited to this.
 下部金型部品332は、上部金型部品331より初期空間S0側に突出しており、下部金型部品332による段部332aが形成されている。段部332aの幅Waは、成型空間の幅W40(図1B参照)の3%以上、8%以下である。上部金型部品の高さHaと、下部金型部品の高さHbとの比(Ha:Hb)は、1:2である。第3金型部品33Aと第3金型部品33Bとの滑動方向Aの初期の最少の間隔W0は、例えば、成型空間の幅W40の500%以上、800%以下である。 The lower mold part 332 projects to the initial space S0 side from the upper mold part 331, and a step part 332a is formed by the lower mold part 332. The width Wa of the step 332a is 3% or more and 8% or less of the width W40 (see FIG. 1B) of the molding space. The ratio (Ha:Hb) between the height Ha of the upper die part and the height Hb of the lower die part is 1:2. The initial minimum distance W0 in the sliding direction A between the third mold component 33A and the third mold component 33B is, for example, 500% or more and 800% or less of the width W40 of the molding space.
 陽極ワイヤ2を保持しない第1金型部品31Bと、一対の第2金型部品32Aと、一対の第3金型部品33Aおよび33Bにより、成型空間40より大きい初期空間S0が部分的に画定されている。初期空間S0は、上部金型部品331と第1面40aを画定する第1金型部品31Aと一対の第2金型部品32Aとにより形成される上部空間Saと、下部金型部品332と第2面40bを画定する第1金型部品31Bと一対の第2金型部品32Aとにより形成される下部空間Sbとを有する。上部空間Saの滑動方向Aの幅は、下部空間Sbの滑動方向Aの幅より、段部332aの幅Waの約2倍大きい。 An initial space S0 larger than the molding space 40 is partially defined by the first mold part 31B that does not hold the anode wire 2, the pair of second mold parts 32A, and the pair of third mold parts 33A and 33B. ing. The initial space S0 is an upper space Sa formed by an upper mold part 331, a first mold part 31A defining the first surface 40a, and a pair of second mold parts 32A, a lower mold part 332, and a lower mold part 332. It has a lower space Sb formed by a first mold part 31B defining a second surface 40b and a pair of second mold parts 32A. The width of the upper space Sa in the sliding direction A is larger than the width of the lower space Sb in the sliding direction A by about twice the width Wa of the step portion 332a.
(2)第2工程
 部分的に画定された初期空間に、所定質量の金属粒子を投入する。
 初期空間は、投入される金属粒子に対して十分に広い。そのため、金属粒子が投入された後であっても、少なくとも上部空間の一部は、金属粒子により充填されず維持されている。
(2) Second step Metal particles having a predetermined mass are put into the partially defined initial space.
The initial space is wide enough for the metal particles to be charged. Therefore, even after the metal particles are charged, at least a part of the upper space is not filled with the metal particles and is maintained.
 図4は、第2工程における金型の配置を模式的に示す断面図である。図4では、便宜上、一方の第2金型部品は省略されている。初期空間S0に投入された金属粒子1Pは、例えば、図示例のように錐型に広がっている。そのため、上部空間および下部空間の一部は、金属粒子1Pに充填されずに、維持されている。 FIG. 4 is a sectional view schematically showing the arrangement of molds in the second step. In FIG. 4, one of the second mold parts is omitted for convenience. The metal particles 1P put in the initial space S0 spread in a pyramid shape as shown in the illustrated example. Therefore, the upper space and a part of the lower space are maintained without being filled with the metal particles 1P.
(3)第3工程
 例えば、第1金型部品を所定の位置にまで滑動させて、初期空間を画定する。画定された初期空間内で、第3金型部品を前進させる。これにより、金属粒子が加圧されて、成型体が成形される。
(3) Third Step For example, the first mold part is slid to a predetermined position to define the initial space. The third mold part is advanced within the defined initial space. As a result, the metal particles are pressed and the molded body is molded.
 第3金型部品を滑動させる前に、さらに第2金型部品を、所定の位置まで滑動させておいてもよい。一対の第3金型部品は、それぞれを同時に滑動させてもよいし、一方の第3金型部品を固定し、他方の第3金型部品のみを滑動させてもよい。 Before sliding the third mold part, the second mold part may be further slid to a predetermined position. The pair of third mold parts may be slid at the same time, or one of the third mold parts may be fixed and only the other third mold part may be slid.
 第3工程は、上部金型部品と下部金型部品とを、段部を維持した状態で一体的に前進させる工程(S31)と、上部金型部品を、段部を小さくするように、下部金型部品に対して相対的に前進させる工程(S32)と、上部金型部品と下部金型部品とを、段部のない状態で一体的に前進させる工程(S33)と、を備える。 The third step is a step (S31) of integrally advancing the upper die part and the lower die part in a state where the step part is maintained, and the upper die part is moved downward so as to make the step part smaller. The method includes a step (S32) of advancing relative to the die part, and a step (S33) of advancing the upper die part and the lower die part integrally without a step.
 上部空間は、下部空間よりも滑動方向Aにおいて広い。このように、段部を維持した状態で、上部および下部の金型部品を一体的に前進させると、投入された金属粒子は、下部空間から上部空間へと容易に移動することができる。よって、下部空間の金属粒子の密度が過度に高くなることが抑制されるとともに、上部空間の金属粒子の密度が高まる。つまり、上部空間と下部空間との密度差が小さくなる。  The upper space is wider in the sliding direction A than the lower space. Thus, when the upper and lower mold components are integrally advanced while maintaining the stepped portion, the charged metal particles can easily move from the lower space to the upper space. Therefore, the density of the metal particles in the lower space is suppressed from becoming excessively high, and the density of the metal particles in the upper space is increased. That is, the density difference between the upper space and the lower space becomes small.
 一対の第3金型部品の間隔がある程度狭くなると、下部空間内に投入された金属粒子の密度が高まって、下部金型部品を後退させる方向に押す力が生じる。一方、下部金型部品よりも間隔を空けて配置されている上部金型部品には、後退する方向に押す力はかかりにくい。そのため、上部金型部品は、下部金型部品に対して相対的に前進し、段部が小さくなっていく。段部がなくなって、上部金型部品の上部空間側の面と下部金型部品の下部空間側の面とが面一になると、上部金型部品の相対的な前進は止まり、上部金型部品と下部金型部品とは、段部のない状態で一体的に前進する。 When the distance between the pair of third mold parts is narrowed to a certain extent, the density of the metal particles charged in the lower space increases, and a force for pushing the lower mold parts backward is generated. On the other hand, the pushing force in the backward direction is less likely to be applied to the upper mold component, which is arranged at a distance from the lower mold component. Therefore, the upper mold part advances relative to the lower mold part, and the step becomes smaller. When the step portion disappears and the surface of the upper mold part on the upper space side and the surface of the lower mold part on the lower space side become flush with each other, the relative advance of the upper mold part stops, and the upper mold part stops. The lower die part and the lower die part are integrally advanced without a step.
 図5A~図5Eは、第3工程における第3金型部品の動作を示す断面模式図である。図5A~図5Eでは、便宜上、第2金型部品は省略されている。 5A to 5E are schematic cross-sectional views showing the operation of the third mold part in the third step. In FIGS. 5A to 5E, the second mold part is omitted for convenience.
 図5Aは、第3金型部品の初期の配置を模式的に示す断面図である。
 図5Aでは、第3金型部品33Aおよび33Bを滑動させる前に、第1金型部品31Aおよび31Bを所定の位置まで滑動させて、初期空間S0の全体を画定している。さらに、第2金型部品32Aおよび32Bは成型空間40の一部を画定する所定の位置まで滑動させている。これにより、成型空間40の一部も画定されている。以降、第1金型部品および第2金型部品は滑動させなくてよい。第3金型部品33Aと第3金型部品33Bとの滑動方向Aにおける最少の初期の間隔はW0である。
FIG. 5A is a sectional view schematically showing an initial arrangement of the third mold component.
In FIG. 5A, before sliding the third mold parts 33A and 33B, the first mold parts 31A and 31B are slid to predetermined positions to define the entire initial space S0. Further, the second mold parts 32A and 32B are slid to predetermined positions that define a part of the molding space 40. Thereby, a part of the molding space 40 is also defined. After that, the first mold part and the second mold part do not have to slide. The minimum initial distance in the sliding direction A between the third mold part 33A and the third mold part 33B is W0.
 図5Bは、上部金型部品および下部金型部品が段差を維持しながら一体的に前進した様子を模式的に示す断面図である。
 第3金型部品同士の滑動方向Aの最少の第1間隔W1は、初期の間隔W0より小さい。上部金型部品および下部金型部品は一体的に前進し、上部空間および下部空間はともに狭くなっている。しかし、金属粒子1Pは、滑動方向Aにより広い上部空間へと逃げることができるため、下部空間における金属粒子の密度は過度に上昇しない。一方、上部空間における金属粒子の密度は高まる。
FIG. 5B is a cross-sectional view schematically showing a state where the upper mold component and the lower mold component have integrally advanced while maintaining a step.
The minimum first distance W1 in the sliding direction A between the third mold parts is smaller than the initial distance W0. The upper mold part and the lower mold part are integrally advanced, and the upper space and the lower space are both narrow. However, since the metal particles 1P can escape to the wider upper space in the sliding direction A, the density of the metal particles in the lower space does not rise excessively. On the other hand, the density of metal particles in the upper space increases.
 図5Cは、上部金型部品が相対的に前進する様子を模式的に示す断面図である。
 下部金型部品332同士の滑動方向Aの第2間隔W2が第1間隔W1よりさらに小さくなると、上部空間および下部空間はともに、金属粒子により充填される。そして、より狭い空間である下部空間における金属粒子1Pの密度は、上部空間より先に高くなり、下部金型部品332は、後退する方向に押される。そのため、段部332aの幅Wa1は、初期の幅Waより小さくなる。ただし、第3金型部品全体は、前進する方向に滑動している。
FIG. 5C is a cross-sectional view schematically showing how the upper mold part relatively advances.
When the second distance W2 in the sliding direction A between the lower mold components 332 becomes smaller than the first distance W1, both the upper space and the lower space are filled with metal particles. Then, the density of the metal particles 1P in the lower space, which is a narrower space, becomes higher than that in the upper space, and the lower mold component 332 is pushed in the backward direction. Therefore, the width Wa1 of the step portion 332a is smaller than the initial width Wa. However, the entire third mold component slides in the forward direction.
 図5Dは、上部金型部品の上部空間側の面と下部金型部品の下部空間側の面とが面一になった様子を模式的に示す断面図である。
 段部332aの幅Waは徐々に小さくなっていき、最終的に、段部332aはなくなる(Wa=0)。すると、上部金型部品331の相対的な前進は停止して、上部金型部品331と下部金型部品332とは、一体的に前進する。上部金型部品331の相対的な前進が停止するときの第3金型部品同士の第3間隔W3は、第2間隔W2より小さい。
FIG. 5D is a cross-sectional view schematically showing a state in which the upper space side surface of the upper mold component and the lower space side surface of the lower mold component are flush with each other.
The width Wa of the step 332a gradually decreases, and finally the step 332a disappears (Wa=0). Then, the relative advance of the upper mold part 331 is stopped, and the upper mold part 331 and the lower mold part 332 are integrally advanced. The third interval W3 between the third mold parts when the relative advance of the upper mold part 331 is stopped is smaller than the second interval W2.
 図5Eは、上部金型部品と下部金型部品とが、成型空間を画定する所定位置に配置された様子を模式的に示す断面図である。
 上部金型部品331と下部金型部品332とは、さらに所定の位置まで一体的に前進する。所定の位置とは、第3金型部品同士の間隔が、成型空間の幅W40になる位置である。第3金型部品同士の間隔が、W3からW40になるまで、上部金型部品331と下部金型部品332とは一体となって前進し、金属粒子を圧縮していく。
FIG. 5E is a cross-sectional view schematically showing a state where the upper mold component and the lower mold component are arranged at predetermined positions that define the molding space.
The upper mold part 331 and the lower mold part 332 are integrally advanced to a predetermined position. The predetermined position is a position where the distance between the third mold components is the width W40 of the molding space. The upper die part 331 and the lower die part 332 integrally move forward and compress the metal particles until the distance between the third die parts changes from W3 to W40.
 下部金型部品による段部がなくなった後、上部金型部品と下部金型部品とが一体的に前進して金属粒子を圧縮することにより、上部空間と下部空間との間の圧力差が解消される。さらに、まだ圧縮されていない上部空間および下部空間の金属粒子同士が、同じタイミングで圧縮されるため、上部空間と下部空間との境界が生じ難くなる。よって、本実施形態の成型体を電解コンデンサに用いる場合、漏れ電流が抑制され易くなる。 After the step due to the lower mold part disappears, the upper mold part and the lower mold part move forward integrally and compress the metal particles, eliminating the pressure difference between the upper space and the lower space. To be done. Furthermore, since the metal particles in the upper space and the lower space that have not been compressed are compressed at the same timing, it is difficult for the boundary between the upper space and the lower space to occur. Therefore, when the molded body of the present embodiment is used for an electrolytic capacitor, leakage current is easily suppressed.
 この第3工程における上部金型部品および下部金型部品の動作は、次のような機構を備える動作部により実現することができる。 The operation of the upper mold part and the lower mold part in the third step can be realized by the operation unit having the following mechanism.
 第3金型部品の動作部は、第3金型部品の滑動方向Aに延びる棒状部材(以下、ピンと称す。)と、リング状のスペーサと、付勢部材と、基体と、を備える。
 ピンの一方の端部(第1端部)は、下部金型部品の一部に、成型空間の反対側から当接している。ピンの他方の端部(第2端部)は、基体に向かって延びている。ピンの途中には、鍔が設けられている。スペーサは、ピンに設けられた鍔の第2端部側に挿入されている。スペーサの厚みは、段部の幅Waを決定する。付勢部材は、基体とスペーサとの間に配置されており、それぞれに当接している。付勢部材は例えば、バネ等の弾性体である。
The operating portion of the third mold component includes a rod-shaped member (hereinafter referred to as a pin) extending in the sliding direction A of the third mold component, a ring-shaped spacer, a biasing member, and a base body.
One end (first end) of the pin is in contact with a part of the lower mold part from the opposite side of the molding space. The other end (second end) of the pin extends toward the base. A collar is provided in the middle of the pin. The spacer is inserted on the side of the second end of the collar provided on the pin. The thickness of the spacer determines the width Wa of the step. The biasing member is arranged between the base body and the spacer and is in contact with each of them. The biasing member is, for example, an elastic body such as a spring.
 付勢部材が無負荷状態のとき、ピンの第2端部は基体に当接しておらず、ピンの第2端部と基体との間にはスペーサの厚みと同じ幅の隙間が形成されている。ピンが下部金型部品により押されると、ピンと基体との間の隙間は小さくなり、やがて第2端部は基体に当接する。これにより、下部金型部品の後退(上部金型部品の相対的な前進)は停止する。ピンの第2端部と基体とが当接するとき、上部金型部品の上部空間側の面と下部金型部品の下部空間側の面とは、面一になる。 When the biasing member is in an unloaded state, the second end of the pin is not in contact with the base, and a gap having the same width as the spacer is formed between the second end of the pin and the base. There is. When the pin is pushed by the lower mold part, the gap between the pin and the base becomes smaller and eventually the second end abuts the base. As a result, the retreat of the lower die part (the relative advance of the upper die part) is stopped. When the second end of the pin contacts the base, the surface of the upper mold part on the upper space side is flush with the surface of the lower mold part on the lower space side.
 下部金型部品は、ピンの摺動に伴って滑動する。一方、上部金型部品は基体に当接しており、ピンから独立している。初期状態において、付勢部材には負荷がかかっておらず、ピンの第2端部と基体との間には隙間が形成されている。そのため、下部金型部品は、上部金型部品よりもスペーサの分だけ下部空間側に突出している。これにより、下部金型部品による段部が形成される。段部は、スペーサの厚みと同じ幅を有している。 The lower mold part slides as the pin slides. On the other hand, the upper mold part is in contact with the base body and is independent of the pins. In the initial state, the biasing member is not loaded and a gap is formed between the second end of the pin and the base body. Therefore, the lower mold component projects toward the lower space side by the amount of the spacer than the upper mold component. As a result, a step is formed by the lower die part. The step portion has the same width as the thickness of the spacer.
 一対の第3金型部品の間隔がある程度狭くなって、下部空間内の金属粒子の密度が高まると、下部金型部品は後退する方向に押され、上部金型部品は相対的に前進する。そのため、ピンも基体側に押されて、ピンの鍔は、スペーサを介して付勢部材を基体に押しつける。一方、付勢部材は、ピンを下部空間側に押し返そうとする。この付勢部材の付勢力を調整することで、金属粒子にかかる圧力を制御することができる。上部金型部品の相対的な前進は、ピンの第2端部が基体に到達することで終了する。 When the distance between the pair of third mold parts becomes narrower to some extent and the density of metal particles in the lower space increases, the lower mold part is pushed in the backward direction and the upper mold part relatively moves forward. Therefore, the pin is also pushed toward the base body, and the flange of the pin pushes the biasing member against the base body through the spacer. On the other hand, the biasing member tries to push the pin back to the lower space side. By adjusting the urging force of the urging member, the pressure applied to the metal particles can be controlled. The relative advancement of the upper mold part ends when the second end of the pin reaches the base body.
 ただし、第3工程において、上記動作部を含む第3金型部品の滑動制御部は、第3金型部品を前進させている。例えば、滑動制御部は、基体を成型空間側に移動させることにより、第3金型部品全体を前進させる。つまり、上部金型部品が下部金型部品に対して相対的に前進しながら、第3金型部品全体も前進しており、経時的に空間は狭くなっている。ピンの第2端部が基体に到達した後も、上部金型部品と下部金型部品とは一体的に前進する。 However, in the third step, the sliding control part of the third mold part including the above-mentioned operating part advances the third mold part. For example, the slide control unit advances the entire third mold component by moving the base body to the molding space side. That is, while the upper die part is relatively advanced with respect to the lower die part, the entire third die part is also advanced, and the space becomes narrower over time. Even after the second end of the pin reaches the base body, the upper die part and the lower die part are integrally advanced.
 図6Aは、第3金型部品の動作部の初期状態を模式的に示す断面図である。図6Aでは、動作部50が第3金型部品33Aの動作を規定する場合を示しているが、これに限定されるものではない。 FIG. 6A is a cross-sectional view schematically showing the initial state of the operation part of the third mold component. Although FIG. 6A shows the case where the operation unit 50 regulates the operation of the third mold component 33A, the present invention is not limited to this.
 動作部50は、第3金型部品33Aの滑動方向Aに延びるピン51と、付勢部材52と、リング状の第1スペーサ53Aと、基体54とを備える。ピン51の途中には、鍔51aが設けられている。第1スペーサ53Aは、鍔51aの第2端部側に挿入されている。鍔51aの第1端部側に、第2スペーサ53Bが挿入されてもよい。付勢部材52は、例えばコイルバネであって、基体54と第1スペーサ53Aとの間に配置されており、それぞれに当接している。 The operating unit 50 includes a pin 51 extending in the sliding direction A of the third mold component 33A, a biasing member 52, a ring-shaped first spacer 53A, and a base 54. A collar 51 a is provided in the middle of the pin 51. The first spacer 53A is inserted on the second end side of the flange 51a. The second spacer 53B may be inserted on the first end side of the flange 51a. The biasing member 52 is, for example, a coil spring, is arranged between the base 54 and the first spacer 53A, and is in contact with each of them.
 ピン51の第1端部は、下部金型部品332の一部に、成型空間の反対側から当接している。ピン51の第2端部は、付勢部材52が無負荷状態のとき、基体54に当接しておらず、基体54との間には第1スペーサ53Aの厚みと同じ幅の隙間Gが形成されている。隙間Gの幅(滑動方向Aの長さ)は、第3金型部品33Aに形成される段部332aの幅Waと同じである。 The first end of the pin 51 is in contact with a part of the lower mold part 332 from the opposite side of the molding space. The second end of the pin 51 is not in contact with the base 54 when the biasing member 52 is in an unloaded state, and a gap G having the same width as the thickness of the first spacer 53A is formed between the second end of the pin 51 and the base 54. Has been done. The width of the gap G (the length in the sliding direction A) is the same as the width Wa of the step portion 332a formed in the third mold component 33A.
 図6Bは、第3金型部品の動作部の動作終了時の状態を模式的に示す断面図である。
 下部金型部品332が後退する方向に押されると、付勢部材52が縮んでピン51と基体54との間の隙間Gは小さくなる。下部金型部品332の後退(上部金型部品331の相対的な前進)は、ピン51の第2端部が基体54に当接することで終了する。ピン51の第2端部と基体54とが当接するとき上部金型部品331の上部空間側の面と下部金型部品332の下部空間側の面とは、面一になる。
FIG. 6B is a sectional view schematically showing a state at the end of the operation of the operation unit of the third mold component.
When the lower die part 332 is pushed in the backward direction, the biasing member 52 contracts and the gap G between the pin 51 and the base 54 becomes smaller. The retreat of the lower mold part 332 (the relative advance of the upper mold part 331) ends when the second end of the pin 51 abuts the base 54. When the second end of the pin 51 and the base 54 contact each other, the upper space side surface of the upper mold part 331 and the lower space side surface of the lower mold part 332 are flush with each other.
<多孔質焼結体の製造方法>
(4)第4工程
 金型をすべて除去した後、成型体を焼成してもよい。これにより、多孔質焼結体が得られる。焼成は、例えば真空中で行われる。焼成温度および時間は特に限定されず、金属粒子の材質等に応じて適宜設定すればよい。
<Method for producing porous sintered body>
(4) Fourth Step After the mold is completely removed, the molded body may be fired. Thereby, a porous sintered body is obtained. The firing is performed in vacuum, for example. The firing temperature and time are not particularly limited and may be appropriately set depending on the material of the metal particles and the like.
<成型体および多孔質焼結体>
 成型体(および、その焼成物である多孔質焼結体)は、陽極ワイヤと、陽極ワイヤが植立される第1面と、第1面に対向する第2面と、第1面および第2面と交差し、かつ互いに対向する第3面および第4面と、第1面、第2面、第3面および第4面と交差し、かつ互いに対向する第5面および第6面と、を有する。
<Molded body and porous sintered body>
The molded body (and the porous sintered body that is a fired product thereof) includes an anode wire, a first surface on which the anode wire is erected, a second surface facing the first surface, a first surface and a second surface. A third surface and a fourth surface which intersect the two surfaces and face each other, and a fifth surface and a sixth surface which intersect the first surface, the second surface, the third surface and the fourth surface, and face each other. With.
 本実施形態のように、第5面あるいは第6面を画定する第3金型部品を独立して滑動可能な上部金型部品および下部金型部品で構成する場合、成型体の第5面および第6面の少なくとも一面には、陽極ワイヤの長手方向に交わる方向に延びる境界線が形成される。この境界線は、上部金型部品と下部金型部品との境界に由来している。第5面または第6面の法線方向からみたとき、成型体の境界線から第1面側の部分は、上部空間に充填された金属粒子が加圧成型されることにより形成されている。同様に、成型体の境界線から第2面側の部分は、下部空間に充填された金属粒子が加圧成型されることにより形成されている。 When the third mold part that defines the fifth surface or the sixth surface is constituted by the upper mold part and the lower mold part that are independently slidable as in the present embodiment, A boundary line extending in a direction intersecting the longitudinal direction of the anode wire is formed on at least one surface of the sixth surface. This boundary line originates from the boundary between the upper mold part and the lower mold part. When viewed from the normal direction of the fifth surface or the sixth surface, the portion on the first surface side from the boundary line of the molded body is formed by pressure-molding the metal particles with which the upper space is filled. Similarly, the portion on the second surface side from the boundary line of the molded body is formed by pressure-molding the metal particles with which the lower space is filled.
 第5面または第6面の法線方向からみたとき、境界線から第1面までの陽極ワイヤの長手方向における最短の長さLaと、境界線から第2面までの陽極ワイヤの長手方向における最短の長さLbとの割合は特に限定されず、上部金型部品の高さHaと下部金型部品の高さHbとの比に依存する。長さLaと長さLbとの比(La:Lb)は、例えば、4:1~1:4であってよく、2:3~1:3であってよい。陽極ワイヤがより強固に固定され易い点で、長さLbは、長さLa以上であることが好ましい。La:Lbは、例えば、1:1~1:4であってよく、1:1~1:3であってよい。 When viewed from the normal direction of the fifth surface or the sixth surface, the shortest length La in the longitudinal direction of the anode wire from the boundary line to the first surface and the longitudinal direction of the anode wire from the boundary line to the second surface The ratio to the shortest length Lb is not particularly limited, and depends on the ratio of the height Ha of the upper die part to the height Hb of the lower die part. The ratio of the length La to the length Lb (La:Lb) may be, for example, 4:1 to 1:4 or 2:3 to 1:3. The length Lb is preferably equal to or greater than the length La in that the anode wire is more easily fixed. La:Lb may be, for example, 1:1 to 1:4 and may be 1:1 to 1:3.
 第5面または第6面の法線方向からみたとき、陽極ワイヤの成型体に埋設されている方の端部は、境界線から第2面側の部分にあってよい。このとき、陽極ワイヤの上記端部から第2面までの最短距離H2aは、長さLaよりも短い(H2a<Lb)。これにより、陽極ワイヤはより強固に固定され易くなる。最短距離H2aは、長さLaと長さLbとの和の1/3以下であってよく、1/4以下であってよい。陽極ワイヤの固定性の観点から、長さLbが長さLa以上であって、かつ、陽極ワイヤの上記端部が境界線から第2面側の部分にあることが好ましい。 When viewed in the normal direction of the fifth surface or the sixth surface, the end portion of the anode wire that is embedded in the molded body may be on the second surface side from the boundary line. At this time, the shortest distance H2a from the end of the anode wire to the second surface is shorter than the length La (H2a<Lb). This makes it easier for the anode wire to be more firmly fixed. The shortest distance H2a may be 1/3 or less of the sum of the length La and the length Lb, and may be 1/4 or less. From the viewpoint of the fixability of the anode wire, it is preferable that the length Lb is equal to or greater than the length La and that the end portion of the anode wire is located on the second surface side from the boundary line.
 図8は、一実施形態に係る陽極ワイヤの一部が埋設された成型体を模式的に示す斜視図である。
 成型体1(および、その焼成物である多孔質焼結体1X)は、第1面1aおよび第2面1bと、第3面1cおよび第4面1dと、第5面1eおよび第6面1fとを有する。第3面1cおよび第4面1dは、第5面1eおよび第6面1fより狭小である。成型体1は扁平しており、例えば平板状である。陽極ワイヤ2の一部は成型体1に埋設され、残部は成型体1の第1面1aから外部に延びている。
FIG. 8 is a perspective view schematically showing a molded body in which a part of the anode wire according to the embodiment is embedded.
The molded body 1 (and the porous sintered body 1X which is a fired product thereof) has a first surface 1a and a second surface 1b, a third surface 1c and a fourth surface 1d, a fifth surface 1e and a sixth surface. 1f and. The third surface 1c and the fourth surface 1d are smaller than the fifth surface 1e and the sixth surface 1f. The molded body 1 is flat and has, for example, a flat plate shape. A part of the anode wire 2 is embedded in the molded body 1, and the remaining part extends from the first surface 1 a of the molded body 1 to the outside.
 成型体1の第5面1eおよび第6面1fには、陽極ワイヤ2の長手方向に交わる方向に延びる境界線Bが形成されている。第5面1eまたは第6面1fの法線方向からみたとき、境界線Bから第2面1bまでの長さLbは、境界線Bから第1面1aまでの長さLaより長い(Lb>La)。陽極ワイヤ2の成型体1に埋設されている方の端部2aは、境界線Bから第2面1b側の部分にある。端部2aから第2面1bまでの最短距離H2aは、長さLaよりも短い(H2a<Lb)。 A boundary line B extending in a direction intersecting the longitudinal direction of the anode wire 2 is formed on the fifth surface 1e and the sixth surface 1f of the molded body 1. When viewed from the normal direction of the fifth surface 1e or the sixth surface 1f, the length Lb from the boundary line B to the second surface 1b is longer than the length La from the boundary line B to the first surface 1a (Lb> La). The end 2a of the anode wire 2 which is embedded in the molded body 1 is located on the second surface 1b side from the boundary line B. The shortest distance H2a from the end 2a to the second surface 1b is shorter than the length La (H2a<Lb).
<電解コンデンサ>
 本実施形態により得られる多孔質焼結体は、例えば、電解コンデンサを構成するコンデンサ素子に用いられる。
 図7は、本実施形態に係る多孔質焼結体を用いた電解コンデンサを模式的に示す断面図である。
<Electrolytic capacitor>
The porous sintered body obtained according to this embodiment is used, for example, in a capacitor element that constitutes an electrolytic capacitor.
FIG. 7 is a sectional view schematically showing an electrolytic capacitor using the porous sintered body according to this embodiment.
 電解コンデンサ20は、対向する3組の平面を含む略六面体の外形形状を有し、コンデンサ素子10と、コンデンサ素子10を封止する樹脂外装体11と、樹脂外装体11の外部に露出する陽極端子7および陰極端子9とを備える。 The electrolytic capacitor 20 has a substantially hexahedral outer shape including three sets of opposed flat surfaces, and has a capacitor element 10, a resin outer package 11 that seals the capacitor element 10, and an anode exposed to the outside of the resin outer package 11. A terminal 7 and a cathode terminal 9 are provided.
 コンデンサ素子10は、陽極端子7に電気的に接続される陽極ワイヤ2の一部が埋設された、陽極体である多孔質焼結体1Xと、その表面に形成された誘電体層3と、誘電体層3の表面に形成された固体電解質層4と、固体電解質層4の表面に形成された陰極層5とを有する。 The capacitor element 10 includes a porous sintered body 1X as an anode body in which a part of an anode wire 2 electrically connected to an anode terminal 7 is embedded, a dielectric layer 3 formed on the surface thereof, It has a solid electrolyte layer 4 formed on the surface of the dielectric layer 3 and a cathode layer 5 formed on the surface of the solid electrolyte layer 4.
 多孔質焼結体1Xは、タンタル、ニオブ、チタン、またはこれらの合金などの弁作用金属粒子を加圧成型して焼成することにより得られるが、本発明はこれらの金属粒子に限定されるものではない。 The porous sintered body 1X is obtained by press-molding valve-acting metal particles such as tantalum, niobium, titanium, or alloys thereof and firing them, but the present invention is limited to these metal particles. is not.
 多孔質焼結体1Xから突出した陽極ワイヤ2の一部は、抵抗溶接等によって陽極端子7に電気的に接続される。一方、陰極層5は、樹脂外装体11内において導電性接着材8(例えば熱硬化性樹脂と金属粒子との混合物)を介して陰極端子9に電気的に接続される。図8に示す陽極端子7および陰極端子9は、樹脂外装体11から突出し、その下面が樹脂外装体11の底面と同一平面上に配設されるように折曲加工されている。陽極端子7および陰極端子9の下面は、電解コンデンサ20を搭載すべき基板(図示せず)との半田接続等に用いられる。 A part of the anode wire 2 protruding from the porous sintered body 1X is electrically connected to the anode terminal 7 by resistance welding or the like. On the other hand, the cathode layer 5 is electrically connected to the cathode terminal 9 in the resin outer package 11 via the conductive adhesive 8 (for example, a mixture of thermosetting resin and metal particles). The anode terminal 7 and the cathode terminal 9 shown in FIG. 8 are bent so that they protrude from the resin outer package 11 and the lower surface thereof is disposed on the same plane as the bottom surface of the resin outer package 11. The lower surfaces of the anode terminal 7 and the cathode terminal 9 are used for solder connection with a substrate (not shown) on which the electrolytic capacitor 20 is to be mounted.
(誘電体層)
 誘電体層は、多孔質焼結体を構成する導電性材料の表面を酸化することにより、酸化被膜として形成することができる。具体的には、電解水溶液(例えば、リン酸水溶液)が満たされた化成槽に多孔質焼結体を浸漬し、突出した陽極ワイヤを多孔質焼結体に接続して、陽極酸化を行うことにより、多孔質焼結体の表面に弁作用金属の酸化被膜からなる誘電体層を形成することができる。電解水溶液としては、リン酸水溶液に限らず、硝酸、酢酸、硫酸などを用いることができる。
(Dielectric layer)
The dielectric layer can be formed as an oxide film by oxidizing the surface of the conductive material forming the porous sintered body. Specifically, the porous sintered body is immersed in a chemical conversion tank filled with an electrolytic aqueous solution (for example, phosphoric acid aqueous solution), and the protruding anode wire is connected to the porous sintered body to perform anodization. As a result, a dielectric layer made of an oxide film of a valve metal can be formed on the surface of the porous sintered body. The electrolytic aqueous solution is not limited to the phosphoric acid aqueous solution, and nitric acid, acetic acid, sulfuric acid, or the like can be used.
(固体電解質層)
 固体電解質層は、誘電体層を覆うように形成されている。固体電解質層は、例えば、二酸化マンガン、導電性高分子などで構成されている。導電性高分子を含む固体電解質層は、例えば、誘電体層が形成された多孔質焼結体に、モノマーやオリゴマーを含浸させ、その後、化学重合もしくは電解重合によりモノマーやオリゴマーを重合させることにより、または誘電体層が形成された多孔質焼結体に、導電性高分子の溶液または分散液を含浸し、乾燥させることにより、誘電体層上に形成される。
(Solid electrolyte layer)
The solid electrolyte layer is formed so as to cover the dielectric layer. The solid electrolyte layer is made of, for example, manganese dioxide, a conductive polymer, or the like. The solid electrolyte layer containing a conductive polymer is obtained by, for example, impregnating a porous sintered body on which a dielectric layer is formed with a monomer or oligomer, and then polymerizing the monomer or oligomer by chemical polymerization or electrolytic polymerization. Alternatively, the porous sintered body on which the dielectric layer is formed is impregnated with a solution or dispersion liquid of a conductive polymer and dried to form on the dielectric layer.
 誘電体層および固体電解質層の形成工程では、例えば、多孔質焼結体から突出した一部の陽極ワイヤを把持し、多孔質焼結体を懸垂させた状態で、多孔質焼結体の上に誘電体層を形成し、さらにその上に固体電解質層が形成される場合がある。そのため、陽極ワイヤの根元近傍には大きな負荷がかかる。陽極ワイヤの固定が十分でないと、陽極ワイヤの根元近傍から多孔質焼結体にクラックが発生し易くなって、漏れ電流は増大し易い。本実施形態によれば、陽極ワイヤは強固に固定されるため、クラックの発生も抑制される。 In the step of forming the dielectric layer and the solid electrolyte layer, for example, a part of the anode wire protruding from the porous sintered body is grasped and the porous sintered body is suspended, and then the porous sintered body is suspended. In some cases, a dielectric layer is formed on top of the dielectric layer, and a solid electrolyte layer is further formed thereon. Therefore, a large load is applied near the base of the anode wire. If the fixing of the anode wire is not sufficient, cracks are likely to occur in the porous sintered body from the vicinity of the root of the anode wire, and the leakage current tends to increase. According to this embodiment, since the anode wire is firmly fixed, the occurrence of cracks is also suppressed.
(陰極層)
 陰極層は、例えば、固体電解質層を覆うように形成されたカーボン層と、カーボン層の
表面に形成された金属ペースト層と、を有している。カーボン層は、黒鉛等の導電性炭素材料と樹脂を含む。金属ペースト層は、例えば、金属粒子(例えば、銀)と樹脂とを含む。なお、陰極層の構成は、この構成に限定されない。陰極層の構成は、集電機能を有する構成であればよい。
(Cathode layer)
The cathode layer has, for example, a carbon layer formed so as to cover the solid electrolyte layer, and a metal paste layer formed on the surface of the carbon layer. The carbon layer contains a conductive carbon material such as graphite and a resin. The metal paste layer contains, for example, metal particles (for example, silver) and a resin. Note that the structure of the cathode layer is not limited to this structure. The cathode layer may have any structure as long as it has a current collecting function.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
 図1Aおよび図1Bに示す金型を用いて、タンタル粒子を加圧成型し、幅Wが0.83mm、幅Wに垂直な方向の長さが5.17mmの図8に示す成型体xを作製した。一対の第3金型部品の動作は、図6Aに示す動作部により制御した。第3金型部品同士の初期の最少の間隔W0は5mmであった。段部の幅Waは0.05mmとした。上部金型部品の高さHaと下部金型部品の高さHbとの比:Ha/Hbは、約1/2であった。得られた成型体xを焼成して、多孔質焼結体A1を5個作製した。
Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to the following Examples.
[Example 1]
Using the mold shown in FIGS. 1A and 1B, tantalum particles are pressure-molded to obtain a molded body x shown in FIG. 8 having a width W of 0.83 mm and a length in the direction perpendicular to the width W of 5.17 mm. It was made. The operation of the pair of third mold parts was controlled by the operation unit shown in FIG. 6A. The initial minimum distance W0 between the third mold parts was 5 mm. The width Wa of the step is 0.05 mm. The ratio Ha/Hb of the height Ha of the upper die part to the height Hb of the lower die part was about 1/2. The obtained molded body x was fired to produce five porous sintered bodies A1.
[比較例1]
 上下に分割されていない第3金型部品を用いたこと以外は、実施例1と同様にして多孔質焼結体Bを5個作製した。
[Comparative Example 1]
Five porous sintered bodies B were produced in the same manner as in Example 1 except that the third mold component that was not vertically divided was used.
[評価]
 多孔質焼結体A1およびBについて、以下の評価を行った。
[Evaluation]
The following evaluations were performed on the porous sintered bodies A1 and B.
(1)破壊強度
 多孔質焼結体の第4面を陽極ワイヤの長手方向に3本の直線を引き、その中央の直線Lc上であって第1面から0.5mm離れた点P1、および、中央の直線Lc上であって第2面から0.5mm離れた点P2における破壊強度を測定した(図9参照)。中央の直線Lcは、第4面の長手方向に垂直な幅を2等分する。中央の直線Lcから約0.25mm離れたところに、中央の直線Lcを挟むように2本の直線L1およびL2を引いた。
(1) Fracture strength Three straight lines are drawn on the fourth surface of the porous sintered body in the longitudinal direction of the anode wire, a point P1 on the straight line Lc at the center thereof, which is 0.5 mm away from the first surface, and The breaking strength was measured at the point P2 on the central straight line Lc and 0.5 mm away from the second surface (see FIG. 9). The straight line Lc at the center divides the width of the fourth surface perpendicular to the longitudinal direction into two equal parts. Two straight lines L1 and L2 were drawn so as to sandwich the central straight line Lc at a position apart from the central straight line Lc by about 0.25 mm.
 破壊強度は、引張圧縮試験機を用いて、圧縮端子を荷重をかけながら多孔質焼結体に押し当てることにより測定した。多孔質焼結体に破壊が生じたときに、圧縮端子にかけられていた荷重が破壊強度である。点P2における破壊強度を100%としたときの点P1における破壊強度(%)を求めた。破壊強度(%)は、5個の多孔質焼結体の平均値とした。結果を表1に示す。 Rupture strength was measured by pressing the compression terminal against the porous sintered body using a tensile compression tester while applying a load. When the porous sintered body is broken, the load applied to the compression terminal is the breaking strength. The breaking strength (%) at the point P1 when the breaking strength at the point P2 was 100% was calculated. The breaking strength (%) was the average value of the five porous sintered bodies. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 多孔質焼結体A1では、陽極ワイヤが延出する第1面側(点P1)の破壊強度が、その反対の第2面側(点P2)の破壊強度よりやや大きい。そのため、陽極ワイヤは強固に固定される。ただし、点P1における破壊強度は点P2と比較して過度に大きくなく、第1面側と第2面側とで、密度はほぼ均一であるといえる。一方、多孔質焼結体Bでは、陽極ワイヤが延出する第1面側(点P1)の破壊強度が、その反対の第2面側(点P2)の破壊強度より小さい。さらに、点P1における破壊強度と点P2における破壊強度との間で、比較的大きな差がみられる。 In the porous sintered body A1, the breaking strength on the first surface side (point P1) where the anode wire extends is slightly larger than the breaking strength on the opposite second surface side (point P2). Therefore, the anode wire is firmly fixed. However, the breaking strength at the point P1 is not excessively large as compared with the point P2, and it can be said that the density is substantially uniform between the first surface side and the second surface side. On the other hand, in the porous sintered body B, the breaking strength on the first surface side (point P1) from which the anode wire extends is smaller than the breaking strength on the opposite second surface side (point P2). Further, there is a relatively large difference between the breaking strength at the point P1 and the breaking strength at the point P2.
(2)ビッカース硬度
 多孔質焼結体の第4面に、上記直線Lc、L1およびL2を引き、さらに、陽極ワイヤの長手方向とは垂直な方向に12本の直線M1~M12を引いた。第1面に最も近い直線M1は、第4面の第1面側の端部から0.25mm離れたところに引いた。第2面に最も近い直線M12も同様に、第4面の第2面側の端部から0.25mm離れたところに引いた。残りの10本の直線は、直線M1とM2との間を11等分するように引いた。直線Lc、L1およびL2と、直線M1~M12との36箇所の交点におけるビッカース硬度を測定した(図9参照)。ビッカース硬度は、JIS Z 2244にしたがって測定した。
(2) Vickers Hardness The straight lines Lc, L1 and L2 were drawn on the fourth surface of the porous sintered body, and 12 straight lines M1 to M12 were drawn in a direction perpendicular to the longitudinal direction of the anode wire. The straight line M1 closest to the first surface was drawn 0.25 mm away from the end of the fourth surface on the first surface side. Similarly, the straight line M12 closest to the second surface was also drawn at a position 0.25 mm away from the end of the fourth surface on the second surface side. The remaining 10 straight lines were drawn so as to divide the straight lines M1 and M2 into 11 equal parts. Vickers hardness was measured at 36 intersections of the straight lines Lc, L1 and L2 and the straight lines M1 to M12 (see FIG. 9). The Vickers hardness was measured according to JIS Z 2244.
 直線Lc、L1およびL2と直線M1~M3との9個の交点におけるビッカース硬度の平均値(ビッカース硬度HVa)、および、直線Lc、L1およびL2と直線M6~M12との21個の交点におけるビッカース硬度の平均値(ビッカース硬度HVb)を算出し、ビッカース硬度HVbを100%としたときの、ビッカース硬度HVa(%)を求めた。結果を表2に示す。ビッカース硬度HVaおよびビッカース硬度HVbは、5個の多孔質焼結体の平均値とした。 Average values of Vickers hardness (Vickers hardness HVa) at 9 intersections of the straight lines Lc, L1 and L2 and the straight lines M1 to M3, and Vickers at 21 intersections of the straight lines Lc, L1 and L2 and the straight lines M6 to M12 The average value of hardness (Vickers hardness HVb) was calculated, and Vickers hardness HVa (%) was calculated when Vickers hardness HVb was 100%. The results are shown in Table 2. The Vickers hardness HVa and the Vickers hardness HVb were the average values of the five porous sintered bodies.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 ビッカース硬度についても、破壊強度と同様の傾向が見られた。すなわち、多孔質焼結体A1では、陽極ワイヤが延出する第1面側のビッカース硬度が、その反対の第2面側のビッカース硬度よりやや大きいものの、過度に大きくはない。 Regarding Vickers hardness, the same tendency as breaking strength was observed. That is, in the porous sintered body A1, the Vickers hardness on the first surface side from which the anode wire extends is slightly larger than the Vickers hardness on the opposite second surface side, but is not excessively large.
 多孔質焼結体A1において、第4面の第1面側の端部から直線M3までの領域は、上部金型部品により加圧された部分に対応する。多孔質焼結体A1において、第4面の第2面側の端部から直線M6までの領域は、下部金型部品により加圧された部分に対応する。ビッカース硬度HVaとビッカース硬度HVbとの間で大きな差が見られなかったことから、第3金型部品を分割したことによる影響はあまりないことがわかる。 In the porous sintered body A1, the area from the end of the fourth surface on the first surface side to the straight line M3 corresponds to the portion pressed by the upper die part. In the porous sintered body A1, the area from the end on the second surface side of the fourth surface to the straight line M6 corresponds to the portion pressed by the lower die part. Since no large difference was found between the Vickers hardness HVa and the Vickers hardness HVb, it can be seen that the effect of dividing the third mold part is not so great.
[実施例2~4]
 段部の幅Waを0.14mm、0.3mm、0.5mmとしたこと以外、実施例1と同様にして多孔質焼結体A2~A4を作製した。得られた多孔質焼結体A2~A4の破壊強度を上記と同様にして測定したところ、幅Waが大きくなるほど、点P1における破壊強度も大きくなっており、幅Waと点P1における破壊強度との間には相関関係がみられることがわかる。
[Examples 2 to 4]
Porous sintered bodies A2 to A4 were produced in the same manner as in Example 1 except that the width Wa of the step portion was set to 0.14 mm, 0.3 mm, and 0.5 mm. When the fracture strengths of the obtained porous sintered bodies A2 to A4 were measured in the same manner as above, the fracture strength at the point P1 increased as the width Wa increased, and the fracture strength at the width Wa and the point P1 It can be seen that there is a correlation between the two.
 多孔質焼結体A2~A4および多孔質焼結体Bの評価結果から、第3金型部品にわずかでも段部が形成されていることにより、多孔質焼結体の第1面側の破壊強度を高めることができることがわかる。 From the evaluation results of the porous sintered bodies A2 to A4 and the porous sintered body B, it was found that the first mold side of the porous sintered body was broken due to the fact that even a slight step portion was formed in the third mold component. It can be seen that the strength can be increased.
 本発明は、陽極体として多孔質焼結体を具備する電解コンデンサに利用することができる。 The present invention can be used for an electrolytic capacitor having a porous sintered body as an anode body.
10:コンデンサ素子
  1:成型体
  1X:多孔質焼結体
  1P:金属粒子
   1a:第1面
   1b:第2面
   1c:第3面
   1d:第4面
   1e:第5面
   1f:第6面
  2:陽極ワイヤ
   2a:端部
  3:誘電体層
  4:固体電解質層
  5:陰極層
  7:陽極端子
  8:導電性接着材
  9:陰極端子
  11:樹脂外装体
20:電解コンデンサ
30:金型
 31A、31B:第1金型部品
 32A、32B:第2金型部品
 33A、33B:第3金型部品
  331:上部金型部品
  332:下部金型部品
   332a:段部
40:成型空間
 40a:第1面
 40b:第2面
 40c:第3面
 40d:第4面
 40e:第5面
 40f:第6面
50:動作部
 51:ピン
  51a:鍔
 52:付勢部材
 53A:第1スペーサ
 53B:第2スペーサ
 54:基体
 
10: Capacitor element 1: Molded body 1X: Porous sintered body 1P: Metal particle 1a: First surface 1b: Second surface 1c: Third surface 1d: Fourth surface 1e: Fifth surface 1f: Sixth surface 2 : Anode wire 2a: End part 3: Dielectric layer 4: Solid electrolyte layer 5: Cathode layer 7: Anode terminal 8: Conductive adhesive 9: Cathode terminal 11: Resin exterior body 20: Electrolytic capacitor 30: Mold 31A, 31B: First mold part 32A, 32B: Second mold part 33A, 33B: Third mold part 331: Upper mold part 332: Lower mold part 332a: Step part 40: Molding space 40a: First surface 40b: 2nd surface 40c: 3rd surface 40d: 4th surface 40e: 5th surface 40f: 6th surface 50: Operating part 51: Pin 51a: Tsuba 52: Energizing member 53A: 1st spacer 53B: 2nd spacer 54: substrate

Claims (9)

  1.  直方体型の成型空間を画定する金型であって、
     前記直方体は、
     陽極ワイヤが植立され得る第1面と、
     前記第1面に対向する第2面と、
     前記第1面および前記第2面と交差し、かつ互いに対向する第3面および第4面と、
     前記第1面、前記第2面、前記第3面および前記第4面と交差し、かつ互いに対向する第5面および第6面と、を有し、
     前記金型は、
     前記第1面および前記第2面をそれぞれ画定する一対の第1金型部品と、
     前記第3面および前記第4面をそれぞれ画定する一対の第2金型部品と、
     前記第5面および前記第6面をそれぞれ画定する一対の第3金型部品と、を有し、
     前記第3金型部品の少なくとも一方は、前記第5面または前記第6面の前記第1面側の領域を画定する上部金型部品と、前記第5面または前記第6面の前記第2面側の領域を画定し、かつ、前記上部金型部品とは独立して滑動可能な下部金型部品と、を備え、
     前記下部金型部品を、前記上部金型部品より前記成型空間側に突出させることにより、前記下部金型部品による段部が形成可能であり、
     前記上部金型部品は、前記段部を小さくするように、前記下部金型部品に対して相対的に前進可能であり、
     前記上部金型部品と前記下部金型部品とは、前記段部を維持した状態および前記段部のない状態で、一体的に前進可能である、金型。
    A mold for defining a rectangular parallelepiped molding space,
    The rectangular parallelepiped is
    A first surface on which the anode wire can be erected;
    A second surface facing the first surface;
    A third surface and a fourth surface which intersect the first surface and the second surface and face each other;
    A fifth surface and a sixth surface which intersect the first surface, the second surface, the third surface and the fourth surface, and which face each other,
    The mold is
    A pair of first mold parts that respectively define the first surface and the second surface;
    A pair of second mold parts that respectively define the third surface and the fourth surface;
    A pair of third mold parts that respectively define the fifth surface and the sixth surface,
    At least one of the third mold components includes an upper mold component that defines a region of the fifth surface or the sixth surface on the side of the first surface, and the second mold component of the fifth surface or the sixth surface. A lower mold part that defines a surface side region and is slidable independently of the upper mold part,
    By projecting the lower mold component toward the molding space side from the upper mold component, a step portion can be formed by the lower mold component,
    The upper mold part is relatively advanceable with respect to the lower mold part so as to reduce the step portion,
    A mold in which the upper mold part and the lower mold part can integrally advance in a state in which the step portion is maintained and a state in which the step portion is not provided.
  2.  前記段部の前記下部金型部品の滑動方向における長さは、前記成型空間の前記滑動方向における長さの2%以上、15%以下である、請求項1に記載の金型。 The mold according to claim 1, wherein a length of the step portion in the sliding direction of the lower mold component is 2% or more and 15% or less of a length of the molding space in the sliding direction.
  3.  前記第5面および前記第6面は、前記第3面および前記第4面より大きい請求項1または2に記載の金型。 The mold according to claim 1 or 2, wherein the fifth surface and the sixth surface are larger than the third surface and the fourth surface.
  4.  前記金型は、前記上部金型部品および前記下部金型部品の動作を制御する動作部を備え、
     前記動作部は、前記下部金型部品の滑動方向に延びる棒状部材と、スペーサと、付勢部材と、基体と、を備え、
     前記棒状部材は、鍔を備え、
     前記棒状部材の一方の端部は、前記下部金型部品の一部に、前記成型空間の反対側から当接しており、
     前記棒状部材の他方の端部は、前記基体に向かって延びており、
     前記スペーサは、前記鍔と前記基体との間に配置されており、
     前記付勢部材は、前記基体と前記スペーサとの間であって、前記基体および前記スペーサに当接するように配置されており、
     前記付勢部材が無負荷状態のとき、前記棒状部材と前記基体との間に、前記スペーサの前記下部金型部品の滑動方向における厚みと同じ幅の隙間が形成されることにより、前記下部金型部品による前記段部が形成され、
     前記付勢部材を縮める方向の負荷が生じることにより、前記段部の前記下部金型部品の滑動方向における長さが小さくなる、請求項1~3のいずれか一項に記載の金型。
    The mold includes an operation unit that controls operations of the upper mold component and the lower mold component,
    The operating unit includes a rod-shaped member extending in the sliding direction of the lower mold component, a spacer, a biasing member, and a base body,
    The rod-shaped member includes a collar,
    One end of the rod-shaped member is in contact with a part of the lower mold component from the opposite side of the molding space,
    The other end of the rod-shaped member extends toward the base body,
    The spacer is arranged between the collar and the base,
    The biasing member is arranged between the base body and the spacer so as to abut the base body and the spacer,
    When the urging member is in an unloaded state, a gap having the same width as the thickness of the spacer in the sliding direction of the lower mold component is formed between the rod-shaped member and the base body, so that the lower metal mold is formed. The step portion is formed by a mold part,
    The mold according to any one of claims 1 to 3, wherein a length in the sliding direction of the lower mold component of the step portion decreases due to a load generated in a direction of contracting the biasing member.
  5.  請求項1~4のいずれか一項に記載の金型と、
     前記金型により部分的に画定された空間内に金属粒子を投入するホッパーと、を備える、成型体の製造装置。
    A mold according to any one of claims 1 to 4,
    An apparatus for manufacturing a molded body, comprising: a hopper for charging metal particles into a space partially defined by the mold.
  6.  請求項1に記載の金型により成型体を製造する方法であって、
     一方の前記第1金型部品と、一対の前記第2金型部品と、一対の前記第3金型部品とにより、前記成型空間より大きい初期空間を部分的に画定する第1工程と、
     部分的に画定された前記初期空間内に金属粒子を投入する第2工程と、
     画定された前記初期空間内で前記第3金型部品を前進させて、前記金属粒子を押圧する第3工程と、を備え、
     前記第1工程では、前記下部金型部品による前記段部が形成されており、
     前記第3工程は、
     前記上部金型部品と前記下部金型部品とを、前記段部を維持した状態で一体的に前進させる工程と、
     前記第3金型部品を前進させながら、前記上部金型部品を、前記段部を小さくするように、前記下部金型部品に対して相対的に前進させる工程と、
     前記上部金型部品と前記下部金型部品とを、前記段部のない状態で一体的に前進させる工程と、を備える、成型体の製造方法。
    A method for producing a molded body using the mold according to claim 1,
    A first step of partially demarcating an initial space larger than the molding space by one of the first mold parts, a pair of the second mold parts, and a pair of the third mold parts;
    A second step of introducing metal particles into the partially defined initial space;
    A third step of advancing the third mold part in the defined initial space to press the metal particles,
    In the first step, the step is formed by the lower mold part,
    In the third step,
    A step of integrally advancing the upper mold part and the lower mold part while maintaining the step portion;
    Advancing the third mold part while advancing the upper mold part relative to the lower mold part so as to reduce the step portion;
    A step of integrally advancing the upper mold part and the lower mold part without the step portion, the method for manufacturing a molded body.
  7.  請求項6に記載の製造方法により得られた成型体を焼成する工程を備える、多孔質焼結体の製造方法。 A method for manufacturing a porous sintered body, comprising a step of firing the molded body obtained by the manufacturing method according to claim 6.
  8.  第1面と、前記第1面に対向する第2面と、前記第1面および前記第2面と交差し、かつ互いに対向する第3面および第4面と、前記第1面、前記第2面、前記第3面および前記第4面と交差し、かつ互いに対向する第5面および第6面と、を有する多孔質焼結体と、
     前記多孔質焼結体に一部が埋設され、残部が前記第1面から延びる陽極ワイヤと、
     前記多孔質焼結体上に形成された誘電体層と、
     前記誘電体層上に形成された固体電解質層と、
     前記固体電解質層上に形成された陰極層と、を備えるコンデンサ素子を具備し、
     前記第5面および前記第6面の少なくとも一面は、前記陽極ワイヤの長手方向に交わる方向に延びる境界線を備え、
     前記境界線は、前記第5面または前記第6面の前記第1面側の領域を画定する上部金型部品と、前記第5面または前記第6面の前記第2面側の領域を画定し、かつ、前記上部金型部品とは独立して滑動可能な下部金型部品と、の境界に由来し、
     前記第5面または前記第6面の法線方向からみたとき、前記境界線から前記第1面までの前記長手方向における最短の長さLaと、前記境界線から前記第2面までの前記長手方向における最短の長さLbとは、La≦Lbの関係を満たす、電解コンデンサ。
    A first surface, a second surface facing the first surface, a third surface and a fourth surface intersecting the first surface and the second surface, and facing each other, the first surface, the first surface A porous sintered body having two surfaces, a fifth surface and a sixth surface that intersect with the third surface and the fourth surface and face each other;
    An anode wire, a part of which is embedded in the porous sintered body, and the rest of which extends from the first surface,
    A dielectric layer formed on the porous sintered body,
    A solid electrolyte layer formed on the dielectric layer;
    A cathode layer formed on the solid electrolyte layer, and comprising a capacitor element,
    At least one of the fifth surface and the sixth surface includes a boundary line extending in a direction intersecting the longitudinal direction of the anode wire,
    The boundary line defines an upper mold part that defines a region on the first surface side of the fifth surface or the sixth surface, and a region on the second surface side of the fifth surface or the sixth surface. And, due to the boundary between the upper mold part and the lower mold part that can slide independently of the upper mold part,
    When viewed from the normal direction of the fifth surface or the sixth surface, the shortest length La in the longitudinal direction from the boundary line to the first surface and the length from the boundary line to the second surface The shortest length Lb in the direction is an electrolytic capacitor that satisfies the relationship of La≦Lb.
  9.  第1面と、前記第1面に対向する第2面と、前記第1面および前記第2面と交差し、かつ互いに対向する第3面および第4面と、前記第1面、前記第2面、前記第3面および前記第4面と交差し、かつ互いに対向する第5面および第6面と、を有する多孔質焼結体と、
     前記多孔質焼結体に一部が埋設され、残部が前記第1面から延びる陽極ワイヤと、
     前記多孔質焼結体上に形成された誘電体層と、
     前記誘電体層上に形成された固体電解質層と、
     前記固体電解質層上に形成された陰極層と、を備えるコンデンサ素子を具備し、
     前記第5面および前記第6面の少なくとも一面は、前記陽極ワイヤの長手方向に交わる方向に延びる境界線を備え、
     前記境界線は、前記第5面または前記第6面の前記第1面側の領域を画定する上部金型部品と、前記第5面または前記第6面の前記第2面側の領域を画定し、かつ、前記上部金型部品とは独立して滑動可能な下部金型部品と、の境界に由来し、
     前記第5面または前記第6面の法線方向からみたとき、前記陽極ワイヤの前記多孔質焼結体に埋設されている端部は、前記多孔質焼結体の前記境界線から前記第2面までの部分にある、電解コンデンサ。
    A first surface, a second surface facing the first surface, a third surface and a fourth surface intersecting the first surface and the second surface, and facing each other, the first surface, the first surface A porous sintered body having two surfaces, a fifth surface and a sixth surface that intersect with the third surface and the fourth surface and face each other;
    An anode wire, a part of which is embedded in the porous sintered body, and the rest of which extends from the first surface,
    A dielectric layer formed on the porous sintered body,
    A solid electrolyte layer formed on the dielectric layer;
    A cathode layer formed on the solid electrolyte layer, and comprising a capacitor element,
    At least one of the fifth surface and the sixth surface includes a boundary line extending in a direction intersecting the longitudinal direction of the anode wire,
    The boundary line defines an upper mold part that defines a region on the first surface side of the fifth surface or the sixth surface, and a region on the second surface side of the fifth surface or the sixth surface. And, due to the boundary between the upper mold part and the lower mold part that can slide independently of the upper mold part,
    When viewed from the normal direction of the fifth surface or the sixth surface, the end portion of the anode wire embedded in the porous sintered body is located at the second position from the boundary line of the porous sintered body. An electrolytic capacitor that extends to the surface.
PCT/JP2019/050459 2018-12-28 2019-12-24 Mold, manufacturing device, and manufacturing method for manufacturing molded body WO2020138018A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980085724.1A CN113260472B (en) 2018-12-28 2019-12-24 Mold for producing molded body, production device, and production method
JP2020563276A JP7382605B2 (en) 2018-12-28 2019-12-24 Molds, manufacturing equipment, and manufacturing methods for manufacturing molded bodies
US17/335,116 US20210283684A1 (en) 2018-12-28 2021-06-01 Mold, manufacturing device, and manufacturing method for manufacturing molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018246630 2018-12-28
JP2018-246630 2018-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/335,116 Continuation US20210283684A1 (en) 2018-12-28 2021-06-01 Mold, manufacturing device, and manufacturing method for manufacturing molded body

Publications (1)

Publication Number Publication Date
WO2020138018A1 true WO2020138018A1 (en) 2020-07-02

Family

ID=71129387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050459 WO2020138018A1 (en) 2018-12-28 2019-12-24 Mold, manufacturing device, and manufacturing method for manufacturing molded body

Country Status (4)

Country Link
US (1) US20210283684A1 (en)
JP (1) JP7382605B2 (en)
CN (1) CN113260472B (en)
WO (1) WO2020138018A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163074A (en) * 1996-12-03 1998-06-19 Rohm Co Ltd Method and apparatus for compact molding porous chip body for capacitor element in solid electrolytic capacitor
JP2007073570A (en) * 2005-09-05 2007-03-22 Rohm Co Ltd Porous sintered body, solid electrolytic capacitor using the same and their manufacturing method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2655409A (en) * 1947-07-05 1953-10-13 Columbia Protektosite Co Inc Art of and apparatus for molding brushes
JPS5625186Y2 (en) * 1975-02-24 1981-06-13
JPS583820B2 (en) * 1975-07-11 1983-01-22 セキスイカセイヒンコウギヨウ カブシキガイシヤ Netsukaso Seiji Yushi Hatsuposhi - Toseiyou Kinoseizohouhou
JPH0562036U (en) * 1992-01-28 1993-08-13 関西日本電気株式会社 Molding equipment
JP3158337B2 (en) * 1995-03-30 2001-04-23 三菱マテリアル株式会社 Mold and method for molding resin shutter
JPH0997746A (en) * 1995-09-29 1997-04-08 Elna Co Ltd Manufacture of tantalum solid electrolytic capacitor
JPH0997744A (en) * 1995-09-29 1997-04-08 Elna Co Ltd Tantalum solid electrolytic capacitor and manufacture thereof
JP3863232B2 (en) * 1996-09-27 2006-12-27 ローム株式会社 Structure of capacitor element used for solid electrolytic capacitor and method of compacting chip body in capacitor element
US6394779B1 (en) * 2001-06-28 2002-05-28 Toyo Tire & Rubber Co., Ltd. Molding tool for molding with cylindrical core
US7207103B2 (en) * 2003-12-08 2007-04-24 Kemet Electronics Corporation Powder compaction press for capacitor anodes
KR100839731B1 (en) * 2005-01-19 2008-06-19 호야 가부시키가이샤 Mold press molding mold and method for producing optical element
JP4508945B2 (en) * 2005-05-26 2010-07-21 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
DE112012002327T5 (en) * 2011-05-31 2014-03-27 Nxstage Medical, Inc. Pressure measuring device, methods and systems
US8741214B2 (en) * 2011-10-17 2014-06-03 Evans Capacitor Company Sintering method, particularly for forming low ESR capacitor anodes
JP5918355B2 (en) * 2012-04-19 2016-05-18 東海興業株式会社 Composite molded body and method for producing the same
JP5855539B2 (en) * 2012-07-02 2016-02-09 小島プレス工業株式会社 Two-color molded product manufacturing apparatus and manufacturing method
JP2015088656A (en) * 2013-10-31 2015-05-07 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and manufacturing method thereof
KR20150053579A (en) * 2013-11-08 2015-05-18 삼성전기주식회사 Electric component module and manufacturing method threrof
JP2015180914A (en) * 2014-03-04 2015-10-15 株式会社東芝 Optical link device
JP6854400B2 (en) * 2015-02-27 2021-04-07 パナソニックIpマネジメント株式会社 Solid electrolytic capacitors
JP7213725B2 (en) * 2019-03-08 2023-01-27 東海興業株式会社 Molding equipment for molding injection-molded products, method for manufacturing injection-molded products

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163074A (en) * 1996-12-03 1998-06-19 Rohm Co Ltd Method and apparatus for compact molding porous chip body for capacitor element in solid electrolytic capacitor
JP2007073570A (en) * 2005-09-05 2007-03-22 Rohm Co Ltd Porous sintered body, solid electrolytic capacitor using the same and their manufacturing method

Also Published As

Publication number Publication date
JPWO2020138018A1 (en) 2021-11-18
CN113260472B (en) 2023-08-25
US20210283684A1 (en) 2021-09-16
CN113260472A (en) 2021-08-13
JP7382605B2 (en) 2023-11-17

Similar Documents

Publication Publication Date Title
US5949639A (en) Capacitor element for solid electrolytic capacitor, device and process for making the same
KR100878412B1 (en) Tantalum capacitor
EP1045410A2 (en) Electrode for electrolytic capacitor and process of producing the same
US9472349B2 (en) Sintered article, particularly for low ESR capacitor anodes
CZ200862A3 (en) Improved fluted anode with minimal density gradients and capacitor comprising the same
US20070188982A1 (en) Solid electrolytic capacitor and method of making the same
WO2020138018A1 (en) Mold, manufacturing device, and manufacturing method for manufacturing molded body
KR100850844B1 (en) Solid electrolytic capacitor, anode used for solid electrolytic capacitor, and method of manufacturing the anode
CN110234451B (en) Improved wire to anode connection
JP7122642B2 (en) Electrolytic capacitor and mold and method for manufacturing porous molded body
JP5926485B2 (en) Method for manufacturing solid electrolytic capacitor element
JP2006080266A (en) Solid electrolytic capacitor element and its manufacturing method
JP6913876B2 (en) A mold for manufacturing a porous sintered body used for a solid electrolytic capacitor, a method for manufacturing a porous sintered body, and a method for manufacturing a solid electrolytic capacitor.
JP2003243263A (en) Solid electrolytic capacitor and its manufacturing method
JP2022149503A (en) Manufacturing method of electrolytic capacitor pellet, manufacturing method of electrolytic capacitor, and manufacturing device of electrolytic capacitor pellet
JP5739148B2 (en) Method for manufacturing solid electrolytic capacitor element
WO2018180437A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP4895210B2 (en) Anode element for solid electrolytic capacitor and manufacturing method thereof
JPH08162373A (en) Tantalum capacitor element with lead wire-buried part high in bulk density
JP3949456B2 (en) Manufacturing method of solid electrolytic capacitor
JP4984298B2 (en) Capacitor element molding equipment
JP2019145669A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012059910A (en) Electrolytic capacitor, and method of manufacturing the same
JP2004241455A (en) Anode for solid electrolytic capacitor, its manufacturing method and solid electrolytic capacitor using the same
JP2002231584A (en) Structure and manufacturing method for capacitor element of solid-state electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906328

Country of ref document: EP

Kind code of ref document: A1